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The complex conductancg(w) of site-diluted Josephson junction arrays close to the percolation
threshold was measured over a wide range of frequensiesWell below T, both the superfluid
[wImG] and dissipativelReG] components are independent o&f below a critical frequencyw,,
whereasG(w) * o ~* with u = % for @ > w.. This is shown to reflect the crossover from a Euclidean
regime(w < w.) dominated by phononlike modes of the phase system to a fractal régine w.),
where the relevant excitations are localized fractons. Percolative critical exponents extracted from the
data are consistent with theoretical predictions. [S0031-9007(96)01507-4]

PACS numbers: 74.50.+r, 63.50.+x, 64.60.Ak, 74.80.—g

Percolation is the simplest idea to understand a disorJosephson junctions with site occupation probabilifees
dered system. Near the percolation threshold, percolatrery close to the percolation threshojd. By explor-
ing systems exhibit a natural self-similar structure withing the response as a function ef in zero magnetic
geometrical inhomogeneities occurring over a broad ranggeld (i.e., at zero frustration) and at temperatures where
of length scales and are therefore conveniently describetthermally created vortices are irrelevant, we observe, at
in terms of fractal geometry [1]. With regard to su- a critical valuew., a remarkable crossover from a low-
perconductivity, fractal and percolation concepts havdrequency(w < w.) regime, where botlwImG(w) (the
proven very useful in acquiring insight into the physics ofinverse sheet kinetic inductance measuring superconduct-
granular superconductors [2—8]. Although a number ofng phase coherence in the system) and'Re) (the com-
investigations have been performed on disordered granyonent measuring dissipation) are independent ofo a
lar materials, in most cases the structural aspects of theligh-frequency(w > w.) behavior, wherez(w) « o ™
randomness are so poorly known that a detailed comwith « =~ 5. Our theoretical interpretation strongly sup-
parison with theoretical predictions is almost impossible ports the idea that the crossover in response, observed at
With the advent of modern microfabrication techniques,w = w., reflects the profound change in phase dynam-
however, it has become possible to investigate model syses occurring wheri(w), the frequency-dependent length
tems, such as Josephson junction arrays and supercosecale at which we are probing the system in the conduc-
ducting wire networks, where both the nature and th&ance measurements, becomes of the order of the perco-
amount of disorder can be accurately controlled. Earlylation correlation lengtt€, [1]. For l(w) > &, (i.e., for
work has focused on the superconducting-to-normal phasg < w.) the array is in the two-dimensional (2D) Eu-
boundary of percolating wire networks exposed to a magelidean (or homogeneous) regime, where the response is
netic field [9,10]. More recently, a Berezinskii-Kosterlitz- dominated by extended “phononlike” modes of the phase
Thouless (BKT) transition has been shown to persist irsystem similar to those occurring in an ordered 2D lat-
randomly diluted Josephson junction arrays in zero fieldice. In contrast, forl(w) < &, (i.e., for @ > w,) the
[11], whereas the unusual scaling properties of vorticearray is in the fractal regime, where localized “frac-
as well as the effect of field-induced frustration on su-tonlike” phase excitations lead to anomalous dynam-
perconducting phase coherence have been investigatedigs [1,14]. A further unusual feature emerging from
a deterministic fractal lattice (the Sierpinski gasket) sharour experiments is that the (expected) depression of
ing essential geometrical elements with a truly percolating,ImG(w, p, T) caused by percolative disorder is accom-
system near threshold [12,13]. panied by additional dissipation, as demonstrated by the

Almost no attention has been paid so far to the  discovery of a contribution to R&w, p, T) which grows
namicsof the phase degrees of freedom associated witBtronger and stronger as— p..
the randomly distributed superconducting islands in a dis- Quite generally, in the classical overdamped limit of
ordered array. In this Letter we report a study, cov-interest in this study the sheet conductance of a Josephson
ering five decades in driving angular frequeney of  junction array follows from a two-fluid description of the
the linear complex ac sheet conductar@&o, p,T) of  system in which the superfluid and the normal fluid are
site-diluted triangular arrays of proximity-effect coupled associated, respectively, with the sheet kinetic inductance
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L and the sheet resistan®eof the array: wherec; andcg are numerical coefficients of order unity
G = (ioL)"" + R\ (1) depending on the structural details of the lattice.

