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The generalization of the adiabatic perturbation approacN-gbliton interactions in the nonlinear
Schrodinger equation (NLSE) has been shown to lead to the complex Toda lattic¥ witdes. This
allows us to predict the asymptotic behavior of trainsVobolitonlike pulses with approximately equal
amplitudes and velocities, but with arbitrary phase differences. These predictions agree very well with
the numerical results. [S0031-9007(96)01454-8]

PACS numbers: 03.40.Kf, 42.65.Tg

It is well known that the nonlinear Schrodinger equa-be treated as a separate entity (particle) and when the

tion and its perturbed version, effect of the interaction and (or) perturbation is a slow
. 1 2 . deformation of the soliton parameters (see [5,14—17] and
i + gt o+ |ululx, 1) = iRlu], (1) the numerous referencesptherein). I\slost [of the re]sults

model a number of physical phenomena [1-10], includingn that direction have been devoted to one-soliton [18]
nonlinear beam propagation in the refractive media [9Jand two-soliton interactions [17] taking into account
and optical pulse propagation in fibers [5—11]. In whatseveral types of perturbations [7,15,16,19]. The two-
follows we will use the language of the temporal solitonssoliton case withR[«] = 0 has been solved analytically
from the fiber optics, but these results are valid also foby Karpman and Solov’ev [17]. For the other cases, there
the spatial solitons in nonlinear refractive media [9]. Ofare humerous numerical investigations; see [11,15,20,21].
importance here is the stability of a train of soliton pulses. Very few analytical results are known for the general
The question is how close can one pack such a train anchse ofN-soliton interaction withv = 3. Here we refer
then be able to stably propagate it over a given distancet® the papers by Gorshkov and Arnold [22,23] who
We present an analytical model wherein one can study thisonjectured that the soliton positions for an infinite train
stability for various combinations of amplitudes, phasespf solitonlike pulses should obey the Toda chain equation.
and spacings. Recently in [24-26] there was derived a natural

Soliton evolution, whenR[u] = 0, with the solitons generalization of the Karpman-Solov'ev's equations for
having different velocities, is also well known, see, e.g.,N solitons. Next it was shown [26,27] that after some
[3,4]. However, when the solitons have (nearly) the sameadditional approximations the corresponding dynamical
velocities, if one attempted to use the same analyticatystem of4N equations for the soliton parameters [see
methods [12-14], he would be faced with the complexityEgs. (2)—(5) below] simplifies to the complex Toda chain
of exactN-soliton solutions and eigenfunctions. A better equations (CTC) withN nodes, which is the natural
method would be to recognize that the om¥§soliton  generalization of Gorshkov-Arnold results.
solution of interest is where the solitons are spatially Here we use the well known facts about the Toda
separated. Perturbative methods do exist for such solitochain [28] which can be generalized also to the complex
solutions. They are applicable when each soliton camase: (1) The CTC allows Lax representation with a Lax
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matrix L. (2) It hasN (complex) integrals of motion in Skn = e 1Buly, SNk Pin (6a)
involution, which are provided by the eigenvalugof L. _ —1Bul

(3) The leading terms of the asymptotics of the solutions Cin =€ Vn COSPia , (6b)
for t — « are determined by; (see also the second Bin = 2v,(&r — &n), (6¢)
remark below. (4) The eigenvalues are determined by the e B B

initial conditions. Gin = 8k = On = 2un(éx — &n), (6d)

Thus to determine the asymptotics of the CTC, we onlyand s, ,, = signgB;,. We assume, without loss of gener-
need to know the initial values of the soliton parametersality, that £, < &4;. This system is valid provided the
Consequently we can evaluate the eigenvalued aft  soliton parameters satisfye, — wnl < @, v — val <
¢t = 0 and then use them to predict the asymptotic of the, y|&). — &o,1 > 1, and v — val €0k — Eonl < 1,
soliton parameters (positions, phases, and velocities) fafhere » and u are the average amplitude and velocity.
r— . They ensure that th&-soliton solution can be well ap-

