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Asymptotic Behavior of N-Soliton Trains of the Nonlinear Schrödinger Equation
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The generalization of the adiabatic perturbation approach ofN-soliton interactions in the nonlinear
Schrödinger equation (NLSE) has been shown to lead to the complex Toda lattice withN nodes. This
allows us to predict the asymptotic behavior of trains ofN solitonlike pulses with approximately equal
amplitudes and velocities, but with arbitrary phase differences. These predictions agree very well with
the numerical results. [S0031-9007(96)01454-8]
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It is well known that the nonlinear Schrödinger equ
tion and its perturbed version,

iut 1
1
2 uxx 1 juj2usx, td ­ iRfug , (1)

model a number of physical phenomena [1–10], includ
nonlinear beam propagation in the refractive media
and optical pulse propagation in fibers [5–11]. In wh
follows we will use the language of the temporal solito
from the fiber optics, but these results are valid also
the spatial solitons in nonlinear refractive media [9].
importance here is the stability of a train of soliton puls
The question is how close can one pack such a train
then be able to stably propagate it over a given distan
We present an analytical model wherein one can study
stability for various combinations of amplitudes, phas
and spacings.

Soliton evolution, whenRfug ­ 0, with the solitons
having different velocities, is also well known, see, e
[3,4]. However, when the solitons have (nearly) the sa
velocities, if one attempted to use the same analyt
methods [12–14], he would be faced with the complex
of exactN-soliton solutions and eigenfunctions. A bett
method would be to recognize that the onlyN-soliton
solution of interest is where the solitons are spatia
separated. Perturbative methods do exist for such so
solutions. They are applicable when each soliton
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be treated as a separate entity (particle) and when
effect of the interaction and (or) perturbation is a sl
deformation of the soliton parameters (see [5,14–17]
the numerous references therein). Most of the res
in that direction have been devoted to one-soliton [
and two-soliton interactions [17] taking into accou
several types of perturbations [7,15,16,19]. The tw
soliton case withRfug ­ 0 has been solved analytical
by Karpman and Solov’ev [17]. For the other cases, th
are numerous numerical investigations; see [11,15,20,

Very few analytical results are known for the gene
case ofN-soliton interaction withN $ 3. Here we refer
to the papers by Gorshkov and Arnold [22,23] w
conjectured that the soliton positions for an infinite tra
of solitonlike pulses should obey the Toda chain equat

Recently in [24–26] there was derived a natu
generalization of the Karpman-Solov’ev’s equations
N solitons. Next it was shown [26,27] that after som
additional approximations the corresponding dynam
system of4N equations for the soliton parameters [s
Eqs. (2)–(5) below] simplifies to the complex Toda cha
equations (CTC) withN nodes, which is the natura
generalization of Gorshkov-Arnold results.

Here we use the well known facts about the To
chain [28] which can be generalized also to the comp
case: (1) The CTC allows Lax representation with a L
© 1996 The American Physical Society 3943
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matrix L. (2) It hasN (complex) integrals of motion in
involution, which are provided by the eigenvalueszk of L.
(3) The leading terms of the asymptotics of the solutio
for t ! ` are determined byzk (see also the secon
remark below. (4) The eigenvalues are determined by
initial conditions.

Thus to determine the asymptotics of the CTC, we o
need to know the initial values of the soliton paramete
Consequently we can evaluate the eigenvalues ofL at
t ­ 0 and then use them to predict the asymptotic of t
soliton parameters (positions, phases, and velocities)
t ! `.

Such an approach is justified when we consider
special class of initial conditions: equidistant and w
separated solitonlike pulses with (nearly) the same a
plitudes and velocities. We obtain an analytical formu
for the asymptotics of the soliton parameters as a fu
tion of the initial distance,r0, and phase difference,d0,
between the adjacent solitons. (We assume that these
the same between any adjacent pair of solitons.) Fo
small parameter, we usee ­ e22n0r0 , which comes from
the overlap between the neighboring solitons att ­ 0 and
determines the slow-time scale. Then we find that
asymptotic velocity of thekth soliton is of the order ofp

e cosssspkysN 1 1dddd, where N is the total number of
soliton pulses. We have compared our results for
soliton velocities against numerical results and find th
to be in good agreement (to within a few percent).

Obviously, if the solitons separate, they will evolve
free particles. The fact that this is possible for certa
initial conditions described in the next section has be
established by numeric simulations in [20]. The pres
paper proposes an analytic explanation of this fact.

