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We consider the critical Ising model on a randomly triangulated disk in the presence of a boundary
magnetic fieldh, computing the partition functionZ and bulk magnetizationkMl. These quantities
depend only on an effective rescaled boundary length and bulk area, suggesting that the boundary field
generates renormalization group flow towardsh ­ `, just as in flat space. Ash . 0 increases,kMl
decreases, which we explain in terms of fluctuations of the geometry. We also derive an analytic
expression for the boundary magnetization, which gives a finite nonzero boundary susceptibility at the
critical temperature. [S0031-9007(96)01573-6]
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The Ising model with a boundary magnetic field [
has been of renewed interest recently as a simple exa
of a two-dimensional (2D) integrable field theory wi
nontrivial boundary interactions [2–4]. The only boun
ary conditions for the Ising model which preserve co
formal invariance [5] are free boundary conditions (wh
the boundary fieldh vanishes) and fixed spin bounda
conditions (whereh ­ 6`). Putting an arbitrary fieldh
on the boundary generates a renormalization group (
flow which goes away from the free boundary condit
towards the fixed boundary condition [6].

Another subject of recent interest has been the ef
of different boundary conditions in string theory [7]. Ju
as there are two types of conformally invariant bound
conditions for the Ising theory, a conformal field theo
of a single bosonic field can have two conforma
invariant boundary conditions: Neumann and Dirich
By considering the continuum limit of the Ising model
a single free fermion, in the context of superconform
field theory it can be shown that boundary conditio
in these two models are related by supersymmetry,
Neumann corresponding to free Ising spins and Diric
corresponding to fixed spins.

In this Letter we consider the effect of a boundary m
netic field on the Ising model on a random surface (
noncritical string withc ­ 1y2). This theory describes
single Ising spin (or equivalently a free fermion) coup
to 2D quantum gravity. The Ising model on a rand
surface can be studied in several ways. One approa
to use the continuum formulation of noncritical string th
ory as a conformal field theory coupled to a Liouville fie
[8,9]. Another approach is to describe the model as a
trix model, involving a sum over discrete surfaces [1
0031-9007y96y77(19)y3947(4)$10.00
]
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in the discrete formalism, a continuum limit can be tak
by tuning coupling constants until the surfaces become
bitrarily large; in this limit the theory corresponds to th
continuous Liouville theory. In this paper we will use
discrete formulation of the Ising model on a random s
face; to calculate correlation functions in this theory, w
use the method of discrete loop equations developed
two previous papers [11,12]. Similar methods were d
cussed in [13,14].

We present here only the results of our investigatio
The details of the calculations, which are algebraica
tedious, will be presented in a later publication.

In the discrete formulation, the Ising model on
random surface of disk topology has a partition functi
which is given by a sum over all possible triangulations
the disk. For each triangulation, the Boltzmann weight
given by placing a single Ising spin on each triangle, a
summing over all possible spin configurations, giving t
Ising partition function on that particular geometry. Th
model can be written as a matrix model [10]

Zsg, cd ­
Z

DUDV expf2NSsU, V dg , (1)

with

SsU, V d ­ Tr

∑
1
2

sU2 1 V 2d 2 cUV 2
g
3

sU3 1 V 3d
∏

,

(2)

whereU andV areN 3 N Hermitian matrices.
The first calculation we wish to consider is that

the disk amplitude when the spins on the boundary
subjected to an external magnetic fieldh. In the matrix
© 1996 The American Physical Society 3947
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model language, dropping all factors ofN as we work in
the largeN limit, we wish to compute

fsh, x, g, cd ­
X̀
k­0

xkkTrsehU 1 e2hV dkl ;
X̀
k­0

xkpk ,

(3)

where pk ­ kTrsehU 1 e2hV dkl is the amplitude for
a disk with k boundary spins subject to the bounda
field h. A method for calculating such amplitudes w
described in [11]. This yields a quartic equation satis
by f, in which the coefficients are functions ofg, c, h, x,
and pi with i , 4. We omit this equation for spac
considerations.

The quartic equation forf gives an exact algebra
solution for the disk partition function of the discre
theory. To find the solution in the continuum limit, w
must find the critical values forx and g at which f

approaches a singular point. The Ising model is crit
for the coupling cc ­ s21 1 2

p
7 dy27. The critical

value for g is known to be [10]gc ­
p

10c3
c. After an

analysis of the critical behavior off, we find

xc ­
gcs1 1 2

p
7 deh

e22h 1 s
p

7 2 1d 1 e2hs2 1
p

7 d
. (4)

This expression is only valid forh $ 0; xc is nonanalytic
at h ­ 0. Throughout the remainder of this Letter we w
restrict attention to the caseh $ 0; related expression
arise whenh , 0.

