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Stabilization, Selection, and Tracking of Unstable Patterns by Fourier Space Techniques
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A new method for the stabilization and manipulation of unstable states of a pattern forming system
is presented. The technique is applied to an optical system where unstable homogeneous solutions,
rolls, squares, hexagons, and honeycombs are all stabilized and tracked. The control consists of a
small spatial modulation to the input pump field, which is derived from the Fourier transform of the
output electric field. Once stabilization is achieved, the control vanishes. The method can be used
as a numerical tool for pattern forming systems to determine the existence and stability of solutions.
[S0031-9007(96)01565-7]

PACS numbers: 42.65.Sf, 47.54.+r

Considerable effort has been made recently to suppreds experiments using a single lens. This provides the
temporal [1-3] and spatiotemporal disorder [4—12] inprospect of the technique being applied in a fully optical
chaotic regimes. This would allow complex systems tomanner. It can thus take full advantage of the speed that
be operated in highly nonlinear regimes while retainingsuch systems offer, because all-optical (analog) control is
temporal and/or spatial coherence, a desirable feature Iimited only by the response speed of the system.
fields as diverse as laser physics, plasma physics, andWe consider the mean-field model for a two-level
hydrodynamics. A separate, yet related, aim is not onlynedium in an optical cavity [16,17]. In the good cavity
to suppress spatiotemporal chaos, but also to stabilizZémit, the polarization and population difference variables
and manipulate unstable spatial states [4,11,12]. Thisan be removed by adiabatic elimination. The intracavity
could have technological applications in, for example.electric field is then described by [16,17]
information processing, for which optics is of great

interest. 0,E = — E[(l +i0) + 2?(1 - lA)J
Recently there have been reports of spatiotemporal con- [E> + 1+ A
trol in optical models [13,14]. Optical systems display, + Ep + i(0 + dyy)E. (1)

on fast time scales, phenomena common to many spa- . ) . i i
tially extended systems. One such phenomenon is that §f€"€¢ iS the cavity detuningA the atomic detuning2C

pattern formation, where a spatially extended system ma%je medium density expressed as an optical absorptivity,

possess a large number of unstable pattern states evendfd£: i the spatially dependent input pump field. - Also,
the presence of a stable output. This is associated with'€ timer has been scaled by the cavity decay time. For

the breaking of the rotational and translational symmeSIMPliCity we restrict ourselves to the purely absorptive

try of the system. In this Letter, we present a techniqud® = 0) case, the behavior of which is typical of the
which allows us to select, stabilize, and track such unsta£9ion|Al = 1[18]. Then, for a plane-wave pump field
ble states. This differs from the types of control lately ap-£7: EQ- (1) _has stationary, homogeneous solutidfs
plied to temporal systems which require chaotic dynamicdiVen by [17]

to provide a large number of unstable states. They usu- E; . 2C

ally also rely on the ergodicity of the motion to eventually £ 1 +i6 + EZ+ 1 (2)
take the system to the desired region of the phase space. * :

Our method relies upon the fact that a spatially ex-These solutions become unstable for valuesCofand
tended system can have a simplified representation ih = |E;|* satisfying
Fourier space. This formed the basis of the control tech- (I + 1)?
nique used in [10] to suppress 1D spatiotemporal chaotic m
motion. The features which we will discuss and use in
our control are found in the spatial Fourier transform ofClose to this “modulational instability” (MI) threshold,
the electric field and are common to many pattern formthe minimum of which is found af = 4.0, perturbations
ing optical systems. Similar properties can also be founaf the form ¢’ experience growth ifK| = K. = &,
in other types of driven dissipative nonlinear systems withwhere ¢ is small andK. = ~/—6. The condition on
rotational invariance [15]. This technique is therefore ofK defines an annulus in Fourier space in which modes
general relevance. grow and destabilize the homogeneous solution. Previous

It is also important to note that the Fourier transformanalytical and numerical work has shown that in this
(or far field) in an optical system is routinely obtainable system competition between these modes leads eventually

<2C. 3
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to a steady state consisting of either two (“rolls”) or six described by perturbation methods such as amplitude
(“hexagon”) equally spaced modes. These steady stategjuations [17].