Finally, our model can be modified to take into accou
various perturbations on the right-hand side of (1), wh
will then lead eventually to perturbed versions of the CT

N-soliton interactions and CTC.—The generalization
of the Karpman-Solov’ev approach to the case ofN . 2
solitons in the lowest order leads to the following syste
of 4N dynamical equations for the soliton paramete
[24–26];

dnk

dt
­ 16n2

ksSk,k21 2 Sk,k11d , (2)

dmk

dt
­ 216n2

k sCk,k21 2 Ck,k11d , (3)

djk

dt
­ 2mk 2 4sSk,k21 2 Sk,k11d , (4)

ddk

dt
­ 2sm2

k 1 n2
kd 2 8mksSk,k21 1 Sk,k11d

1 24nksCk,k21 1 Ck,k11d , (5)

where mk , nk, jk, and dk are the velocity, amplitude
position, and phase of thekth soliton pulse and
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Sk,n ­ e2jbknjnn sinsk,nfkn , (6a)

Ck,n ­ e2jbkn jnn cosfkn , (6b)

bkn ­ 2nnsjk 2 jnd , (6c)

fkn ­ dk 2 dn 2 2mnsjk 2 jnd , (6d)

and sk,n ­ signbkn. We assume, without loss of gene
ality, that jk , jk11. This system is valid provided th
soliton parameters satisfyjmk 2 mnj ø m, jnk 2 nnj ø

n, njj0k 2 j0nj ¿ 1, and jnk 2 nnj jj0k 2 j0nj ø 1,
where n and m are the average amplitude and veloci
They ensure that theN-soliton solution can be well ap
proximated by the sum ofN one soliton terms.

We are interested in simplifying and solving the syst
(2)–(5) in the limit of nr0 ¿ 1. In this limit we have
two time scales. The first is the fast time of order un
over which the phase and position changes. The sec
is the slow time, of ordere2n0r0 , over which the action
variables change. If initially all the action variables a
essentially equal, orjmk 2 mnj ø m, jnk 2 nnj ø n,
then it follows that one may replacemk and nk in Skn

and Ckn by their average. In this case, one may ign
the slow-time variations in the action variables. Besid
the exponentially small terms (containingCkn andSkn) in
Eq. (4) and (5) can be neglected as compared to the
interacting ones [27].

Now we defineCkn 2 iSkn . esknsqk2qnd, where n ­
k 6 1, andsk,k21 ­ 2sk,k11 ­ 1 with

qk11 2 qk ­ 2 2nsjk11 2 jkd 1 ln 4n2

1 ifp 1 2msjk11 2 jkd 2 sdk11 2 dkdg .
(7)

These notations are consistent up to terms of second o
with respect tosnk 2 nd2 and smk 2 md2. Then the
system (2)–(5) simplifies to the Toda chain system w
N nodes for the complex functionsqk ,

d2qk

dt2 ­ eqk112qk 2 eqk2qk21 , (8)

wherek ­ 1, . . . , N and t ­ 4nt; we also assumed tha
e2q0 ­ eqN11 ­ 0.

Following Moser [28] we use the following Lax repre
sentation for (8):

ÙL ­ fB, Lg , (9a)

L ­
NX

k­1

fbkEkk 1 aksEk,k11 1 Ek21,kdg , (9b)

B ­
NX

k­1

aksEk,k11 2 Ek21,kd . (9c)

Here the matricessEkndpq ­ dkpdnq, andEkn ­ 0 when-
ever one of the indices becomes 0 orN 1 1; the other
notations in (9) are as follows:

ak ­
1
2 esqk112qkdy2, (10a)

bk ­
1
2 smk 1 inkd . (10b)
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The asymptotics ofqkstd for t ! ` will be given by [28]

qkstd ­ 8nzN2k11t 2 Bk 1 O se2Dtd , (11)

only if the eigenvalueszk of L are such that

Rez1 , Rez2 , · · · , RezN . (12)

ThenD in (11) is some real positive constant.
ed
ic

n
ir
th

t

fo
Then comparing (11) with (7) we get

jk11 2 jk ­ 4sz0,N2k11 2 z0,N2kdt

1
1

2n
sln 4n2 1 B0,k11 2 B0,kd

1 O se2Dtd , (13)
dk11 2 dk ­ 8fnsz1,N2k11 2 z1,N2kd 1 msz0,N2k11 2 z0,N2kdgt 1 p 1 B1,k11 2 B1,k

1
m

n
sln 4n2 1 B0,k11 2 B0,kd 1 O se2Dtd , (14)
x-

I).
16)

p-
wherezk ­ z0,k 1 iz1,k andBk ­ B0k 1 iB1k .
Analyzing the solution of the Toda chain provid

by Moser [28] (see also [29]) one can derive expl
expressions also for the constantsBk in terms of the initial
conditions.

