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Generic Structure of Multilevel Quantum Beats
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Many transient signals from quantum systems result from beats among a large number of levels whose
energies depend nonlinearly on the quantum number. Typical examples range from time-resolved laser
femtochemistry to quantum optics of single atoms in cavities. Starting from rather general assumptions
on the nature of the system, we derive approximate closed-form expressions, which describe such
signals in the semiclassical limit. Our approach brings out in a most natural way the phenomenon of
fractional revivals and full revivals and explains the oscillatory structures observed in recent experiments
on atomic wave packets [Phys. Rev. Lat, 3783 (1994)]. [S0031-9007(96)01607-9]

PACS numbers: 42.50.Md

Time-dependent signals originating from a large num4requenciesw (n) of the underlying quantum system with
ber of simultaneously excited quantum levels appear imespect ton. Note that for definiteness we have chosen
the physics of wave packets in atoms [1], molecules [2]the signs of the second and third derivative @wfas in
and cavity QED [3]. Wave packets explore the corre-the Coulombic case, where the spectrum re&ds) =
spondence principle at the quantum-classical border [4]-R,/n? with the Rydberg constank, = 13.6 eV. In
Moreover, this field is closely related to laser femto-the semiclassical limit the natural time scalgsare well
chemistry [5], which studies molecular dynamics andseparated and build up ahierarchy< 7, < T3 < - --.
chemical reactions “in real time.” Despite the different The temporal behavior of the experimental signal
physical nature of these systems and the studied signalshown in Fig. 1 is not obvious from thierm of S(z) in
there is a surprising similarity [6] in the overall structure Eq. (2). Nevertheless, we can extract the characteristic
of their temporal behavior, as exemplified by Fig. 1 forfeatures by performing an exact transformation of this
the case of an atomic wave packet. In addition to thesum. The key idea of our approach is a decomposition
universal feature of fractional revivals and full revivals into a number of subsums, each of which contains only
[7—11] in such transient signals, there is also a certaiterms whose phases are close to each other. We achieve
universality in their fine structure as can be seen fronthis by combining eachrth term of the original sum to
Fig. 1(b). one subsum. The particular choice ofdepends on the

In the present Letter we introduce for the first timetime interval of interest.
an analytical approach towards this universal behavior Consider, for example, the behavior 61z) in the
of beat signals. Our analysis describes not only thaneighborhood of the time = ¢/r T, where fractional
shapes of individual peaks, but also reproduces properlsevivals appear [11]. Herg andr are mutually prime
the behavior of groups of peaks over a wide time rangeintegers. It is advantageous to shift the origin of time
We emphasize that the long-time limit of such multilevelinto the region ofg/r T, and choose it to be an integer
guantum beats has only recently become experimentalljnultiple [ of Ty, that is
accessible [8].

For time intervals, in which relaxation is negligible, t=1IT, + At = %Tz + €/ T1 + At 3)
transient signals such as the one of Fig. 1 are generally
of the form [10] where the remaindede,; | = 1/2. Hence the sum
‘ s S(At) = S(t = q/rT, + €4/, T1 + Ar) reads
S(t) =D Puel@™ = eoMrg(p) 1) -
n SAN = D yIW,(Ar), (4)
with e
SO =Y Prm where
" (") = oxd —27i L 2
XQX{ZWI'(LWL—Lm2+Lm3+--->:|. Y —GX[( 27Tlrm> ©)
T, P! T3
) and

Here we assume that the distribution of weight fac®ys  w,, (A7) = Py exp[277'i|:£ m — <6q/r + £> I m?

is normalizable, has a dominant maximum at the integer 1 T/ T

7 and the widthAn > 1. The characteristic timeg; = At\T,
+(l+ = )=m +---|. (6)

j12m/|w'V(7@)| follow from the derivativesw (/) of the
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(a) S(Ar) = Z vy kZ Wi (A1) (8)
We now apply the P0|sso; summation formula [13]
057 i fi = Z ] dk f(k) exp(—2mikm)  (9)
k=—o0 m=—o
/\ A to the subsums over in Eq. (8). This allows us to rep-
fﬂ\’\w \M/WV\A/&MWM resent the discrete superposition of many harmonics as

a sequence of time dependent signals numbered by the
index m and arriving one after another. The applica-
0.05 1 (b) tion of this formula leads to a significant simplification
f\ {\ when the width of each signal in time is shorter than
\/\/ )\/J ~v /\) \ MI \W\N/\N ) /N "
\ Mw \(\( \ X f dkW(p + kr,At)exp—2mikm),
a0 20 20 (10)

t (ps) where W(x, At) is the continuous version oW, (A7),
Eq. (6). When we introduce the new integration variable