are, to lowest order, a superposition of a small number The characteristics of the states we wish to stabilize
of Fourier components. For the purposes of describingrovide the physical basis for our control technique. As
our control technigue we will label eight wave vectors ina starting point, to stabilize the homogeneous state above
Fourier space as in Fig. 1. The absolute orientation of théhe MI threshold, we must suppress the growth of wave
wave vectors corresponding to these modes is arbitraryectors in the instability annulus. First, we take the
due to the rotational invariance of (1). From this setFourier transform of the output field and filter it to obtain
of wave vectors we can construct all the patterns whiclonly the modes contained within the annulus. We then
we will discuss and stabilize with our control. Rolls are take the inverse Fourier transform of the resulting field,
formed by wave vectorK;s, squares byKy3s7, and  multiply it by a small strength parameter, and subtract it

sssss

the field obeys [19] a spatial modulation which is determined only by the
£ 1 modes found in the instability annulus in Fourier space.
= 1 = 3(|A|€i<zﬁlei1<1'r + |Ale'?5¢™®sT) + h.o.t., The pump field can then be written as
| (@) Ey(x.y) = Ep(1 + F),
whereAe'?: is the complex amplitude associated with the F = —sifi(x,y), s1 >0, (6)

wave vectorK;, with A real, and h.o.t. represents higherwhereE is the maanitude of the plane-wave bUMD and
order terms. For the two types of hexagonal patterns 10 9 P pump

. " - S 31 the feedback strength. In this way, we provide negative
which we denote/ ™ andH ", the field is given by feedback only for the modes which lie in the annulus. The
E

£ | — %(IAIe"‘ﬁ'e"Kl“ Aol function f;(x, y) can be described by
s filke,y) = F'"UFE, (1)

where F denotes the operation of Fourier transformation
For ¢; + ¢4 + ¢ = 2nm, these ared™ hexagons, a of the electric fieldE, U describes the filtering opera-
hexagonal array of intensity peaks. Far + ¢, +  tion in Fourier space, andf ! is the inverse Fourier
¢6 = (2n + 1)m, we obtainH~ hexagons, or “honey- transformation.
combs,” consisting of intensity dips in a bright back- The results which we will present were obtained
ground. It is important to stress, however, that thenumerically by integrating Eqg. (1), using a split step
amplitudes, relative stability, and even existence of suclspectral method. The integrations were performed mainly
rolls and hexagons are usually only known in the neaon a64 X 64 grid with a box size ofl67/K.. Critical
threshold region|A|] < 1 [15]. Our control method cases were also checked onl1a8 X 128 grid. The
has no such restriction and can thus be used to esontrol was applied in a continuous, stepwise fashion with
tablish existence and stability over any range of pahno delay, being updated every 0.1 units of time with
rameters. For example, fo€ = 4.4, Eq. (3) shows a time step of 0.02 units. This technique is extremely
that the homogeneous state is unstable over the rang@werful and has allowed us to stabilize the homogeneous
(2.1,4.7) inl, only the boundaries of which are accuratelystate for values ofC up to 5.28, which is>30%
above the minimum MI threshold, and we anticipate
that it will continue to work for even larger values
of C. When the homogeneous state is stabilized, the
pump modulation vanishes since the Fourier transform
of the field contains no excited wave vectors in the
annulus.

In order to control pattern states, we now modity
in Eq. (7). To stabilize rolls, for example, we remove
two diametrically opposite modeXKf(s) of magnitude
K. from the feedback. This allows the formation of
rolls by suppressing the growth of all except the desired
modes. Again, the feedback vanishes as the rolls stabilize,

ensuring that these rolls are indeed a solution of Eq. (1).

FIG. 1. Schematic diagram of the Fourier modes necessar ;
to form the patterns to which control is applied. The modesBecause of the rotational degeneracy, we are free to

lie on the critical circle|]K| = K.. The short dashes indicate choose the _quentatlon of the stabilized rolls.
the modes which constitute a hexagonal solution, and the long The stabilization of patterns of more than two wave
dashes are those necessary for squares. vectors requires an extra degree of control. If we now

