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Stabilization, Selection, and Tracking of Unstable Patterns by Fourier Space Technique
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A new method for the stabilization and manipulation of unstable states of a pattern forming system
is presented. The technique is applied to an optical system where unstable homogeneous solutions,
rolls, squares, hexagons, and honeycombs are all stabilized and tracked. The control consists of a
small spatial modulation to the input pump field, which is derived from the Fourier transform of the
output electric field. Once stabilization is achieved, the control vanishes. The method can be used
as a numerical tool for pattern forming systems to determine the existence and stability of solutions.
[S0031-9007(96)01565-7]
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Considerable effort has been made recently to supp
temporal [1–3] and spatiotemporal disorder [4–12]
chaotic regimes. This would allow complex systems
be operated in highly nonlinear regimes while retain
temporal and/or spatial coherence, a desirable featu
fields as diverse as laser physics, plasma physics,
hydrodynamics. A separate, yet related, aim is not o
to suppress spatiotemporal chaos, but also to stab
and manipulate unstable spatial states [4,11,12].
could have technological applications in, for examp
information processing, for which optics is of gre
interest.

Recently there have been reports of spatiotemporal
trol in optical models [13,14]. Optical systems displ
on fast time scales, phenomena common to many
tially extended systems. One such phenomenon is th
pattern formation, where a spatially extended system
possess a large number of unstable pattern states ev
the presence of a stable output. This is associated
the breaking of the rotational and translational sym
try of the system. In this Letter, we present a techni
which allows us to select, stabilize, and track such un
ble states. This differs from the types of control lately
plied to temporal systems which require chaotic dynam
to provide a large number of unstable states. They
ally also rely on the ergodicity of the motion to eventua
take the system to the desired region of the phase spa

Our method relies upon the fact that a spatially
tended system can have a simplified representatio
Fourier space. This formed the basis of the control te
nique used in [10] to suppress 1D spatiotemporal cha
motion. The features which we will discuss and use
our control are found in the spatial Fourier transform
the electric field and are common to many pattern fo
ing optical systems. Similar properties can also be fo
in other types of driven dissipative nonlinear systems w
rotational invariance [15]. This technique is therefore
general relevance.

It is also important to note that the Fourier transfo
(or far field) in an optical system is routinely obtaina
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in experiments using a single lens. This provides
prospect of the technique being applied in a fully optic
manner. It can thus take full advantage of the speed
such systems offer, because all-optical (analog) contro
limited only by the response speed of the system.

We consider the mean-field model for a two-lev
medium in an optical cavity [16,17]. In the good cavi
limit, the polarization and population difference variabl
can be removed by adiabatic elimination. The intracav
electric field is then described by [16,17]

≠tE ­ 2 E

∑
s1 1 iud 1

2Cs1 2 iDd
jEj2 1 1 1 D2

∏
1 EI 1 is≠xx 1 ≠yydE . (1)

Hereu is the cavity detuning,D the atomic detuning,2C
the medium density expressed as an optical absorptiv
andEI is the spatially dependent input pump field. Als
the timet has been scaled by the cavity decay time. F
simplicity we restrict ourselves to the purely absorpti
sD ­ 0d case, the behavior of which is typical of th
region jDj & 1 [18]. Then, for a plane-wave pump fiel
EI , Eq. (1) has stationary, homogeneous solutionsEs

given by [17]

EI

Es
­ 1 1 iu 1

2C
jEsj2 1 1

. (2)

These solutions become unstable for values ofC and
I ­ jEsj

2 satisfying

sI 1 1d2

sI 2 1d
, 2C . (3)

Close to this “modulational instability” (MI) threshold
the minimum of which is found atC ­ 4.0, perturbations
of the form eiK?r experience growth ifjKj . Kc 6 ´,
where ´ is small andKc ­

p
2u. The condition on

K defines an annulus in Fourier space in which mo
grow and destabilize the homogeneous solution. Prev
analytical and numerical work has shown that in th
system competition between these modes leads event
© 1996 The American Physical Society 4007
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to

ve
ow
to a steady state consisting of either two (“rolls”) or s
(“hexagon”) equally spaced modes. These steady s
are, to lowest order, a superposition of a small num
of Fourier components. For the purposes of describ
our control technique we will label eight wave vectors
Fourier space as in Fig. 1. The absolute orientation of
wave vectors corresponding to these modes is arbitr
due to the rotational invariance of (1). From this s
of wave vectors we can construct all the patterns wh
we will discuss and stabilize with our control. Rolls a
formed by wave vectorsK1,5, squares byK1,3,5,7, and
hexagons byK1,2,4,5,6,8. In the case of rolls, for example
the field obeys [19]

E
Es

2 1 ­
1
2

sjAjeif1 eiK1?r 1 jAjeif5eiK5?rd 1 h.o.t.,

(4)

whereAeifi is the complex amplitude associated with t
wave vectorKi, with A real, and h.o.t. represents high
order terms. For the two types of hexagonal patte
which we denoteH1 andH2, the field is given by

E
Es

2 1 ­
1
2

sjAjeif1 eiK1?r 1 jAjeif4eiK4?r

1 jAjeif6eiK6?r 1 c.c.d 1 h.o.t. (5)

