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We consider the critical Ising model on a randomly triangulated disk in the presence of a boundary
magnetic fieldkz, computing the partition functio@ and bulk magnetizatiodM). These quantities
depend only on an effective rescaled boundary length and bulk area, suggesting that the boundary field
generates renormalization group flow towards= o, just as in flat space. AB > 0 increases{M)
decreases, which we explain in terms of fluctuations of the geometry. We also derive an analytic
expression for the boundary magnetization, which gives a finite nonzero boundary susceptibility at the
critical temperature. [S0031-9007(96)01573-6]
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The Ising model with a boundary magnetic field [1] in the discrete formalism, a continuum limit can be taken
has been of renewed interest recently as a simple examplg tuning coupling constants until the surfaces become ar-
of a two-dimensional (2D) integrable field theory with bitrarily large; in this limit the theory corresponds to the
nontrivial boundary interactions [2—4]. The only bound- continuous Liouville theory. In this paper we will use a
ary conditions for the Ising model which preserve con-discrete formulation of the Ising model on a random sur-
formal invariance [5] are free boundary conditions (whereface; to calculate correlation functions in this theory, we
the boundary field: vanishes) and fixed spin boundary use the method of discrete loop equations developed in
conditions (whergr = *o). Putting an arbitrary fielde  two previous papers [11,12]. Similar methods were dis-
on the boundary generates a renormalization group (RQussed in [13,14].
flow which goes away from the free boundary condition We present here only the results of our investigation.
towards the fixed boundary condition [6]. The details of the calculations, which are algebraically

Another subject of recent interest has been the effededious, will be presented in a later publication.
of different boundary conditions in string theory [7]. Just In the discrete formulation, the Ising model on a
as there are two types of conformally invariant boundaryrandom surface of disk topology has a partition function
conditions for the Ising theory, a conformal field theory which is given by a sum over all possible triangulations of
of a single bosonic field can have two conformallythe disk. For each triangulation, the Boltzmann weight is
invariant boundary conditions: Neumann and Dirichlet.given by placing a single Ising spin on each triangle, and
By considering the continuum limit of the Ising model as summing over all possible spin configurations, giving the
a single free fermion, in the context of superconformallsing partition function on that particular geometry. This
field theory it can be shown that boundary conditionsmodel can be written as a matrix model [10]
in these two models are related by supersymmetry, with
Neumann corresponding to free Ising spins and Dirichlet Z(g,c) = f DUDV exd—NS(U, V)], (1)
corresponding to fixed spins.

In this Letter we consider the effect of a boundary mag-, i,
netic field on the Ising model on a random surface (the
noncritical string withc = 1/2). This theory describes a 1
single Ising spin (or equivalently a free fermion) coupled S, V) = Tr[E(UZ V) = UV - §(U3 + VS)}’
to 2D quantum gravity. The Ising model on a random )
surface can be studied in several ways. One approach is
to use the continuum formulation of noncritical string the-whereU andV areN X N Hermitian matrices.
ory as a conformal field theory coupled to a Liouville field The first calculation we wish to consider is that of
[8,9]. Another approach is to describe the model as a mathe disk amplitude when the spins on the boundary are
trix model, involving a sum over discrete surfaces [10];subjected to an external magnetic fidld In the matrix
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model language, dropping all factors 8fas we work in  amplitude are related through a Laplace transform
the largeN limit, we wish to compute

o ) 1) = dl d —zl—ta 3 l,a). 8
b(h,x,g,¢) = D xKTr("U + e "V)ky = > xrpy, $asa(.1) [ f ae " Md(a). (8
k=0 —

k=0 (3) Inverting the Laplace transform, we have

where p; = (Tr(e"U + e "V)*) is the amplitude for é = 1
a disk with k¢ boundary spins subject to the boundary 25\3 7
field ~. A method for calculating such amplitudes was

described in [11]. This yields a quartic equation satisfiedVith the rescalingsL = a(h)l, A =a/5. Up to an
by ¢, in which the coefficients are functions ofc, &, x irrelevant mglﬂphcaﬂye constant, this is preC|ser_ 'the
and p with i < 4. We omit this equation for’ s’pa’lce form of the disk amplitude when the boundary conditions

. . are conformal [12,13,15,16] (i.e., with =0 or h =
considerations. ) .

