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Global Instability in Fully Nonlinear Systems
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Existence of a saturated steady solution of a nonlinear evolution equation subject to a boundary
condition atx = 0, called a nonlinear global mode, is illustrated on the real subcritical Ginzburg-Landau
model. Such a nonlinear global mode is shown to exist whereas the flow is linearly stable, convectively
unstable, or absolutely unstable. If the linearized evolution operator is absolutely unstable, then a global
mode exists but the converse is false. This result relies only on the existence of a structurally unstable
heteroclinic orbit in the phase space and is likely to be generic as demonstrated by the supercritical
Ginzburg-Landau and the van der Pol-Duffing equations. [S0031-9007(96)01599-2]

PACS numbers: 47.20.Ft, 47.20.Ky

Wakes behind bluff bodies [1], mixing layers with domain [8]. He shows that, for nonlinearly unstable sys-
back flow [2], and helium or heated jets [3] constitutetems, distinction between nonlinearly convective or abso-
examples of open flows where self-sustained oscillationkute instability depends only on whether the trailing front,
at a specific intrinsic frequency develop when varyingseparating the basic state from a bifurcated state, moves
the control parameter (the Reynolds number, the velocitgownstream or upstream in the laboratory frame. The de-
ratio, or the density ratio, respectively) and give rise totermination of the nonlinear absolute or nonlinear convec-
saturated amplitude states. In such open flows, Galileative nature of the instability is therefore straightforward
invariance is broken by the boundary conditions (theonce the front velocity is determined [9].
body, the splitter plate, the nozzle, respectively) and But as noticed in Ref. [8], this definition based on
the effect of the advection velocity cannot be removedfront velocity is quite formal as the laboratory frame is
Therefore, one has to deal, not only with the growth ofartificially defined and no specific physical behavior is
disturbances, but also with their propagation. This leadsssociated with one or the other type of instability.
us to distinguish between absolute (A) and convective When the dynamics of real open flows is of interest,
(C) linearly unstable flows. These concepts have beenne should take into account “entrance” conditions at the
initially developed in the context of plasma physics [4]. origin of the domain and determine the nonlinear global
They refer to the asymptotic behavior of the impulse(NG) instability. This new concept is more physical as
response of the flow in the frame singled out by theit refers to the existence of nonlinear solutions in semi-
boundary condition (hereafter named “laboratory frame”):infinite domains with a boundary condition at= 0.

a system is said to be linearly stable (S) when itsSince the laboratory frame is singled out, the advection
linear response to an initial localized impulse decayselocity is now externally imposed and the selection
asymptotically in any moving frame, and linearly unstableproblem, encountered to determine the front speed in
otherwise; it is absolutely unstable (A) if, at any fixed an infinite domain, is replaced by the simpler problem
location, the response grows in time and convectivelyf existence of a solution in € [0, +). As we shall
unstable if it decays (C). The exponential growth ofdemonstrate elsewhere [10], properties of the phase space
initial disturbances when the flow is absolutely unstablenvhich determine the occurrence of NG instability and
will ultimately be compensated by nonlinearities to givethose which prelude the front selection are remarkably
rise to an intrinsic self-sustained resonance. On theonnected although the physical considerations leading
other hand, a convectively unstable flow is supposed tto one or the other are different. In the following, we
relax to the basic flow but will strongly respond to any focus on the determination of the NG region and its
continuously applied forcing and therefore behaves as bnks to A and C. For clarity, it is worth insisting that
spatial amplifier. the term “nonlinear global mode” refers to the solution

These concepts apply as soon as instability wavesf a nonlinear homogeneous eigenproblem involving the
propagate in the laboratory frame. They have beenvhole streamwise domain and therefore corresponds to
successfully used to interpret the dynamics of binarythe dynamical system terminology. In the global mode
convection [5], lasers [6], and the dynamo theory ofliterature [11], the “linear global mode” term refers to
disklike objects [7]. the solution of an eigenproblem which also involves the

Recently, one of us proposed to extend these ideas twhole streamwise domain but which is nonhomogeneous
take into account nonlinearity by simply replacing the im-and linear. These notions of global and NG modes should
pulse linear wave packet, used in the standard definitiorgverlap when nonlinear effects will be considered on the
by any saturated wave packet of finite size in an infinitdinear global mode dynamics and when inhomogeneous
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(nonparallel) effects will be taken into account in the For simplicity, only the topological demonstration on
structure of the presently studied nonlinear global mode. which the rigorous proof is based is given here. As
The purpose of this Letter is to illustrate the relationshipshown graphically in [8] for the cas@s < 0 and in
between NG and AC instability using a one dimensional Fig. 1 for the other cases, the emergence of an intersection
real Ginzburg-Landau equation in a semi-infinite domairbetween the stable manifold &f, and thedA/dx axis
which accounts for an extended subcritical pitchforkimplies the existence at threshold of a structurally unstable