For f1 1 f4 1 f6 ­ 2np, these areH1 hexagons, a
hexagonal array of intensity peaks. Forf1 1 f4 1

f6 ­ s2n 1 1dp, we obtainH2 hexagons, or “honey
combs,” consisting of intensity dips in a bright bac
ground. It is important to stress, however, that
amplitudes, relative stability, and even existence of s
rolls and hexagons are usually only known in the n
threshold regionjAj ø 1 [15]. Our control method
has no such restriction and can thus be used to
tablish existence and stability over any range of
rameters. For example, forC ­ 4.4, Eq. (3) shows
that the homogeneous state is unstable over the r
(2.1, 4.7) inI , only the boundaries of which are accurate

FIG. 1. Schematic diagram of the Fourier modes neces
to form the patterns to which control is applied. The mod
lie on the critical circlejKj ­ Kc. The short dashes indicat
the modes which constitute a hexagonal solution, and the
dashes are those necessary for squares.
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described by perturbation methods such as amplit
equations [17].

The characteristics of the states we wish to stabi
provide the physical basis for our control technique.
a starting point, to stabilize the homogeneous state ab
the MI threshold, we must suppress the growth of wa
vectors in the instability annulus. First, we take t
Fourier transform of the output field and filter it to obta
only the modes contained within the annulus. We th
take the inverse Fourier transform of the resulting fie
multiply it by a small strength parameter, and subtrac
from the input pump field. Thus, the pump field acquir
a spatial modulation which is determined only by t
modes found in the instability annulus in Fourier spa
The pump field can then be written as

EI sx, yd ­ EI0s1 1 Fd ,

F ­ 2s1f1sx, yd , s1 . 0 , (6)

whereEI0 is the magnitude of the plane-wave pump a
s1 the feedback strength. In this way, we provide negat
feedback only for the modes which lie in the annulus. T
functionf1sx, yd can be described by

f1sx, yd ­ F 21UF E , (7)

whereF denotes the operation of Fourier transformati
of the electric fieldE, U describes the filtering opera
tion in Fourier space, andF 21 is the inverse Fourier
transformation.

The results which we will present were obtain
numerically by integrating Eq. (1), using a split ste
spectral method. The integrations were performed ma
on a 64 3 64 grid with a box size of16pyKc. Critical
cases were also checked on a128 3 128 grid. The
control was applied in a continuous, stepwise fashion w
no delay, being updated every 0.1 units of time w
a time step of 0.02 units. This technique is extrem
powerful and has allowed us to stabilize the homogene
state for values ofC up to 5.28, which is.30%
above the minimum MI threshold, and we anticipa
that it will continue to work for even larger value
of C. When the homogeneous state is stabilized,
pump modulation vanishes since the Fourier transfo
of the field contains no excited wave vectors in t
annulus.

In order to control pattern states, we now modifyU
in Eq. (7). To stabilize rolls, for example, we remov
two diametrically opposite modes (K1,5) of magnitude
Kc from the feedback. This allows the formation
rolls by suppressing the growth of all except the desi
modes. Again, the feedback vanishes as the rolls stabi
ensuring that these rolls are indeed a solution of Eq.
Because of the rotational degeneracy, we are free
choose the orientation of the stabilized rolls.

The stabilization of patterns of more than two wa
vectors requires an extra degree of control. If we n
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try to stabilize squares (four wave vectors) by remov
the wave vectorsK1,3,5,7 from the feedback, we en
with the stabilization of rolls in one of the two possib
orientations, the roll pattern being more stable th
squares. We must ensure the presence of all four w
vectors, and this is done by calculating the controlbi on
modei according to

b1 ~ 2a1 1 a7 , b5 ~ 2a5 1 a3 ,

b3 ~ 2a3 1 a1 , b7 ~ 2a7 1 a5 , (8)

whereai is the amplitude of the wave vectorKi. This
could be achieved experimentally by filtering the Four
field to obtain the amplitudesai and passing the field
through an interferometer with a field rotating element
one arm to obtain the amplitudesbi . We then take the
inverse Fourier transform to constructf2sx, yd which is
fed back aspositivefeedback to the pump. The feedba
modulation in (6) now becomes

F ­ 2s1f1sx, yd 1 s2f2sx, yd , (9)

wheres2 . 0 and is the strength of the positive feedba
As well as suppressing unwanted modes, the con

(9) distributes the energy among all four wave vect
necessary for the formation of squares via a sim
rotation in the Fourier space. The desired pattern is t
stabilized with a feedback control which again disappe
when stabilization is achieved. This is a particula
interesting result, since squares were not even know
exist in this system and have never been observe
simulations of Eq. (1). It is important to note that t
width of the filter in Fourier space must be chosen s
that the spatial harmonics of the desired pattern are
included in the feedback. These modes form a part of
exact solution to (1) and therefore must not be suppres