The quartic equation fokp gives an exact algebraic fi;; E)(;rhoz\}':)’\v\?vrﬁiéne dzouennddiryolr?nt%?Iskl)(;ﬁigzlred r?; tz:tic
solution for the disk partition function of the discrete _. @ P . . y 9
theory. To find the solution in the continuum limit, we f|elq. Noj[e 'ghat the exac_t disk amp“tUde does not su_ffer
must find the critical values fox and g at which ¢ a discontinuity at: = 0 since (9) is only an asymptotic

: : . - .. _formula for fixedh and largel, a.
approaches a singular point. The Ising model is crltlcaf o= .
for the coupling c. = (—1 + 24/7)/27. The critical The boundary magnetization for a spin on the boundary

value for g is known to be [10]g. = /10c3. After an of a disk withk boundary edges ar triangles is given
analysis of the critical behavior @, we find by

_ gc(l + 2\/7)eh
T L (T D)+ 2+ V)

This expression is only valid for = 0; x. is nonanalytic
ath = 0. Throughout the remainder of this Letter we will
restrict attention to the ca
arise whem < 0.

To take the continuum limit, we expand around the
critical valuesg = g.e €7, x = x.e €. Expandinge
in €, we find

Ll/3A*7/3e*L2/A’ (9)

(m) = (Tr(e"U — e "V) (e"U + e "V)k ),
(4) "= Tre"U + e "V)k), ’

where by (), we indicate a sum over triangulations
restricted to geometries with spins (the coefficient of

- g" in an expansion ing). We therefore look at the
se = 0; related expressions eypectation value of the spin at a marked point on the
boundary, that is,

(10)

Y= Zka(Tr(th — e "V)("U + e7"V)F).
k=0
4/3 " (11)
(Z.T) + 0, Whenh = 0, ¢ vanishes by symmetry. Wheén+ 0, we
(5)  can compute) (k) by the method of loop equations, giving

_ o _ _an equation relatings(h) to ¢ (h). Solving this equation,
whereg, is analytic ine. The second term is nonanalytic we can find the critical expansion af(h) about the
and describes the behavior in the continuum limit. Here critical point and the inverse Laplace transforn of

d=(Z+ [72 — ar W3 4 (7 — [72 — ar )3, the univ_ersal part o_tb. The.boundary magnetization in
the continuum limit is then given by (far > 0)

€

b = dalz,t,€) + 5% 2Bal)

(6)
7 h _ _,—h —h h
¢t is rescaled by a constant facter= T/5, and z is (m) = i = _(fh e Dle™ + @+ Ve ]2h .
rescaled by an-dependent factot, = a(h)Z, where, for ¢ e+ (-1 +VT)+ Q2+ VT)e
h >0, (12)
1 + o2k Note that the boundary magnetization is independerit of

a(h) = ——— o . () anda.
¢ (14 T) 2+ V) A graph of the boundary magnetization is shown

At h = 0, the scaling factora is discontinuous and in Fig. 1 (bold curve). As expected, with no field

goes toa (0) = 1/(+/2 + +/14); the constant factor in the the magnetization is zero, and for an infinite field the
universal term in (5) also changes discontinuously at thisnagnetization is one. This result is compared with
point. Note that the specific form (7) far depends upon the boundary magnetization in flat space, computed by
the discretization we have chosen for random surfaces. McCoy and Wu [1] (dashed curve). Whereas in flat