Let us first consider an unfrustrated regular= 1) tri- Above p, £, is finite and Eq. (2) is no longer valid
angular array driven by a small ac current at temperaturedt all frequencies. Below some crossover frequeacy
well below the BKT transition temperatu®.. Using a Wimust recover the 2D homogeneous regime where both
resistively shunted junction model, it is straightforwardL ~ a@nd R are expected to be length scale indepen-
to show that forT < T., i.e., at temperatures where the 9€nt, i-€., independent ab. Using general scaling ar-
phase differencef (1)} across the junctions are small 9Uments [1,17]1,/2neapc the conductance can be written
and, consequently, only plane “phase waves” (the “spif*> G = (GlGZ) S(), where S(Z).'S a complex scal-
waves” of the classicaty model isomorphic to the array) N9 function andl%a scaling variable proportional to
are the relevant excitations of the system, the array i§? — Pc)(G1/G2)"* with  the conductivity exponent
equivalent to a lattice whose bonds consist of the junctiont]: At low frequencies, in the 2D Euclidean regime cor-
inductanceL;(T) = (%/2¢)2J(T), where J(T) is the resgondmg tdfl > 1 or, equglently, towr, < (p -
temperature-dependent Josephson coupling energy, cofic)» S(z) = /(1 + constx z=*) [17]. Then, denoting
nected in parallel to the junction resistalRgT). Then, by Lo(p) .andR"(’_’) the ?h?e‘ kinetic mductance and the
it is readily shown thal. = L;/</3 andR = R, //3 for sheet resistance in the limit — 0, we find
a regular triangular array. Li'(p) = L7 (p — po)

The essential features of the dynamic response of arrays 0P IL (P Pcl) 3)
with percolative disorderare most easily understood in Ro(p) = cgRs(p = pc)',

terms of bond percolation. According to the umversal-Where ¢/ and ¢, are again numerical factors of order

gy hyp?the3|§,” H;e Ima'g cor:%llufsmn_st drawn Ifr?m trt'r']sunity depending on the lattice structure. Notice that this
escription should also be valld 1or site percolation ( €esult is consistent with the loss of superconducting phase
type OT disorder actually present in our samplesjapry coherence(L,' = 0) and the formation of the infinite
2D lattice. If one assumes that Josephson couplings superconducting clustéR, = 0) at p

only involve nearest-neighbor paifgk) of superconduct-  ~"g;00 the 2D-fractal dynamic crossover is expected to

Ing 'S'Q”ds’ then bond disorder amounts to5et= Jon  oecur for|z| ~ 1, using Eq. (3) we obtain the following
a fraction p of the bonds and. = 0 on the remaining i ate ofy

portion (1 — p). The suppression of a bondjk) also
affects the corresponding resistarkg. However, ran- we ~ (p — pe)? /77 ~ Ro(p)/Lo(p). 4)
domness in thgRr;} can hardly be expected to be of any ) ,
relevance in arrays of proximity-effect coupled junctions, 1N crossover a, reflects the drastic change in phase

the shunting resistance of the junctions being always fidynamics at the transition from the low-frequen@y <
nite because of the underlying normal-conducting sub®c) 2D Euclidean regime, characterized by extended

strate. Thus, at low enough temperatures (where vorteRnononlike modes of the phase degrees of freedom, to the
excitations can be ignored), an array of proximity-effect?igh-frequency(e > w.) fractal regime where localized

coupled junctions with bond disorder can be modeled bJ,ractonIike modes are the dominant phase excitations.

a two-component random network with elements having-a/culations [18] based on a self-consistent effective
conductances, = (1/ioL;) + (1/R;) andG, = 1/R, medium approximation [19] reproduce, quite remarka_bly,
with, respectively, probabilities and(1 — p). the correct value oft and lead to a dynamic behavior

To calculate the sheet conductan@w, p) of the similar to that described by Egs. (2)—(4), however, with
system, we focus on the critical region ngarrelevant / — - . .
to our experiments and consider first of all the case 1° test these predictions, we have measured, using

p = pe. Since¢, diverges at the percolation threshold a sensitive SQUID-operated two-coil mutual inductance

the array is in the fractal regime at all frequencies fori€chnique [13,20] covering a wide range of driving fre-

» = p. and, consequenthG(w) is expected to obey a quencies (0.1 Hz—20 kHz), the sheet conductance of two
powerclaw (’;(w) « ¥, reflecting the dynamic scaling site-diluted triangular arrays of proximity-effect coupled

resulting from the self-similar structure of the system. The””/ CU/Pb junctions with percolation fractions = 0.55
dynamical critical exponent follows by noticing that, @ndp = 0.51 close to the thresholg. = 0.50 [1] and
because of the self-duality of the problem, the conductancBormal-state junction resistanceg ~ 7m€ (p = 0.55)
can be calculated exactly [15,16] for bond percolation_andRN ~3mQ (p = 0.51). Their inverse sheet kinetic
on a square 2D lattices = (G,G»)'/2. Substituting the inductances at 0.5 Hz, a frequency well belaw, are

expressions foiG, and G, we then obtain in the limit Shown in Fig. 1(a) as a function of temperature. Be-
w7, < 1of interest ¢, = L, /R, is the phase relaxation Cause of their 2D nature at 0.5 Hz, both arrays e>.<h|b|t,
time) as demonstrated by superfluid drops consistent with the