A straightforward extension of (8) also allows the sta
lization of hexagonal patterns. As discussed previou
there are two classes of hexagons, distinguished by
sum of the phases of the complex amplitudes being
evensH1d or odd sH2d multiple of p. This control sta-
bilizes a hexagonal pattern of either kind, without be
able to distinguish between them. It may be necessary
some applications, however, to be able to select betw
the different types of hexagons. We have found that,
replacing (8) with

b1 ~ 2a1 2 a8 , b5 ~ 2a5 2 a4 ,

b2 ~ 2ia2 2 a1 , b6 ~ 2ia6 1 a5 ,

b4 ~ 2a4 2 ia2 , b8 ~ 2a8 1 ia6 , (10)

we can stabilize the solution withf1 ­ f4 ­ py2 and
f6 ­ 2p. This is one among a two-dimensional ma
fold of possibilities, but different choices forf1,4,6 simply
correspond to translating the hexagonal pattern. Inst
to stabilize aH2 hexagon solution withf1 ­ f4 ­ 0
g
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andf6 ­ p, Eq. (10) becomes

b1 ~ 2a1 1 a8 , b5 ~ 2a5 1 a4 ,

b2 ~ 2a2 2 a1 , b6 ~ 2a6 2 a5 ,

b4 ~ 2a4 2 a2 , b8 ~ 2a8 2 a6 . (11)

Our simulations reveal that these schemes are abl
distinguish between the two types of hexagonal patte
and stabilize the desired solutions. Experimentally,
implementation of the control for squares and hexag
is the same. However, to differentiate between the t
types of hexagons, appropriate phase plates must be a
to the Fourier components (beams) in the interferomet

Figure 2 shows the stable and unstable solutions of
different pattern states which were stabilized and trac
using the control technique. These solution branches
obtained for regions of parameter space far from
MI threshold. In these regions a perturbative desc
tion breaks down since the amplitudes of the solutio
are no longer guaranteed to be small [17]. Our meth
however, provides a numerical tool for mapping out so
tion branches, where even approximate analytic desc
tions fail. It is applicable not only to optical system
but also to simulations of any system displaying th
type of pattern formation. Figure 3 shows a dynami
sequence of pattern selection and stabilization. The
quence starts with the formation of rolls, the stable patt
for the given parameters. The control was applied si
this allowed faster convergence to the steady state. T
H1 hexagons,H2 hexagons, squares, and, finally, t

FIG. 2. Plot of stable and unstable solutions over the ra
I ­ s1.5, 5.5d, with C ­ 4.4 and u ­ 21.0. A denotesH1

hexagons,B denotesH2 hexagons,D denotes squares,E
denotes rolls, andF denotes the homogeneous solution. Ea
marked point corresponds to a numerical simulation. The st
solutions, joined with solid lines, were obtained without usi
control. The controlled unstable solutions are joined by bro
lines, and the continuity of the curves indicates that th
points are indeed solutions of (1). The points were obtained
summingjaij of the constituent wave vectors of the patterns
4009
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FIG. 3. Dynamical sequence of control and pattern selec
for C ­ 4.4, u ­ 21.0, and I ­ 3.5. (a) The amplitude (in
arbitrary units) of the pair of wave vectors which are selec
in all of the stabilized patterns, (b) the other two pairs wh
are excited in hexagonal patterns, and (c) the pair excited
in squares. (d) The maximum amplitude of the feedback
the same units, along with the patterns stabilized in each re
of the figure. For each patterns1 ­ 0.05, for hexagons and
honeycombss2 ­ 0.025, and for squaress2 ­ 0.0125.

homogeneous solution are all stabilized with appropr
feedback control. As can be seen in Fig. 3(d), the fe
back vanishes once control is achieved. Figures 3
3(c) display the amplitudes of the excited wave vect
of the patterns.

In order to establish the robustness of the con
technique, we have also simulated Eq. (1) with an add
Gaussian noise term. We were able to achieve contro
noise strengths up to 10% of the amplitude of the sta
patterns. This, combined with the fact that the Fou
space information is easily obtained optically, sugge
that the method can be implemented experimenta
From the point of view of experiments, there are th
main ingredients to the technique: Fourier filtering, fi
rotation, and phase control when superposing fields.
these operations, separately performed to interferom
precision, can be realistically implemented and combi
in optical experiments. In fields other than optics,
Fourier transform cannot be obtained directly. Howev
in systems which evolve slowly, techniques where
feedback is evaluated by computer can be applied [7].

We have presented a control method which allows
selection, stabilization, and tracking of unstable patte
Depending on the target pattern and the coexisting
ble and unstable states, a control technique can be
structed consisting of both positive and negative feedb
elements to the spatially extended input pump field.
positive feedback element encourages the desired Fo
modes to grow, and the negative feedback suppresse
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wanted modes. The method has been applied success
to a model of a nonlinear optical cavity and has allow
the determination of unstable pattern solution branche
the system, which, so far, have been unobtainable b
analytically and numerically. The technique is powerfu
flexible, and robust against noise and allows the sta
lization of any unstable pattern state which has a sim
Fourier space description, from both pattern and low a
plitude noise initial conditions. These are fundamental
quirements for any potential application of such a cont
technique. We expect that the method could be reali
cally applied to optical experiments, and, as a first tes
its generality, the technique has also been applied succ
fully in a laser system [20].
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