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Critical Behavior of the Restricted Primitive Model
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Monte Carlo simulations of the critical region of the restricted primitive model are reported. Using
mixed-field finite size scaling analysis we show that the critical behavior is compatible with Ising-
like behavior. The critical temperature is estimated toOl®87 = 0.0001 and the critical density
0.065 = 0.002. [S0031-9007(96)01559-1]

PACS numbers: 64.70.Fx, 61.20.—p

A number of recent investigations of the liquid-liquid scaling (fss) arguments. The simulations are performed
phase transition of ionic solutions have shown that then the grand canonical ensemble (GCE) [19] and the fss
critical behavior displayed by these fluids is, in someapproach used is that developed by Bruce and Wilding
cases, classical (mean-field-like) up to reduced temperd20,21] to account for the lack of “particle-hole” sym-
turest = |T — T.|/T. = 10™* or less [1-3], while in metry in fluid systems. This reduced symmetry in fluids
others it is Ising-like [4—7], or there may be crossovermanifests in a mixed character of the relevant scaling
from mean-field to Ising criticality [8]. In systems where fields [22]. In our case they are linear combinations
the critical exponents which describe the singular part obf the deviations of the reduced coupling strength
the physical properties appear to be classical over thand the chemical potential (divided b¥T) u from
whole range of measurement (in practice, systems of largieir critical values r =w — w. + s(u — u.) and
sized ions in solvents of low dielectric constant) phaseér = 4 — u. + r(w. — w) where the system-specific
separation is commonly believed to be primarily causegparameters andr determine the degree of field mixing.
by the long ranged Coulomb interactions. For theseéAssociated with the relevant scaling fieldsand i are
systems it is also found, using corresponding statesvo conjugate operator and M satisfying
arguments, that the critical parameters are close to those
predicted for the restricted primitive model (RPM) [7-9]. (E) = 15 InE, (M)= 15 nZ, (2)

The RPM consists of equally sized charged hard spheres vV ér V &h

of diametero, one half carrying charges g, the other
half charges—g¢, in a uniform dielectric continuum (of
dielectric constant). The interaction between ions is

where E is the grand canonical partition function and
V the volume of the system.Z and M are linear
combinations of the reduced energy= U/kTV ¢*) and

given by number(p = N/Vo?) densities
00, r=o,
O T A A N H R R
whereT is the temperature and Boltzmann’s constant. (3)
It is convenient to define a reduced coupling strength A central role in the subsequent fss analysis plays the
w = ¢*/ekT o and a reduced temperatufé = 1/w. joint distribution function p, (M, E) for the operators

From computer simulations [10—14] and theory [15-21 and . The characteristic length of the system
17] it is now well established that the RPM presentspeing defined ag = V!/3, the limiting L —  behavior
gas-liquid coexistence at low temperatures with criti-of , (M, F) at criticality (» = 0,7 = 0) has been

cal temperature7; in the range 0.050-0.056 and assumed, following Bruce and Wilding [21], to be of the
critical densityp’ in the range 0.023—-0.040. However, form

its critical behavior is not yet known with certainty.

Theoretical anglysis [15,18] suggests that it _is of_the pL(M,E) = A&A%ﬁz\/l’f([\}'\/z@j\/{,/\%fjf), (4)
Ising type, while experiment in the Coulombic fluids

appears rather to be compatible with mean-field behaviowhere Az = azL'", Aa = apm L4 P/, Ay Ay =
(except maybe very close to the critical point [8]). InAgAfr = L%, and 6 M =M — (M), 8E =F —
this Letter we address the question by using Montg’Z). and the averages are at criticality. Given an
Carlo (MC) simulations in conjunction with finite size appropriate choice of the nonuniversal scale factoxs

0031-900796/77(19)/4039(4)$10.00 © 1996 The American Physical Society 4039



VOLUME 77, NUMBER 19 PHYSICAL REVIEW LETTERS 4 NdVEMBER 1996

andag, pam. £ is a function which depends only on the tion p;(p) = [ dup;(p,u)] and to tuneu ands (at fixed
universality class of the system. T) within the reweighting scheme of; (p, u) to achieve
In order to determine the critical behavior of the RPMsymmetry of p,(M). In our simulations a symmetric
we will follow the same strategy as adopted by Wild- p; (M) could be obtained for volume¥ /a3 = 5000.
ing [23] to demonstrate that the critical behavior of theAt the smaller volumes the number of particles present in
Lennard-Jones system is of the 3D Ising type. Specifithe system is too small to allow an adequate sampling of
cally, as pi z(x,y) is known from MC simulations the gas phase. In particular, no formation of appreciable
[24], we shall show that our MC results for the distribu- size clusters is possible. At these volumes symmetriza-

tion functionsp, (M) = [ dE p (M, E)andp.(E) = tion could be achieved only in an approximate way due to
[dMp (M, E) of the RPM match the universal fixed a too rapid decrease @f, (M) at smallM (correspond-
point functionsp’y (x) = [ dypay z(x,y) andpx(y) =  ing to smallp values) (cf. Fig. 1).