+ |Ale'%oe™®eT + cc) + hot.  (5)
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try to stabilize squares (four wave vectors) by removingand¢¢ = 7, Eq. (10) becomes
the wave vectorsK;3s7; from the feedback, we end
with the stabilization of rolls in one of the two possible
orientations, the roll pattern being more stable than by x —a, — ay, be * —ag — as,
squares. We must ensure the presence of all four wave
vectors, and this is done by calculating the controbn

modei according to Our simulations reveal that these schemes are able to
distinguish between the two types of hexagonal patterns
and stabilize the desired solutions. Experimentally, the
by « —az + ay, by « —a7 + as, (8) implementation of the control for squares and hexagons
is the same. However, to differentiate between the two

whereq; is the amplitude of the wave vect®;. This  types of hexagons, appropriate phase plates must be added
could be achieved experimentally by filtering the Fourierto the Fourier components (beams) in the interferometer.
field to obtain the amplitudes; and passing the field  Figure 2 shows the stable and unstable solutions of the
through an interferometer with a field rotating element indifferent pattern states which were stabilized and tracked
one arm to obtain the amplitudés. We then take the ysing the control technique. These solution branches are
inverse Fourier transform to construgi(x,y) which is  obtained for regions of parameter space far from the
fed back agositivefeedback to the pump. The feedback M| threshold. In these regions a perturbative descrip-

by « —a; + ag, bs <« —as + ay,

b4 X —agq — ap, bg X —ag — dg. (11)

by < —a; + a7, bs <« —as + az,

modulation in (6) now becomes tion breaks down since the amplitudes of the solutions
Fe_ N 9 are no longer guaranteed to be small [17]. Our method,
= —sifiley) + s2f2(xy), ©)  however, provides a numerical tool for mapping out solu-

wheres, > 0 and is the strength of the positive feedback.lion branches, where even approximate analytic descrip-

As well as suppressing unwanted modes, the contrdions fail. It is applicable not only to optical systems
(9) distributes the energy among all four wave vector2Ut also to simulations of any system displaying this
necessary for the formation of squares via a simpldYP€ Of pattern formation. Figure 3 shows a dynamical
rotation in the Fourier space. The desired pattern is thuS€duence of pattern selection and stabilization. The se-

stabilized with a feedback control which again disappear§Uence starts with the formation of rolls, the stable pattern
when stabilization is achieved. This is a particularlyOr the given parameters. The control was applied since

interesting result, since squares were not even known S allowed faster convergence to the steady state. Then

s - :
exist in this system and have never been observed iff hexagons,H™— hexagons, squares, and, finally, the

simulations of Eq. (1). It is important to note that the
width of the filter in Fourier space must be chosen suct 1.5 . . .
that the spatial harmonics of the desired pattern are nc A

included in the feedback. These modes form a part of th
exact solution to (1) and therefore must not be suppresse

A straightforward extension of (8) also allows the stabi- 1.0 . -—~—«\.\‘\ .

T
= stable solutions
= unstable solutions

lization of hexagonal patterns. As discussed previously D
there are two classes of hexagons, distinguished by th—. s .
sum of the phases of the complex amplitudes being aiR A L
even(H™") or odd (H ) multiple of 7. This control sta- 051 t |
bilizes a hexagonal pattern of either kind, without being ”
able to distinguish between them. It may be necessary fc
some applications, however, to be able to select betwee ,
the different types of hexagons. We have found that, by 44 WF _________________ e
replacing (8) with J ! t !
2 3 4 5
b, « —a; — ag, bs « —as — ay, I
by « —ia, — ay, be o« —iag + as, FIG. 2. Plot of stable and unstable solutions over the range
I =1(15,5.5), with C =44 and® = —1.0. A denotesH™
by * —as — iay, bg « —ag + iag, (10) hexagons,B denotesH~ hexagons,D denotes squaresf

denotes rolls, an® denotes the homogeneous solution. Each
we can stabilize the solution withh; = ¢, = 7/2 and marked point corresponds to a numerical simulation. The stable
$¢ = —m. This is one among a two-dimensional mani- solutions, joined with solid lines, were obtained without using

- . . . control. The controlled unstable solutions are joined by broken
fold of possibilities, but different choices f@f146 SIMPly  |ines “and the continuity of the curves indicates that these

correspond to translating the hexagonal pattern. Insteagoints are indeed solutions of (1). The points were obtained by
to stabilize aH~ hexagon solution withp; = ¢4 =0  summingla;| of the constituent wave vectors of the patterns.
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T KK wanted modes. The method has been applied successfully
pr | L ] _ to a model of a nonlinear optical cavity and has allowed
= v w—— | the determination of unstable pattern solution branches of

O— T the system, which, so far, have been unobtainable both
-1 a Kf::: analytically and numerically. The technique is powerful,
= ffer — flexible, and robust against noise and allows the stabi-

O : i lization of any unstable pattern state which has a simple
= (e} faks Fourier space description, from both pattern and low am-
= ! plitude noise initial conditions. These are fundamental re-

