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Monte Carlo simulations of the critical region of the restricted primitive model are reported. Using
mixed-field finite size scaling analysis we show that the critical behavior is compatible with Ising-
like behavior. The critical temperature is estimated to be0.0487 6 0.0001 and the critical density
0.065 6 0.002. [S0031-9007(96)01559-1]
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A number of recent investigations of the liquid-liqu
phase transition of ionic solutions have shown that
critical behavior displayed by these fluids is, in so
cases, classical (mean-field-like) up to reduced temp
tures t ­ jT 2 TcjyTc ø 1024 or less [1–3], while in
others it is Ising-like [4–7], or there may be crosso
from mean-field to Ising criticality [8]. In systems whe
the critical exponents which describe the singular par
the physical properties appear to be classical over
whole range of measurement (in practice, systems of l
sized ions in solvents of low dielectric constant) ph
separation is commonly believed to be primarily cau
by the long ranged Coulomb interactions. For th
systems it is also found, using corresponding st
arguments, that the critical parameters are close to t
predicted for the restricted primitive model (RPM) [7–
The RPM consists of equally sized charged hard sph
of diameters, one half carrying charges1q, the other
half charges2q, in a uniform dielectric continuum (o
dielectric constante). The interaction between ions
given by

uijsrdykT ­

(
1`, r # s ,
qiqj

ekTs

s

r
, r . s , (1)

whereT is the temperature andk Boltzmann’s constant
It is convenient to define a reduced coupling stren
w ­ q2yekTs and a reduced temperatureTp ­ 1yw.

From computer simulations [10–14] and theory [1
17] it is now well established that the RPM prese
gas-liquid coexistence at low temperatures with cr
cal temperatureTp

c in the range 0.050–0.056 an
critical densityrp

c in the range 0.023–0.040. Howeve
its critical behavior is not yet known with certaint
Theoretical analysis [15,18] suggests that it is of
Ising type, while experiment in the Coulombic flui
appears rather to be compatible with mean-field beha
(except maybe very close to the critical point [8]).
this Letter we address the question by using Mo
Carlo (MC) simulations in conjunction with finite siz
0031-9007y96y77(19)y4039(4)$10.00
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scaling (fss) arguments. The simulations are perform
in the grand canonical ensemble (GCE) [19] and the
approach used is that developed by Bruce and Wild
[20,21] to account for the lack of “particle-hole” sym
metry in fluid systems. This reduced symmetry in flui
manifests in a mixed character of the relevant scal
fields [22]. In our case they are linear combinatio
of the deviations of the reduced coupling strengthw
and the chemical potential (divided bykT ) m from
their critical values t ­ w 2 wc 1 ssm 2 mcd and
h ­ m 2 mc 1 rswc 2 wd where the system-specifi
parameterss andr determine the degree of field mixing
Associated with the relevant scaling fieldst and h are
two conjugate operatorsE andM satisfying

kE l ­
1
V

d

dt
ln J, kM l ­

1
V

d

dh
ln J , (2)

where J is the grand canonical partition function an
V the volume of the system.E and M are linear
combinations of the reduced energysu ­ UykTVs3d and
numbersr ­ NyVs3d densities

E ­
1

1 2 sr
su 2 rrd, M ­

1
1 2 sr

sr 2 sud .

(3)

A central role in the subsequent fss analysis plays
joint distribution functionpLsM , E d for the operators
M and E . The characteristic lengthL of the system
being defined asL ­ V 1y3, the limiting L ! ` behavior
of pLsM , E d at criticality sh ­ 0, t ­ 0d has been
assumed, following Bruce and Wilding [21], to be of th
form

pLsM , E d . L
1
M L

1
E p̃p

M ,E sL1
M dM , L

1
E dE d , (4)

where LE ­ aE L1yn , LM ­ aM Ld2byn , LM L
1
M ­

LE L
1
E ­ Ld , and dM ­ M 2 kM lc, dE ­ E 2

kE lc and the averages are at criticality. Given
appropriate choice of the nonuniversal scale factorsaM
© 1996 The American Physical Society 4039
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and aE , p̃M ,E is a function which depends only on th
universality class of the system.