[ dxpa z(x,y) of the Ising model. The final step will be to determine the critical be-

The MC simulations were performed by confining thehavior and the critical parameters. 1f; and u; were
system of charged hard spheres to the surface of a fouknown with great precision, the critical exponent ratio
dimensional hypersphere [25]. Previous work onthe RPM3/v could, in principle, be determined from the col-
has shown [13,14] that the hypersphere boundary condlapse ofp. (M), when expressed in terms of the scaling
tions (bc) give thermodynamic and structural propertiesariablex = a»j LB/*(M — M.), for different system
identical to those obtained with the more familiar Ewaldsizes. Similarly, the rati¢/»v could be obtained from the
bc where the basic simulation cell is replicated periodicallycollapse ofp; (E), when expressed in terms of the scal-
in space [19]. The advantage of using hypersphere bc isiag variabley = az'LY~V/*(E — E.). In the absence
reduction of computer time by a factor of 3—4 compared tof a precise knowledge of the critical parameters we as-
the Ewald method for system sizes of a few hundred ionssumed the RPM to be of the Ising universality class and
We followed the method proposed in Refs. [13,14,26].showing thatp, (M) and p, (E) will collapse on the cor-
The MC sampling in the GCE was made in cycles, eacliesponding Ising fixed point functions. More explicitly,
cycle comprising displacement trial moves, as well as infor a given volume,T, u and s were adjusted so that
sertion and deletion moves of charged hard spheres. Fgr (M) matches the fixed point functiofi’, (x) corre-
the latter moves a biased scheme similar to the one pr@ponding to the Ising universality class. As simulation
posed by Orkoulas and Panagiotopoulos [12] adapted to theesults for the latter [24] were not available to us we relied
present hypersphere bc was used. In the gas phase whene the theoretical approximation given by Hilfer [28], us-
clustering of the ions is important [14] ion-pair translation/ ing equation of state exponefit= 4.8, which reproduces
rotation moves were combined with moves which displacehe simulation results quite accurately (cf. Ref. [28]). In
and rotate clusters as a whole [13,14]. Each cycle comfact, because of the lack of complete symmetry for the
prised approximately 250 trial moves; at each MC step a
random choice was made as to which type of move would
be made. The paifp,u) was recorded every cycle in a 0.50
wide range of temperatures and chemical potentials around
the critical parameters and from these data histograms
for the joint distribution of energy and number density
pr(p, u) were constructed. Each histogram comprised of
the order of X 10° entries. In order to estimate finite size 0.30 t
effects five volumesV /a3 = 1500, 2500, 3500, 5000,
and 10000 were investigated.

Following Wilding [23], the chemical potential realiz-
ing coexistence at fixed temperature is obtained from the
requirement that the ordering distributign (M) is sym- 0.10 ¢
metric in M — (M). However, as the ordering opera- .
tor M contains the unknown mixing parameter this 0.00 . . ‘ Ve,
symmetry condition can be satisfied only by adjusting -25  -15 -5 05 15 2.5
both x ands. Towards this end we advantageously used x=ay L7 (M=-<M>)

(multiple) histogram reweighting [27]. This technique en-FIG. 1. Collapse of the ordering operator distribution func-
ables one to determing (p, u) for any stateu, T) know-  tion p.(M) on the universal fixed point ordering operator dis-
ing the histogram(sp, (p, u) at one (or several) nearby tribution p3(x) for V/o* = 2500, T;(L) = 0.0498 (circles),