Such an approach is justified when we consider groximated by the sum a¥ one soliton terms.
special class of initial conditions: equidistant and well' \we are interested in simplifying and solving the system
separated solitonlike pulses with (nearly) the same amg2)—(5) in the limit of »ry > 1. In this limit we have
plitudes and velocities. We obtain an analytical formulatwo time scales. The first is the fast time of order unity,
for the asymptotics of the soliton parameters as a funcover which the phase and position changes. The second
tion of the initial distancey,, and phase differencéy, s the slow time, of ordee ", over which the action
between the adjacent solitons. (We assume that these afgriables change. If initially all the action variables are
the same between any adjacent pair of solitons.) For assentially equal, ofu; — wnl < . |lve — val < v,
small parameter, we use = e~ >0, which comes from then it follows that one may replace, and v, in Sy,
the overlap between the neighboring solitons &t 0 and and Cy, by their average. In this case, one may ignore
determines the slow-time scale. Then we find that thehe slow-time variations in the action variables. Besides,
asymptotic velocity of thekth soliton is of the order of the exponentially small terms (containidgy, andSy,) in

Ve cos(mk/(N + 1)), where N is the total number of Eq. (4) and (5) can be neglected as compared to the self-
soliton pulses. We have compared our results for thenteracting ones [27].

soliton velocities against numerical results and find them Now we defineCy, — iS;, = e ~49), wheren =

to be in good agreement (to within a few percent). k +1,andsgx—1 = —sex+1 = 1 with
Obviously, if the solitons separate, they will evolve as
free particles. The fact that this is possible for certaingx+1 — gk = — 2v(&k+1 — &) + In4?
initial conditions described in the next section has been + il + 2u(Eer — &) — (Bes1 — 80)].

established by numeric simulations in [20]. The present 7
paper proposes an analytic explanation of this fact.
Finally, our model can be modified to take into accountThese notations are consistent up to terms of second order
various perturbations on the right-hand side of (1), whichwith respect to(vx — »)* and (ux — w)*. Then the
will then lead eventually to perturbed versions of the CTC.system (2)—(5) simplifies to the Toda chain system with
N-soliton interactions and CT&-The generalization N nodes for the complex functiong,

of the Karpman-Solov’ev approach to the caseVof> 2 d*qy B B

solitons in the lowest order leads to the following system a2 ek — pdkmdint, (8)
of 4N dynamical equations for the soliton parameters

[24—26]; wherek = 1,...,N and 7 = 4pr; we also assumed that

e D = pin+1 = (),

dvy 2 Following Moser [28] we use the following Lax repre-
— =160 (Skx—1 — S , 2 :
dt VilSkk-1 = Sexsr) @ sentation for (8):
L =[B,L], (9a)
d
% = —160(Crp—1 — Crx+1), 3) N
L= Z [brEge + arp(Exx+1 + Ex—14)],  (9b)
k=1
dér N
7 2up — 4(Skk-1 = Ska+1), (4) B = Z ar(Exx+1 — Ex—11). (9c)
k=1
ddy 5 5 Here the matrice§Ey,) g = 6kp0,q, aNdEy, = 0 when-
dr 20pic + vi) = 8palSka—1 + Skxr) ever one of the indices becomes 0Mr+ 1; the other
+ 241, (Coser + Crasr) (5) notations in (9) are as follows:

— L (qeni—q0)/2
where u;, v, &, and é, are the velocity, amplitude, ak 2¢ ’ (10a)
position, and phase of thah soliton pulse and by = %(,u,k + ivg). (10b)
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The asymptotics o (¢) for + — oo will be given by [28]

Then comparing (11) with (7) we get

qi(t) = 8viy—r+1t — By + O(e™?"),  (11) vt — £ — 4G — oot
only if the eigenvalues; of L are such that sk O’IN_H] ONK
Rel; < ReH < --- < Rely. (12) + 2—(|n4V2 + Bok+1 — Box)
14
ThenD in (11) is some real positive constant.
in(11)iss positiv S + 0@, (13)
Srv1 — O = 8[w(lin—i+1 — Qinv—k) + wllon—k+1 — lon—i)]t + 7 + Bigs1 — Big
ﬂ(|ﬁ41/2 + B(),k+1 — B(),k) + @(K_Dt), (14)
14

where, = Sok + ilik andB; = Box + iBik.