FIG. 1. Experimental data [7] of the autocorrelation function ~ " . g
C(t) = [{(1) | $(0))] of an atomic wave packet. From (a) X — P T kr, the integral over is independent op, that

we recognize that in the early stagé(z) is almost periodic 1S
with a period T, = 15.3 ps corresponding to the typical r—1
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| < () 14(0) > |

the separation between two signals. Indeed we arrive

\ N / at . ]
m/\ LUEDITED)

m=—o0

0
190

energy separation between neighboring eigenstates. However, ¢ _1 Z (r) Z exdzm £ m)

for larger times this periodicity disappears and new features r oo e

emerge: At fractions of another characteristic tiffie> T °

the system is again periodic, a phenomenon referred to as % f dx W(x, At) ex;<—27ri ﬂx). (11)
fractional revivals. The period is now a fraction Bf. In the o ’ r

immediate vicinity of the timeT, = 474 ps the signal would
even restore almost completely its initial shape giving rise tol he interchange of the two summations allows one to

full revivals. However, the same periodicity occurs near thewrite the sumS now in the form

time point7,/2 = 237 ps as shown in (b), but in this region %
the signal pattern is shifted b, /2 with respect to the initial S(Af) = W (A 12
one. These fractional revivals show an asymmetric shape with (a1 m;w w I (A1), (12)
a fast decay on one side and a slow oscillatory fall down on the
other. where

1 r—1

W = — Z eX[{27ﬂ<p — - p? A ﬂ (13)
r

Here we have used that according to Eg. (3)
expwimt/Ty) = exp2mwimAt/T;). Note that this
representation of the suhdepends on the choice of the

origin of time and thus on the fractioq/r. Hence for (At) _ fx dx P(T + x) exp{2rri[<£ _ ﬂ)}c

and

every different time region under consideration we adopt —o T, r
a different representation of the sufn At 2 AT, 4
e/r—i-—— +{l+ = )=x+--|r.
We proceed by noting that the functhnn Eq (5), 4 T,) T, V) T
is periodic inm with period r, that is y,(nl, = ’}/m . In (14)

order to make use of this periodicity we rearrange the

summation with the help of the relation The exact representation of the ssnn Eq. (12) is the

central result of the paper. It reveals in the most obvious
B way the revival structure of the signdl, because each
Z m = Z Z Aptkr - () fractional revival corresponds to a single term in the sum

T p=0 k= Eqg. (12). Before We illustrate this feature by discussing
This technique combines those terms to subsums whosge functions W, and 1,5;>(A,) in more detail, we note
phases are close to each other [12]. Sm;&ék, = ’)/p), that our method also allows one to investigate the full
we find revivals by setting; = r = 1.
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The function Wi is independent of the distribution At / T1
P, and the timeAr. Thus it acts in the sum Eq. (12) as -9 -1 0 1 9 3
a weighting factor. Because of the propertieswn(f) 1 ' ‘ ' ‘ ' ‘
discussed in Ref. [11], only every second term in the
sum Eg. (12) has a nonvanishing value wheis even, | S (t) [

whereas for- odd this is true for every value af.

Now we turn to the discussion df»f)(At) and its time
dependence. To be specific, we use the example of the
Coulombic spectrum together with a Gaussian distribution
for P,. In order to be consistent with the experimental
data presented in Fig. 1 we choose for the centand
the varianceAn of the Gaussian the numerical values
n =46 andAn = 2. Hence the time§; andT, take on
the valuesl', = 14.8 ps andl, = 2rT;/3 = 30.67T; = 1
460 ps. In Fig. 2(a) we show by a dashed curve the
behavior of the modulus of the sum Eq. (1) in the vicinity
of t = %Tz, where the fractional revivals of ordéroccur.