.. 3 * — 3
state(s)(u/,T'). It proves therefore sufficient to deter- ¥/o . = 3500, T¢(L) = 0.04955 (crosses), andt /o> = 5000,
: (p.u) for a series of states close to the Coexis—T“ (L) = 0.04922 (triangles). The universal distributighiy (x)
mine pr{p,u _ =AlS"(50lid line) is the theoretical approximation given by Hil-
tence curve [we considered several temperatures in the [2g]. The scaling variable iga L2/" (M — M.). The

range 0.048-0.051; these states are easily identified frogbnuniversal scale factar,; is chosen so that the distributions
the double peak structure of the density distribution funchave unit variance.
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small system sizes, only the > 0 part of p,(x) has of T.(L) obtained by matching the universal distribution

been matched. It was verified that by applying the saméunction.

procedure to the larger volumes, the result is identical to The collapse of the energy operator distribution func-

that obtained by matchingy, (x) for all values ofx. The tion p.(E) on the limiting fixed point functionpz ()

matching is realized by normalizing to unifgj,(x) and is shown in Fig. 3. The data are expressed in terms of

its variance in both the MC results and Hilfer's theoreticalthe scaling variable = az'LY~'/*(F — E,). Again the

approximation in the domain of values where MC data theoretical approximation of Hilfer [28] has been used for

are availablgx = 2.3). These conditions fix the nonuni- p7(y). The field mixing parameter is estimated to be

versal scale factomz;vl1 [23]. —0.622 for the volume 5000. This value is in good agree-
The collapse ofp; (M) on p,(x) is shown in Fig. 1 ment with the value-0.62 of d(u)/dw atT.

for the volumesV /g3 = 2500, 3500, and 5000. The  An apparent critical density*(L) was obtained from

mismatch in the negative wing of the curve is due, asf dppp;(p) calculated atT*(L) and w*(L). Its shift

explained above, to inadequate sampling of the low denfrom the infinite volume value is expected to vary as

sity configurations for small volumes. By increasing the[23,24]

system size this error diminishes with concomitant im- . . —d—1/»)

provement of the symmetrization. The mixing parameter pe(L) = po(») = L . (6)

s for volume 5000 is—1.47; it depends slightly on sys- o jinear least square extrapolation f(L) [0.1090,
tem size. As Eg. (4) does not include corrections to Sca|0.0961, 0.0928, 0.884, 0.0835 with increasing volume],

ing the critical parameters determined by matcfﬂrjg(x) we find the infinite volume critical density = 0.065 *

turn out to be size dependent. The apparent critical teny o3>~ The critical density is higher than previous esti-
peratures ard; (L) = 0.0503, 0'03498’ 0.04955, 0.04922, 15165, The larger value of* results from the present fss
and 0.04905 at the volumes/o~ = 1500, 2500, 3500, analysis which implies that histograms fer(p) with two
dpeaks of equal height or weight obtained for temperatures

ture T was inferred from the scaling relation [23] close to but larger than the estimatg(Z) do not corre-

T*(0) — T*(L) o L™ O+D/v (5) spond to a gas-liquid phase equilibrium contrary to what
¢ ¢ ’ was assumed in the Gibbs ensemble simulations [12,13].
where for the Ising syster = 0.54 [29] andv = 0.629 Using the mixed field fss theory developed by Bruce

[30]. T#(L) as a function ofL~“*V/* is shown in and Wilding [20,21] we show that, (p, u) of the RPM

Fig. 2. Linear least square extrapolation yields the infinitccomputed by GCE simulation can be mapped onto the

volume critical temperaturé; = 0.0487 = 0.0001. The joint distribution of critical scaling operators appropriate

corresponding critical chemical potential is estimated tao the Ising fixed point where from it seems legitimate to

be u; = —13.733 = 0.001. conclude that the RPM belongs to the Ising universality
The statistical error on a histogram computed in aclass. We stress that we have assumed that the shape

run of 10% cycles is estimated to be-10%, that on a of p* [cf. Eq. (4)], corresponding to periodic boundary

(multiple) reweighted histogram calculated with the set

of runs performed at givetv of the order of 1%—2%.

This uncertainty induces an error of 0.00005 on the values ~ 0-50
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3.000 0.001 0.002 0.003 FIG. 3. Collapse of the energy operator distribution function

e p.(E) on the universal fixed point ordering operator distribu-
tion pz(y) (symbols as in Fig. 1). The universal distribution

FIG. 2. The apparent critical temperatuf&(L) as a function  pz(y) (solid line) is the theoretical approximation given by

of L~@+V/* with 9 = 0.54 and » = 0.629. Extrapolation  Hilfer [28]. The scaling variable iaz'L?~"/*(E — E.). The

of the least squares fit gives the infinite volume temperatureonuniversal scale factarz' is chosen so that the distributions

estimateT = 0.04868. have unit variance.
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