In order to determine the critical behavior of the RP
we will follow the same strategy as adopted by Wil
ing [23] to demonstrate that the critical behavior of th
Lennard-Jones system is of the 3D Ising type. Spec
cally, as p̃p

M ,E sx, yd is known from MC simulations
[24], we shall show that our MC results for the distrib
tion functionspLsM d ­

R
dE pLsM , E d andpLsE d ­R

dMpLsM , E d of the RPM match the universal fixe
point functionsp̃p

M sxd ­
R

dyp̃p
M ,E sx, yd andp̃p

E s yd ­R
dxp̃p

M ,E sx, yd of the Ising model.
The MC simulations were performed by confining th

system of charged hard spheres to the surface of a f
dimensional hypersphere [25]. Previous work on the RP
has shown [13,14] that the hypersphere boundary co
tions (bc) give thermodynamic and structural propert
identical to those obtained with the more familiar Ewa
bc where the basic simulation cell is replicated periodica
in space [19]. The advantage of using hypersphere bc
reduction of computer time by a factor of 3–4 compared
the Ewald method for system sizes of a few hundred io
We followed the method proposed in Refs. [13,14,2
The MC sampling in the GCE was made in cycles, ea
cycle comprising displacement trial moves, as well as
sertion and deletion moves of charged hard spheres.
the latter moves a biased scheme similar to the one p
posed by Orkoulas and Panagiotopoulos [12] adapted to
present hypersphere bc was used. In the gas phase w
clustering of the ions is important [14] ion-pair translatio
rotation moves were combined with moves which displa
and rotate clusters as a whole [13,14]. Each cycle co
prised approximately 250 trial moves; at each MC ste
random choice was made as to which type of move wo
be made. The pairsr, ud was recorded every cycle in
wide range of temperatures and chemical potentials aro
the critical parameters and from these data histogra
for the joint distribution of energy and number densi
pLsr, ud were constructed. Each histogram comprised
the order of5 3 106 entries. In order to estimate finite siz
effects five volumesVys3 ­ 1500, 2500, 3500, 5000,
and 10 000 were investigated.

Following Wilding [23], the chemical potential realiz
ing coexistence at fixed temperature is obtained from
requirement that the ordering distributionpLsM d is sym-
metric in M 2 kM l. However, as the ordering opera
tor M contains the unknown mixing parameters, this
symmetry condition can be satisfied only by adjusti
both m ands. Towards this end we advantageously us
(multiple) histogram reweighting [27]. This technique e
ables one to determinepLsr, ud for any statesm, T d know-
ing the histogram(s)pLsr, ud at one (or several) nearb
state(s)sm0, T 0d. It proves therefore sufficient to dete
mine pLsr, ud for a series of states close to the coex
tence curve [we considered several temperatures in
range 0.048–0.051; these states are easily identified f
the double peak structure of the density distribution fun
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tion pLsrd ­
R

dupLsr, ud] and to tunem ands (at fixed
T ) within the reweighting scheme ofpLsr, ud to achieve
symmetry of pLsM d. In our simulations a symmetric
pLsM d could be obtained for volumesVys3 $ 5000.
At the smaller volumes the number of particles presen
the system is too small to allow an adequate sampling
the gas phase. In particular, no formation of apprecia
size clusters is possible. At these volumes symmetr
tion could be achieved only in an approximate way due
a too rapid decrease ofpLsM d at smallM (correspond-
ing to smallr values) (cf. Fig. 1).

The final step will be to determine the critical be
havior and the critical parameters. IfTp

c and mp
c were

known with great precision, the critical exponent rat
byn could, in principle, be determined from the co
lapse ofpLsM d, when expressed in terms of the scalin
variable x ­ a21

M LbynsM 2 Mcd, for different system
sizes. Similarly, the ratio1yn could be obtained from the
collapse ofpLsE d, when expressed in terms of the sca
ing variabley ­ a21

E Ld21ynsE 2 Ecd. In the absence
of a precise knowledge of the critical parameters we
sumed the RPM to be of the Ising universality class a
showing thatpLsM d andpLsE d will collapse on the cor-
responding Ising fixed point functions. More explicitly
for a given volume,T , m and s were adjusted so tha
pLsM d matches the fixed point functioñpp

M sxd corre-
sponding to the Ising universality class. As simulati
results for the latter [24] were not available to us we reli
on the theoretical approximation given by Hilfer [28], u
ing equation of state exponentd ­ 4.8, which reproduces
the simulation results quite accurately (cf. Ref. [28]).
fact, because of the lack of complete symmetry for t

FIG. 1. Collapse of the ordering operator distribution fun
tion pLsM d on the universal fixed point ordering operator di
tribution p̃p

M sxd for Vys3 ­ 2500, T p
c sLd ­ 0.0498 (circles),

Vys3 ­ 3500, T p
c sLd ­ 0.04955 (crosses), andVys3 ­ 5000,

T p
c sLd ­ 0.04922 (triangles). The universal distributioñpp

M sxd
(solid line) is the theoretical approximation given by Hi
fer [28]. The scaling variable isa21