Let us now evaluate the eigenvalueszk of L0 ­ Ljt­0
for the following choice in initial conditions:

nkjt­0 ­ n , (15a)

mkjt­0 ­ 0 , (15b)

sjk11 2 jkdjt­0 ­ r0 , (15c)

sdk11 2 dkdjt­0 ­ d0 . (15d)

Then L0, up to trivial factors, is related to the Carta
matrix of the algebraslsNd whose eigenvalues and the
corresponding eigenvectors are known [30]. Thus
eigenvalueszk are equal to

zk ­
in
2

1 2ne2nr0

µ
sin

d0

2
1 i cos

d0

2

∂
cosuN2k11 ,

(16)

whereuk ­ pkyN 1 1.
For the differencesBk11 2 Bk with the same initial

conditions (15) we find

Bk11 2 Bk ­ 2nr0 2 2 ln

µ
2ak11 sinuk11

ak sinuk

∂
2 ln 4n2 1 isd0 2 pd , (17a)

wherea1 ­ 1 and

ak ­
k21Y
j­1

scosuj 2 cosukd . (17b)

Note that cosuj 2 cosuk . 0 for all 1 # j , k # N
and sinuk . 0 for all 1 # k # N. Thus the argumen
of the logarithm in (17) is always positive.

Therefore, inserting (16) and (17) into (13) and (14)
the initial conditions (15) we findse ­ e22nr0 d

m
as
k11 2 m

as
k ­

p
e wk sin

d0

2
, (18)

jk11 2 jk ­ 2
p

e wk sin
d0

2
t 1 r0

2
1
n

ln

µ
2ak11 sinuk11

ak sinuk

∂
1 O se2Dtd ,

(19)
it

e

r

dk11 2 dk ­ 4n
p

e wk cos
d0

2
t 1 d0 1 O se2Dtd ,

(20)

wk ­ 4nscosuk 2 cosuk11d . (21)

Let us list our results for some specific values ofN and
choices for the initial conditionsn ­ 1y2, m ­ 0, d0 ­
p , r0 ­ 6, and r0 ­ 8d, for which numeric simulations
are available. Such initial conditions describe, for e
ample, joint propagation in optical fibers ofN equal
and equidistant solitons with phase differencep between
them. We collect the results forMN ,k ­ 2smas

k11 2 m
as
k d

andKN ,k ­ 2 ResBk11 2 Bkd and compare them with the
results from the numeric simulations (see the Table
The theoretical values are obtained from the formulas (
and (17). For example, inserting in themN ­ 4, m ­ 0,
andn ­ 1y2 we get

M4,3 ­ M4,1 ­ 2
p

e , (22a)

M4,2 ­ 2s
p

5 2 1d
p

e , (22b)

K4,3 ­ K4,1 ­ r0 2 ln
5 1

p
5

5 2
p

5
, (22c)

K4,2 ­ r0 2 2 lns5 2
p

5 d . (22d)

TABLE I. Predictions and experimental results for the asym
totic values of the soliton positions forN ­ 2, 3, 4, 5 and
n ­ 1y2, m ­ 0, d0 ­ p, r0 ­ 6, 8.

N k Mth
N ,k Mnum

N ,k K th
N ,k Knum

N ,k

r0 ­ 6
2 1 0.1991 0.203 4.61 4.66
3 2, 1 0.1408 0.146 4.61 4.61
4 3, 1 0.0996 0.099 5.04 5.05

2 0.1231 0.137 3.97 3.91
5 4, 1 0.0729 0.067 5.53 5.60

3, 2 0.0996 0.111 3.99 3.82
r0 ­ 8

2 1 0.0732 0.0737 6.61 6.63
3 2, 1 0.0518 0.0523 6.61 6.63
4 3, 1 0.0367 0.0365 7.04 7.07

2 0.0452 0.0468 5.97 5.89
5 4, 1 0.0268 0.0262 7.53 5.57

3, 2 0.0366 0.0378 5.99 5.95
3945
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We finish with two remarks. The first one concerns t
evaluation of the eigenvalues ofL for generic initial con-
ditions. Then, of course, we have no nice analytic expr
sions like (16). ForN # 4 the order of its characteristic
equation does not exceed 4, and it can be solved ana
cally for any initial conditions. For larger values ofN
one can always solve forzk numerically.

Our second remark is that CTC has a much rich
class of solutions as compared to the real Toda ch
(RTC). Like in the real case, the eigenvalueszk of the
matrix L are pairwise different [28]. However, nowzk are
complex, and whilezk fi zm, it may happen that Rezk ­
Rezm [i.e., (12) can be violated] and Imzk fi Imzm. In
such cases the asymptotic behavior, of the correspon
CTC solutions may substantially differ from the ones
RTC. For example, for some initial conditions the sol
tions of the CTC may form bound states or even deve
singularities. These problems deserve special atten
and are out of the scope of the present paper.

In conclusion, an analytical formula for the asympto
velocities of theN-soliton pulses trains has been foun
in the special and experimentally important case when
initially equidistant soliton pulses have (nearly) equal a
plitudes, velocities, and phase differences. The numer
check shows that separationr0 ­ 6 is at the lowest thresh-
old from which on our model becomes valid; forr0 ­ 8
the precision is much better.
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