The universal term in (5) can be converted into thespace the magnetization scales /aki for small 4,

asymptotic form of the disk amplitudé (/,a) for fixed leading to a divergence in the magnetic susceptibility at
boundary lengthl and disk area:. These forms of the the critical temperature, on a random surface we find
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boundary length, the magnetization is a function which,
for fixed values ofl and a, decreasesas the boundary
magnetic fieldz increases. This counterintuitive result
can be explained in terms of the influence of the boundary
field on the disk geometry. In the vicinity of the disk
boundary, the existence of a boundary field causes a local
h fluctuation of the discrete geometry which depends upon
the magnitude of the boundary field. In the continuum
limit, this effect is restricted to a vanishingly small region
near the boundary. The significance of the rescaled
boundary lengthL is that the effects of the boundary
magnetic field can be described by using in place of
FIG. 1. Boundary magnetizatiofi) as a function of bound- the boundary lengthl/, an effective boundary length
ary field # in flat space (dotted line) and on a random surface, = «(h)! (see Fig. 2). In the bulk of the disk in the
(bold line). continuum limit, for any nonzero boundary fiekd all the
physics is identical to the physics which would occur on a
disk of boundary lengtli./ a. with infinite magnetic field
that the magnetization is linear at= 0, with a finite  on the boundary, where.. = 1/(2 + +/7) is the limit of

susceptibility the scaling factor a8 — «. Sincea(h) is a decreasing
1+ 27 function of &, the effective boundary length decreases
x = 0p{m)|p—g = ————. (13) forfixed! ash increases. As in Fig. 2, a decreasd.ifor

3 fixed A forces the disk to deform so that the spins move
The two point boundary magnetization can be computediarther away from the boundary, causing a net decrease in
in a similar way, and is found to be equal to the square ofhe average magnetization.
the one point magnetization. We have shown that when the bulk magnetization and
Consider now the average bulk magnetization with adisk amplitude are expressed in terms of the rescaled
boundary magnetic field, on a disk with boundary length boundary lengtfi these correlation functions are indepen-
and areau, dent of h, except wherg: = 0, when the magnetization
THe"U + e "VITIU — V), vanishes. This result_ indicates that, just as in flat space,
= - T : (14) any nonzero magnetic field produces a renormalization
(Tr(e"U + e "V)ETI(U + V), group flow whose fixed point limit is the infinite magnetic
This can be evaluated by considering cylinder amplitude§eld boundary condition. This indicates that the coupling
with one boundary having a boundary magnetic field, and®f @ conformal field theory to gravity does not change
the other with a single boundary edge. The second boundhe expected RG flow induced by nonconformal bound-
ary represents a marked point on the bulk. Again, such &y conditions. Generalizing, it is natural to speculate
quantity can be computed by the method of loop equationthat imposing a nonconformal boundary term on any con-
[12]. After some algebra, it can be shown that the bulkformal theory coupled to 2D gravity will have no effect
magnetization in the continuum limit (i.e., asymptotically on the bulk physics, other than to cause a finite rescaling

for |argel’ (1) is given by the Simp|e expression of the boundary Iength and pOSSibly to force the SyStem
M)y = L3413 (15) to flow to a new RG fixed point. This lesson may have

interesting implications for string theory; in particular, it
Sincel anda are measured in lattice units, in the contin- would imply that a small term breaking conformal invari-
uum limit, L < A so the magnetization is always less thanance on the boundary of an open string theory with Neu-
one. More precisely, in the continuum lim{$)/) scales mann boundary conditions could force the system towards
asd!/3, wheres is the lattice spacing; this agrees with the
scaling dimension of the gravitationally dressed spin op-
erator [8,9]. Note that this form of the magnetization is L !
independent of:, except for the dependence through the
scaling factorr incorporated in.. At 4 = 0, the magne-
tization vanishes.

We have found that both the disk partition function
and the bulk magnetization are naturally expressed in {a) (b}

f[erms (-)f a rescaled boundary Iengih= _a(h)l. '.L\n FIG. 2. (a) A portion of a surface with aredand boundary
|n'terest|ng fegture of th_e bulk magne'tlza.non (15) is thatiength L. (b) A disk with boundary length and effective
with the particular choice of discretization scheme Wepoundary lengthl. < / is stretched so that an average point is

have used here, when expressed in terms of the actutarther from the boundary.

(M)
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