To take the continuum limit, we expand around
critical valuesg ­ gce2e2t, x ­ xce2ez . Expandingf

in e, we find

f ­ fasz, t, ed 1
e4y3

5 3 27y3ashd
FsZ, Td 1 O se5y3d ,

(5)

wherefa is analytic ine. The second term is nonanalyt
and describes the behavior in the continuum limit. He

F ; sZ 1
p

Z2 2 4T d4y3 1 sZ 2
p

Z2 2 4T d4y3,
(6)

t is rescaled by a constant factort ­ Ty5, and z is
rescaled by anh-dependent factor,z ­ ashdZ, where, for
h . 0,

ashd ­
1 1 e2h

e22h 1 s21 1
p

7 d 1 e2hs2 1
p

7 d
. (7)

At h ­ 0, the scaling factora is discontinuous and
goes toas0d ­ 1ys

p
2 1

p
14 d; the constant factor in th

universal term in (5) also changes discontinuously at
point. Note that the specific form (7) fora depends upon
the discretization we have chosen for random surface

The universal term in (5) can be converted into
asymptotic form of the disk amplitudẽfsl,ad for fixed
boundary lengthl and disk areaa. These forms of the
3948
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amplitude are related through a Laplace transform

fs4y3dsz, td ­
Z

dl
Z

da e2zl2taf̃sl, ad . (8)

Inverting the Laplace transform, we have

f̃ ­
1

25
p

3 p
L1y3A27y3e2L2yA, (9)

with the rescalingsL ­ ashdl, A ­ ay5. Up to an
irrelevant multiplicative constant, this is precisely th
form of the disk amplitude when the boundary conditio
are conformal [12,13,15,16] (i.e., withh ­ 0 or h ­
6`); however, the boundary lengthl is rescaled by the
factor ashd which depends on the boundary magne
field. Note that the exact disk amplitude does not suf
a discontinuity ath ­ 0 since (9) is only an asymptoti
formula for fixedh and largel, a.

The boundary magnetization for a spin on the bound
of a disk withk boundary edges andn triangles is given
by

kml ­
kTrsehU 2 e2hV d sehU 1 e2hV dk21ln

kTrsehU 1 e2hV dkln
, (10)

where by k ln we indicate a sum over triangulation
restricted to geometries withn spins (the coefficient of
gn in an expansion ing). We therefore look at the
expectation value of the spin at a marked point on
boundary, that is,

c ­
X̀
k­0

xk11kTrsehU 2 e2hV d sehU 1 e2hV dkl .

(11)

Whenh ­ 0, c vanishes by symmetry. Whenh fi 0, we
can computecshd by the method of loop equations, givin
an equation relatingcshd to fshd. Solving this equation,
we can find the critical expansion ofcshd about the
critical point and the inverse Laplace transform̃c of
the universal part ofc. The boundary magnetization i
the continuum limit is then given by (forh . 0)

kml ­
c̃

f̃
­

seh 2 e2hd fe2h 1 s2 1
p

7 dehg
e22h 1 s21 1

p
7 d 1 s2 1

p
7 de2h

.

(12)

Note that the boundary magnetization is independentl
anda.

A graph of the boundary magnetization is show
in Fig. 1 (bold curve). As expected, with no fie
the magnetization is zero, and for an infinite field t
magnetization is one. This result is compared w
the boundary magnetization in flat space, computed
McCoy and Wu [1] (dashed curve). Whereas in fl
space the magnetization scales ash ln h for small h,
leading to a divergence in the magnetic susceptibility
the critical temperature, on a random surface we fi
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FIG. 1. Boundary magnetizationkml as a function of bound
ary field h in flat space (dotted line) and on a random surfa
(bold line).

that the magnetization is linear ath ­ 0, with a finite
susceptibility

x ­ ≠hkmljh­0 ­
1 1 2

p
7

3
. (13)

The two point boundary magnetization can be compu
in a similar way, and is found to be equal to the square
the one point magnetization.