bifurcation: heteroclinic trajectory betweesy, andA,. WhenU; <
9A 9A  92A ; S 1/+/3, [8] has shown the structure of the heteroclinic
— tUp—=—-——F+tpA+A —A, (1) orbit and its perturbations. In this case,(Uy) is
at ax ax

negative; therefored, is a saddle and a heteroclinic

pends on two control paramete(s, Us) independent of orbit connectingA, to A, exists for a single value of

x. UydA/dx represents the effect of advection at the®” — #a(Uo). This orbit is structurally unstable as it
velocity Uy > 0. Because of the symmetry — —A departs fromA, along the unstable eigendirection. Its

only half of the solutions will be described. If the do- perturbation foru > 4(Uo) give rise to an intersection

main is made doubly infinite and the boundary conditionbewveen the stable manifold of, and the axisdA/dx
A(0) = 0 is dropped,U, may be set to zero and clas-
sical results [12] are recovered: far < 0, two linearly
stable steady positive uniform states exist: = 0 and aa aa
Ay = (1/2 + \Ju + 1/4)V/2; for w > 0, Ay becomes lin- @ |% (a) | 4=
early unstable and, remains the only stable state. More- Ly
over, Aq is linearly convectively unstable [13] (C) for A .
0 < u < U§/4 and linearly absolutely unstable (A) for A | ; /\
m > U§/4. RS

A nonlinear global mode is defined as a steady (or A dA
more generally an oscillatory) solution of (1) subject to ) | d ) | do
the “entrance condition” (3) which therefore satisfies - e

UpdA/dx = d*A/dx* + pA + A — A, (2) : ‘ ; .
A(0) =0, 3) A A

A(+2o) = A;. (4)

As discussed in [8], this asymptotic behavior (4) is
imposed by the existence of a Lyapunov functional with
a minimum inA,. In the phase spadg@l, dA/dx), each
trajectory of (2) not ending af, or Ay is associated
with an infinite Lyapunov energy and hence is not
physical. Conditions (3) and (4) imply that a NG mode is
represented by a trajectory linking a point whete= 0
but with dA/dx # 0, to A,. A solution linking (A =
0,dA/dx = 0) to A, is not a global mode because it
corresponds to a front solution with(—) = 0 which
cannot be renormalized i(0) = 0.

For convenience, let us consider that the advection
velocity Uy is fixed and that we study the topological
changes in the phase portrait while increasing the control
parameterw. For a fixed advection velocity, let us
define u4(Up) as the threshold of NG instability. Using
a perturbative asymptotic expansion, we have rigorouslyIG. 1. Topological changes in the structure of the stable
determined the onset of a global mode which correspond&anifold of 4, leading to the NG instability when keepirig,
to the emergence of an intersection between the stab‘ieOnStant and increasing through the NG thresholgia(Uo).

. . . - eft column: “global” instability casel/v3 < Uy < +/3; (a
manifold of A, with the dA/dx axis at finitedA/dx: 0<p 2 o (g) W= LLA; (C; I/y - ,uA;/ri\/g—ht colamn:\/“loc(al?’

ua(Uo) = 3/16(U3 + 2U/v/3 — 1) for Uy < /3,  instability caselUy > v3; (a) 0 < u < pa; (B) p = pa; (¥)
M > ma. The solution drawn by aontinuous heavy linis the
(5) NG mode. In each case, the bottom figure presents the close up
of the modifications which take place arousgl a b,c, a, B8,y
ua(Ug) = U§/4 for Uy > /3. (6) referring to the labels in the figure.

with the entrance conditiod(0) = 0. Equation (1) de-
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(see Ref. [8]). WhenU, > 1/+/3, the problem is less U O NG
simple since the transition occurs far (Uy) > 0, while 0y C 1A
Ag is an unstable node. As shown in Fig. 1 where all 8 C :
possible cases obtained by numerical solutions of (2)— '
(4) are reproduced, whatever the value wfpositive, a

heteroclinic orbit connecting, to A, exists. Forl/y/3 < 1/ V3 :

Uos < /3, andu < ua(Uy), the heteroclinic orbit always [ |

departs fromA, to the right along its least unstable g r A

eigendirection (as it should generically [14]) [Fig. 1(a)]; |

at u = ua(Upy), an exceptional connection along the 3/16 0 -{__.-; i

most unstable direction o, appears [Fig. 1(b)]; when H
n > ua(Up) the connection returns to the least unstablg=IG. 2. NG domain in parameter space for the model (1).