M LbynsM 2 Mcd. The
nonuniversal scale factora21

M is chosen so that the distribution
have unit variance.
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small system sizes, only thex . 0 part of p̃p
M sxd has

been matched. It was verified that by applying the sa
procedure to the larger volumes, the result is identica
that obtained by matching̃pp

M sxd for all values ofx. The
matching is realized by normalizing to unitỹpp

M sxd and
its variance in both the MC results and Hilfer’s theoreti
approximation in the domain ofx values where MC data
are availablesx # 2.3d. These conditions fix the nonun
versal scale factora21

M [23].
The collapse ofpLsM d on p̃p

M sxd is shown in Fig. 1
for the volumesVys3 ­ 2500, 3500, and 5000. The
mismatch in the negative wing of the curve is due,
explained above, to inadequate sampling of the low d
sity configurations for small volumes. By increasing t
system size this error diminishes with concomitant i
provement of the symmetrization. The mixing parame
s for volume 5000 is21.47; it depends slightly on sys
tem size. As Eq. (4) does not include corrections to s
ing the critical parameters determined by matchingp̃p

M sxd
turn out to be size dependent. The apparent critical t
peratures areTp

c sLd ­ 0.0503, 0.0498, 0.04955, 0.04922
and 0.04905 at the volumesVys3 ­ 1500, 2500, 3500,
5000, and 10 000, respectively. The true critical tempe
tureTp

c was inferred from the scaling relation [23]

Tp
c s`d 2 Tp

c sLd ~ L2su11dyn , (5)

where for the Ising systemu . 0.54 [29] andn ­ 0.629
[30]. Tp

c sLd as a function ofL2su11dyn is shown in
Fig. 2. Linear least square extrapolation yields the infin
volume critical temperatureTp

c ­ 0.0487 6 0.0001. The
corresponding critical chemical potential is estimated
bemp

c ­ 213.733 6 0.001.
The statistical error on a histogram computed in

run of 106 cycles is estimated to beø10%, that on a
(multiple) reweighted histogram calculated with the
of runs performed at givenV of the order of 1%–2%
This uncertainty induces an error of 0.00005 on the val

FIG. 2. The apparent critical temperatureTp
c sLd as a function

of L2su11dyn , with u ­ 0.54 and n ­ 0.629. Extrapolation
of the least squares fit gives the infinite volume tempera
estimateT p

c ­ 0.04868.
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of TcsLd obtained by matching the universal distributio
function.

The collapse of the energy operator distribution fun
tion pLsE d on the limiting fixed point functionp̃p

E s yd
is shown in Fig. 3. The data are expressed in terms
the scaling variabley ­ a21

E Ld21ynsE 2 Ecd. Again the
theoretical approximation of Hilfer [28] has been used
p̃p

E s yd. The field mixing parameterr is estimated to be
20.622 for the volume 5000. This value is in good agre
ment with the value20.62 of dsmdydw at Tp

c .
An apparent critical densityrp

c sLd was obtained fromR
drrpLsrd calculated atTp

c sLd and mp
csLd. Its shift

from the infinite volume value is expected to vary
[23,24]

rp
c sLd 2 rp

c s`d ~ L2sd21ynd. (6)

From linear least square extrapolation ofrp
c sLd [0.1090,

0.0961, 0.0928, 0.884, 0.0835 with increasing volum
we find the infinite volume critical densityrp

c ­ 0.065 6

0.002. The critical density is higher than previous es
mates. The larger value ofrp

c results from the present fs
analysis which implies that histograms forpLsrd with two
peaks of equal height or weight obtained for temperatu
close to but larger than the estimateTcsLd do not corre-
spond to a gas-liquid phase equilibrium contrary to w
was assumed in the Gibbs ensemble simulations [12,1

Using the mixed field fss theory developed by Bru
and Wilding [20,21] we show thatpLsr, ud of the RPM
computed by GCE simulation can be mapped onto
joint distribution of critical scaling operators appropria
to the Ising fixed point where from it seems legitimate
conclude that the RPM belongs to the Ising universa
class. We stress that we have assumed that the s
of p̃p [cf. Eq. (4)], corresponding to periodic bounda

FIG. 3. Collapse of the energy operator distribution functi
pLsE d on the universal fixed point ordering operator distrib
tion p̃p

E s yd (symbols as in Fig. 1). The universal distributio
p̃p

E s yd (solid line) is the theoretical approximation given b
Hilfer [28]. The scaling variable isa21

E Ld21ynsE 2 Ecd. The
nonuniversal scale factora21

E is chosen so that the distribution
have unit variance.
4041
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conditions is appropriate for the hypersphere bound
conditions as well. A full account of the present stu
will be given elsewhere.
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