Here we have evaluated Eq. (1) numerically. We note
that this signal shows very similar features as in Fig. 1(b). 0.5 1

We proceed by evaluatinéf) for the Coulombic case.
We first note that for times of the order of7, we can
neglect the quartic term and all higher order terms in the
expansion in Eq. (14). In this case we can evaluate the

integrall,%r)(Ar) analytically as shown in Ref. [14], which
yields t / Tl
I;Sf)(Al) = ei(D"‘(A’)G(AI)Fm(Af)Ai[an(Al)]~ (15)  FIG. 2. Fractional revivals of the generic signd(s)| for

. . the Coulombic spectrum. In (a) we show by a dashed curve
Here the functiong; (A7) and £, (Ar) are defined by the exact signal Eqg. (1) in the neighborhood 0of %Tz =

Ar\2 15.337,. The solid line shows the signal using the analytical
G(Ar) = Aex[{“"(“q/r + —t> :| (16) result Eq. (12). We indicate on the top of the figure the
T,

0.5

relative time Ar introduced in Eq. (3). In (b) we show by

a solid line the tern11,(,12):1(Az)|, Eq. (15), of the sum Eq. (12).

and The GaussianG(Ar)/A, Eg. (16), the exponentiak’,,— (A1),

A Eg. (17), and the absolute vali®i(z,,—(A?))| of the complex-
F(At) = ex;{,u<—t — ﬂ)} (17) Vvalued Airy function are depicted by the dashed, dotted, and
T r broken lines, respectively.

and Ai(z) denotes the Airy function of complex argument.

The quantitiesd,,(Ar), A, o, and u are real whereas |aj(z,—,(A#))|. Itis the product of the latter two func-
Z’”(Ai.)t.'s compI?x.th }heliXp“C't expressions of thesetions, which yields the pronounced peak Iaif,,z):l(At)l
quantities we reter to Ref. [. . 1 centered atAr = 0.57;. The Gaussian, which is inde-
We are now in the position to understand the loca- . 1ant of the indew: and centered aks — —e1aTy =
tion, shape, and fine structure of each fractional reviv . . . . .
shown in Fig. 2(a). For the time region— T»/2 — 33T, just influences the height of the peak, since this

N ) . function varies very slowly compared to the other two
153371, Eq. (3) immediately gives the parameters— functions. Note that the fine structure of the peak, that
1, r =2, 1 =15, and hences;, = —0.33. Hence the

_ @ @ is the oscillating structure on its left wing, results exclu-
weight factor Wx" takes on the value$W,—:| =0  sively from the Airy function. Figure 2(b) clearly shows

2 _ ; ; ) . .

and | W,,—5 1| = 1. Moreover, we find according to that the term'->,(A7)| reproduces the fractional revival
Ref. [14]A = 1.98, o = 0.15, andu = 2.94. centered atr = 15.57, that is atAr = 0.57;. Hence

In Fig. 2(a) we show by a solid line the analyti- there is a one-to-one correspondence between this signal
cal result, Eq. (12), using Egs. (15)—(17). We find anpeak and a single term in the sum Eq. (12) [15]. More-
excellent agreement between the direct numerical evaliyer, the detailed analysis of Ref. [14] shows that a larger
ation of the sumS, Eq. (1), and the analytical approxi- value of|m/| results in a broader fractional revival centered
mation. In Fig. 2(b) we show by a solid curve the atAr, = m/r T; with less pronounced oscillations. This
single termlI,(,f)=1(At)| in the sum Eq. (12), together with is consistent both with the numerical example of Fig. 2(a)
the GaussianG(Ar)/A, the exponentialF,,—;(Af), and and the experimental data of Fig. 1(a).
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When two functiong,g)(At) and ]r(nr,)(A[) overlap con- [1] For a review, see, e.g., G. Alber and P. Zoller, Phys. Rep.