Consider now the average bulk magnetization with
boundary magnetic field, on a disk with boundary lengtk
and arean,

kMl ­
kTrsehU 1 e2hV dkTrsU 2 V dln

kTrsehU 1 e2hV dkTrsU 1 V dln
. (14)

This can be evaluated by considering cylinder amplitu
with one boundary having a boundary magnetic field, a
the other with a single boundary edge. The second bou
ary represents a marked point on the bulk. Again, suc
quantity can be computed by the method of loop equat
[12]. After some algebra, it can be shown that the b
magnetization in the continuum limit (i.e., asymptotica
for largel, a) is given by the simple expression

kMl ­ L1y3A21y3. (15)

Sincel anda are measured in lattice units, in the cont
uum limit, L ø A so the magnetization is always less th
one. More precisely, in the continuum limit,kMl scales
asd1y3, whered is the lattice spacing; this agrees with t
scaling dimension of the gravitationally dressed spin
erator [8,9]. Note that this form of the magnetization
independent ofh, except for the dependence through t
scaling factora incorporated inL. At h ­ 0, the magne-
tization vanishes.

We have found that both the disk partition functi
and the bulk magnetization are naturally expressed
terms of a rescaled boundary lengthL ­ ashdl. An
interesting feature of the bulk magnetization (15) is th
with the particular choice of discretization scheme
have used here, when expressed in terms of the a
e
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boundary lengthl, the magnetization is a function whic
for fixed values ofl and a, decreasesas the boundary
magnetic fieldh increases. This counterintuitive resu
can be explained in terms of the influence of the bound
field on the disk geometry. In the vicinity of the dis
boundary, the existence of a boundary field causes a l
fluctuation of the discrete geometry which depends u
the magnitude of the boundary field. In the continuu
limit, this effect is restricted to a vanishingly small regio
near the boundary. The significance of the resca
boundary lengthL is that the effects of the bounda
magnetic field can be described by using in place
the boundary lengthl, an effective boundary lengt
L ­ ashdl (see Fig. 2). In the bulk of the disk in th
continuum limit, for any nonzero boundary fieldh, all the
physics is identical to the physics which would occur o
disk of boundary lengthLya` with infinite magnetic field
on the boundary, wherea` ­ 1ys2 1

p
7 d is the limit of

the scaling factor ash ! `. Sinceashd is a decreasing
function of h, the effective boundary lengthL decreases
for fixed l ash increases. As in Fig. 2, a decrease inL for
fixed A forces the disk to deform so that the spins mo
farther away from the boundary, causing a net decreas
the average magnetization.

We have shown that when the bulk magnetization
disk amplitude are expressed in terms of the resc
boundary lengthL these correlation functions are indepe
dent of h, except whereh ­ 0, when the magnetizatio
vanishes. This result indicates that, just as in flat sp
any nonzero magnetic field produces a renormaliza
group flow whose fixed point limit is the infinite magnet
field boundary condition. This indicates that the coupl
of a conformal field theory to gravity does not chan
the expected RG flow induced by nonconformal bou
ary conditions. Generalizing, it is natural to specul
that imposing a nonconformal boundary term on any c
formal theory coupled to 2D gravity will have no effe
on the bulk physics, other than to cause a finite resca
of the boundary length and possibly to force the sys
to flow to a new RG fixed point. This lesson may ha
interesting implications for string theory; in particular,
would imply that a small term breaking conformal inva
ance on the boundary of an open string theory with N
mann boundary conditions could force the system towa

FIG. 2. (a) A portion of a surface with areaA and boundary
length L. (b) A disk with boundary lengthl and effective
boundary lengthL , l is stretched so that an average point
farther from the boundary.
3949
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the Dirichlet boundary condition, giving a possible phy
cal mechanism for realizing the D-branes which have
cently been the object of much discussion [7].

Finally, it should be noted that, of the results presen
here, the scaling factorashd in (7) and the explicit form
of the magnetization (12) have a functional depende
on h which depends on the set of triangulations we h
used for the disk. Just as in the case of the flat sp
Ising model, different choices of lattice discretizati
will give rise to different critical valuesgc, different
rescaling functionsashd, and boundary magnetization
with different functional dependence onh. Certain of
the results obtained here—the functional dependence
the disk partition function and the bulk magnetizati
on the rescaled boundary lengthL and areaA, and
the fact that the boundary magnetic susceptibility
finite and nonzero—should be independent of the ch
of discretization, however, and should give the sa
continuum limit in any formulation of the theory. O
the other hand, the result that the bulk magnetiza
decreases with increasing boundary field is not necess
a universal result, since it depends upon the explicit fo
of the rescaling functionashd.
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