direction of Ay [Fig. 1(c)] but from the other side of The dark gray region represents the absolutely (A) unstable

the dA/dx axis. In this case, the stable manifold of region which is totally embedded in the NG region. In the light
’ . . ! d theref gray region, a NG exists whereas the system is not absolutely
A, possesses a portion 1A <0 and therefore must unstable. In this case, resonances are not predicted from a

cross thedA/dx axis giving rise to a NG mode plotted Jinear analysis but from a fully nonlinear one.
by a heavy line in Fig. 1(c). As for the former case
(Uy < 1/+/3), an apparition of a global mode is linked
to the crossing of a control parameter value for which
a heteroclinic orbit betweem, and A, exists and is
structurally unstable because it departs fragnalong its
most unstable eigendirection. In this case, the transitio
is not associated to a local change aroundbut to the
global structure of the phase space and therefore cann
be detected by a linear analysis.

For Uy > /3 and u < u4(Uy), the heteroclinic orbit
always departs from, to the right along its least unstable
eigendirection [Fig. 14)] but for u = ua(Uy), the two
eigendirections coincide [Fig. B)]. For u > wa(Uy),
the heteroclinic orbit spirals out ofy to A, [Fig. 1(y)]
giving rise to infinitely many global modes, only the first 0A 0A  9°A

el e _ 22 __ A3
one being represented by heavy lines in Figy)1.( At the ot + Uo ax ox2 A=A (7)

bifurcation, the heteroclinic orbit is therefore structurallyomy one parameter or U, is necessary to describe the
unstable but this time “locally” because the nature of thesystem, since one of them can be set to unity by rescaling
Ay fixed point changes from node to focus. This IocalA, x, and . As a result, only one kind of transition
change occurs when two eigendirections n&acoincide,  should be observed by lack of degrees of freedom; we
i.e., when the linear instability changes from linearpgyve found that the system becomes NG unstable and A
convective to absolute (g = Uj/4). Following the  ynstable at the same time for, = UZ2/4. But as soon
value of Uy, the thresholdu(Uo) has been determined a5 an extraterm is added to (7), for example, a nonlinear
by the global or local structural instabilities, dependingcontribution to the advection [Eq. (8)], the NG region
which one occurs first. Only in the latter case does theygts extending beyond the A domain. This system is

soon as a structurally unstable heteroclinic orbit appears in
the phase space. This appearance involves the nonlinear
solution of the system along the whole domain and
therefore cannot be obtained from a linearized approach.
g{)r Uy < /3, the NG threshold (heavy line) always
precedes the A threshold (discontinuous line) whereas
for Uy > /3, the system becomes NG unstable and A
unstable simultaneously.

This result is likely to be general and does not seem to
depend on the particular choice of a model equation. In
the classical supercritical model

NG threshold coincide with the A threshold. known as the van der Pol-Duffing model:
These results have been demonstrated analytically by 5
seeking the heteroclinic trajectory linking, and A, 9A + (Uy — Az)% _ oA +opA — A% (8)

as a polynomial or a series expansion4dn For each at ox  ax2
system, the existence of a NG mode for> u, is then  The region of NG instability for model (8) in a semi-
rigorously proved by matched asymptotic expansions withnfinite domain with the condition (3) is bounded by the
an inner linear region close ty and a nonlinear region curvesu,(Uy) = U3 /4 for U,y < 6, na(Up) = 3Up — 9
outside (the principle sketched in Fig. 1). for Uy > 6. By contrast with model (1), the system
These results are synthesized in Fig. 2: In the shadebecomes NG unstable and A unstable at the same value of
region (light or dark), the system is NG unstable. Thethe bifurcation parameter only fdv/, < 6, i.e., for small
dark shading corresponds to the A region whereas thadvection velocities. Fat/y > 6, the system is NG while
light shaded region corresponds to a NG bifurcation whictbeing C unstable showing that this property arises even in
occurs while the basic stait, is linearly stablex < 0  the supercritical bifurcation case.
or linearly convectively unstablex > 0. As we have As already noted, the threshold of NG instability,
shown, the NG threshold precedes the A threshold awhich has been rigorously linked to the existence of
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a structurally unstable heteroclinic orbit linkingy to  an advection velocity in the solution, the emergence of
A,, is closely related to the selection of front velocity NG modes should be observed as a steady blue narrow
in infinite domains. van Saarloos and Hohenberg [9]band surrounded by a colorless solution which, following
have recently established on physical grounds a selectidhe advection velocity magnitude, may happen while the
principle for the front velocity in the complex Ginzburg- solution is stable or convectively unstable.

Landau equation, which is in fact similar to our criterion We thank P. Manneville, P. Huerre, C.H.K.
for the appearance of a global mode. We are now abl®Villamson, and B. Tilley for many helpful com-
to propose an alternative interpretation of their results bynents and stimulating discussions.
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