0 . — : ] S— guirements for any potential application of such a control

5 o g o technique. We expect that the method could be realisti-
L% = § cally applied to optical experiments, and, as a first test of
0.00 | - A L its generality, the technique has also been applied success-
50

100 150 200 250 300 fully in a laser system [20].
time We acknowledge G. K. Harkness for useful discussions
FIG.3. Dynamical sequence of control and pattern selectiomnd the EPSRC for financial support (Grant J/30998).

for C =44, 6= -10, andl =3.5. (a) The amplitude (in R M. acknowledges an EPSRC studentship.
arbitrary units) of the pair of wave vectors which are selected

in all of the stabilized patterns, (b) the other two pairs which
are excited in hexagonal patterns, and (c) the pair excited only
in squares. (d) The maximum amplitude of the feedback in
the same units, along with the patterns stabilized in each region
of the figure. For each pattem = 0.05, for hexagons and  [1] E. Ott, C. Grebogi, and J. A. Yorke, Phys. Rev. Lé&#,
honeycombs, = 0.025, and for squares, = 0.0125. 1196 (1990).

[2] E.R. Hunt, Phys. Rev. Let67, 1953 (1991).

. . . .. [3] K. Pyragas, Phys. Lett. A70 421 (1992).
homogeneous solution are all stabilized with approprlate[4] J.A. Sepulchre and A. Babloyantz, Phys. RevAE 945

feedback control. As can be seen in Fig. 3(d), the feed- (1993)
back vanishes once control is achieved. Figures 3(a)—[5] H. Gaﬁg and H. Kaifen, Phys. Rev. Letl, 3794 (1993).
3(c) display the amplitudes of the excited wave vectors [g] p. Auerbach, Phys. Rev. Letf2, 1184 (1994).
of the patterns. [7] F. Qin, E.E. Wolf, and H.-C. Chang, Phys. Rev. L&®,

In order to establish the robustness of the control 1459 (1994).
technique, we have also simulated Eq. (1) with an additive[8] I. Aranson, H. Levine, and L. Tsimring, Phys. Rev. Lett.
Gaussian noise term. We were able to achieve control for 72, 2561 (1994).
noise strengths up to 10% of the amplitude of the stable[9] G.A. Johnson, M. Lécher, and E.R. Hunt, Phys. Rev. E
patterns. This, combined with the fact that the Fourier 51 R1625 (1995).
space information is easily obtained optically, suggestl0l C. Lourerco, M. Hougardy, and A. Babloyantz, Phys. Rev.
that the method can be implemented experimentally E 52,1528 (1995).

From the point of view of experiments, there are three[ll] V. petrov, S. Metens, P. Borckmans, G. Dewel, and
P P ' K. Showalter, Phys. Rev. Letf5, 2895 (1995).

main_ ingredients to the technique: Fourier _filter_ing, fieldpz] A. Hagberg, E. Meron, |. Rubinstein, and B. Zaltzman,
rotation, and_phase control when superposing fields. AI_ Phys. Rev. Lett76, 427 (1996).
these operations, separately performed to interferometrig3) w. Lu, D. Yu, and R.G. Harrison, Phys. Rev. LeTs,
precision, can be realistically implemented and combined 3316 (1996).
in optical experiments. In fields other than optics, the[14] R. Martin, A.J. Kent, G. D’Alessandro, and G.L. Oppo,
Fourier transform cannot be obtained directly. However, = Opt. Commun127, 161 (1996).
in systems which evolve slowly, techniques where thd15] M.C. Cross and P.C. Hohenberg, Rev. Mod. PH95.
feedback is evaluated by computer can be applied [7]. 851 (1993).

We have presented a control method which allows thé!6] L-A. Lugiato and C. Oldano, Phys. Rev. &7, 3896
selection, stabilization, and tracking of unstable pattern (1988).

Depending on the target pattern and the coexisting st 17 }/\l/égh)ﬁrth and A.J. Scroggie, Europhys. Le#6, 521

ble and unsta_lbl_e states, a Cor_TFrOI technique. can be COE[S] A.J. Scroggie, Ph.D. Thesis, University of Strathclyde,
structed consisting of both positive and negative feedback ~ 1995 (unpublished).

elements to the spatially extended input pump field. Theig] s. cCiliberto, P. Coullet, J. Lega, E. Pampaloni, and
positive feedback element encourages the desired Fourier C. Perez-Garcia, Phys. Rev. Leé#, 2370 (1990).

modes to grow, and the negative feedback suppresses yaé] G.K. Harkness (private communication).

4010