siderably, interferences between these terms in Eq. (12) 199 231 (1990). ,
arise. Then the function ekisb,,(Ar)] and the phase [2] ';?]r aTre‘é'e"Z’SSgZ' ié%b MB 'C\;/lr”ébe'e and Ad ie"xa"’
of the complex Airy function start to play an impor- ys. Today43, 24 (1990); B.M. Garraway and K.-A.

g Suominen, Rep. Prog. Phys8, 365 (1995).
tant role. Consequently, the su exhibits a more [3] J.H. Eberlyet al., Phys. Rev. Letta4, 1323 (1980).

complicated pattern at the edges of the time window 4] M. Nauenberget al., Sci. Am. 270, No. 6, 24 (1994),

shown in Figs. 1(b) and 2(a). In this regime there is o~ * anq references therein; M. Nauenberg, Comments At. Mol.
simple one-to-one correspondence between individual  phys.25 151 (1990).

terms in the sun§ and the pattern. Nevertheless, Eq. (12) [5] A.H. Zewail, Femtochemistry(World Scientific, Singa-

still gives a complete description of the signél in pore, 1994), Vols. 1 and 2.
the vicinity of Az, by taking into account only a few [6] General aspects of the dynamics of wave packets in
terms. atomic, molecular, and quantum optical systems are

We conclude by noting that the asymmetric oscillations ~ discussed in a review article by I. Sh. Averbukh and N.F.
apparent in Fig. 2(b) are a universal feature of transient __ Perelman, Sov. Phys. Uspd, 572 (1991).
signals in the long-time limit. They originate from the L[71 J- Walsetal. Phys. Rev. Lett72, 3783 (1994); J. Wals
Airy function which emerges in the most natural way from et al., Physica ScrT58, 62 (1995).

h Th Il . di h . [8] For the experimental observation of fractional revivals
our theory. e small “forerunner” preceding the main and full revivals of atomic wave packets, see, e.g., J.A.

wave packet observed experimentally and explained only  veazell et al., Phys. Rev. Lett.64, 2007 (1990); J.A.

numerically in Ref. [7] stems from this Airy function. We Yeazell and C.R. Stroud, Jr., Phys. Rev. 48, 5153
can therefore consider this forerunner as a manifestation  (1991); D.R. Meacheet al., J. Phys. B24, L63 (1991);
of “rainbow scattering in the time domain” [16]. L. Marmet et al., Phys. Rev. Lett.72, 3779 (1994);

In summary, we have presented analytical expres- G. Raithel et al., J. Phys. B27, 2849 (1994). For
sions which describe the generic structure of signals  molecular wave packets, see T. Baumettal., Chem.
originating from a large number of simultaneously ex- ~ Phys. Lett.191, 639 (1992); I. Fischeet al., J. Chem.
cited quantum levels. A new representation of the un- ;hys.AlgAZf 325618555)' M.J.J. Vrakkingt al., Phys.
derlying sum allowed us for the first time to treat ev. » R37 (1996). _ ) .

. . . . . [9] For the experimental observation of “Jaynes-Cummings
analytically the influence of higher order dispersion ef-

. . (J-C) revivals” in cavity QED, see G. Rempe al., Phys.
fects on quantum beats. The influence of the third Rev. Lett. 58, 353 (1987); M. Bruneet al., Phys. Rev.

order term has already been observed in Ref. [7] in | o 76 1800 (1996); in Paul traps, see D.M. Meekhof
atomic wave packets. The experimental tools in this et al., Phys. Rev. Lett76, 1796 (1996). Note, however,
field have become so refined that even higher order that these “J-C revivals” are a short-time phenomenon and
corrections included in our treatment will soon be ob- occur at integer multiples @, . They therefore correspond
served. Moreover, the recent experimental realization of  to theT;-periodic behavior of the autocorrelation function
the Jaynes-Cummings model [9] describing the motion of ~ of Fig. 1(a). In contrast, the revivals as defined in
an ion in a Paul trap provides another arena for prob-  Refs. [7,8,10,11] occur af, > T, and have not yet been
ing generic structures in the long-time limit of quantum observed experimentally for the Jaynes-Cummings model.
beats. [10] J. Parker and C.R. Stroud, Jr., Phys. Rev. L&#®. 716
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[15] This fact may be used to extract the local parameters of
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