Analyzing the solution of the Toda chain provided §,., — &, = 4v /e w; cos@t + 80 + O(e Py,
by Moser [28] (see also [29]) one can derive explicit 2

expressions also for the constantsin terms of the initial
conditions.

Let us now evaluate the eigenvalugsof Ly = L|;—
for the following choice in initial conditions:

Vkli=0o = v, (15a)
Mili—o =0, (15b)
(€x+1 = €li=0 = 10, (15c)
(8k+1 — S)li—0 = 0. (15d)

Then Ly, up to trivial factors, is

(20)

wy = 4v(cosf; — coSHy+1). (21)

Let us list our results for some specific values\oind
choices for the initial conditiofy = 1/2, u = 0, §p =
m, ro = 6, and ry = 8), for which numeric simulations

are available. Such initial conditions describe, for ex-

ample, joint propagation in optical fibers & equal
and equidistant solitons with phase differencéetween

related to the Cartan them. We collect the results fady , = 2(uis — ui’)

matrix of the algebra/(N) whose eigenvalues and their andKy = 2ReB;+; — By) and compare them with the

corresponding eigenvectors are
eigenvalueg; are equal to

known [30].

iv _ . o . 0
G = ? + 2ve WO(SIn ?0 + i Ccos 70>C050N—k+1 >
(16)

wheref;, = wk/N + 1.
For the differencesB;+1 — B; with the same initial
conditions (15) we find

2 sind
Bi+1 — Br = 2vrg — 2In<M>

ay Sinfy
—In4v? + i(8y — ), (17a)
wherea; = 1 and
k—1
ay = [ ] (cost; — costy). (17b)
j=1

Note that co®; — cos, >0 for all 1 = j <k =N

and sing, > 0 for all 1 = k = N. Thus the argument

of the logarithm in (17) is always positive.

Therefore, inserting (16) and (17) into (13) and (14) for 4

the initial conditions (15) we finde = ¢~2"")

. 6
— uy = Jew sin =2 |

Mii—l ) (18)
. 09
ev1 — &k = zﬁwksmjt + ro
-1 |n<—2“k“‘°fi”0k“> + 0P,
14 ay Sind;
(19)

Thus theesults from the numeric simulations (see the Table I).
The theoretical values are obtained from the formulas (16)

and (17). For example, inserting in thevh= 4, u = 0,
andv = 1/2 we get

My = Ms; = 2+/e, (22a)

Myy = 2(V5 — D)/, (22b)
5+ 45

Kiz=Ks1 =190 — In 22c

43 41 =10 P (22c)

Kir = ro — 2In(5 — V/5). (22d)

TABLE I. Predictions and experimental results for the asymp-
totic values of the soliton positions foN = 2,3,4,5 and
v=1/2, u=0,8)=m,ry)=6,8.

N k My My KN KR
ro = 6
2 1 0.1991 0.203 4.61 4.66
2,1 0.1408 0.146 4.61 4.61
3,1 0.0996 0.099 5.04 5.05
2 0.1231 0.137 3.97 3.91
5 4,1 0.0729 0.067 5.53 5.60
3,2 0.0996 0.111 3.99 3.82
ro = 8
2 1 0.0732 0.0737 6.61 6.63
3 2,1 0.0518 0.0523 6.61 6.63
4 3,1 0.0367 0.0365 7.04 7.07
2 0.0452 0.0468 5.97 5.89
5 4,1 0.0268 0.0262 7.53 5.57
3,2 0.0366 0.0378 5.99 5.95
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