2D universal prediction [11], a BKT transition at a tem-
) peratureT.(p) whose features will be discussed in detail
R = cpRy(wT))*, u=1/2, elsewhere. To analyze the superfluid depression caused
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N see Eqg. (3)]m” should still be below threshold for
o= 031z ] p = 0.55, but well above it (about an order of magnitude)
for p = 0.51. These predictions are consistent with

— 10 TC(O‘SS)‘% the low-temperature results shown in Fig. 1(b) which
T 1 ] demonstrate the dramatic growik(p — p.) 3] of m”
—_: 10° ¢ % 3 in percolative arrays as — p.. We attribute this effect

to the scattering of phase (or “spin”) waves in a medium
whose periodicity is broken by disorder.

The central results of this paper, shown in Figs. 2 and
3, relate to the frequency dependenceGbfat tempera-
tures well belowl'.(p), where our discussion in terms of
random networks applies. In Fig. 2 we show, on a log-log

; g ] plot and at three different temperatures, bbth' (w) and
g . (b) § ] R(w) over the whole frequency range accessible to our

p=0.55 experiments for the array closer to the percolation thresh-
old (p = 0.51). TheL !(w) data exhibit, at~1 kHz, a

I 02n=317Hz ]
/ / / / /?/ marked crossover from a frequency-independent regime
103 . below 1 kHz to a power-law behavidr ' (w) = 0 ~%
2 3 4 5 with u = 0.5 above 1 kHz. This observation is clearly

T [K] consistent with the behavior predicted by Egs. (2) and
éé\B). Although taken, in part, at the limit of our sensitivity

N

FIG. 1. Temperature dependence of (a) the inverse shegt . . . .
kinetic inductance at 0.5 Hz and (b) the normalized dissipativ nd thus lacking the degree of precision achieved in the

component of the mutual inductance change at 317 Hz fofeasurements of the superfluid component, the resistive
two disordered arrays with different percolation fractions on adata R(w) also show, at about the same frequency, a
?enj[irllogéﬂo'f- In 'E_a)kth? d|{itSh-?|‘? |irlle is Ehe u_rt1_iversa}l p(rg;iicttrilortrossover consistent with the model predictions, how-
or the Berezinskil-Kosterliiz-Thouless transition. In (b), € ayer with a somewhat larger expondnt~ 0.7) in the
isnhdidc?gnggerigs?ﬁngergrt]se sensitivity threshold of the mUtuafractal regime. Notice thak(w) is strongly temperature
' dependent, thereby reflecting the reduction Rf(T)
with decreasing temperature caused by the expanding

by disorder below the critical region, we notice that,
below T.(p), the L™1(T, p) curves manifestly display
the same temperature dependence, thereby showing [see ——
Eq. (3)] that the junction inductancés(T) = L;(0)f(T) [« p=0.51
in both samples differ only in their valuds (0) at7T = 0. L o 35K .
Then, recalling thaL;(0) « Ry [21], the superfluid ratio - .
L~(T,0.55)/L~(T,0.51) = 4.1 extracted from Fig. 1(a) =R
can be matched to that given by Eq. (3) by choosing - [ °
t = 1.4, in good agreement with the prediction= 1.3 [ 60 000 o oo 000° 4
for percolation in two dimensions [1]. I s

To illustrate the importance of disorder with regard L L L
to dissipation, in Fig. 1(b) we show the temperature de- 10° |-y
pendence of the dissipative componerit of the mutual ]
inductance change at 317 Hz (still below,) directly : .
detected by the SQUID and caused by the screening I - e
currents flowing in the arrays belo®.(p) (m" is nor-
malized to the purely inductive mutual inductance change ~ — &~ F % . 2. .  asce
at the transition of a perfectly diamagnetic sample). i o N
Using a simplified analytical treatment of our measuring [ ahooalar S
technique [20], it can be shown that, well beldy(p), . '
m' = CL;(T)(w7y) (R;/R)> where C is a calibration e o e e e
constant of the order of0? H™'. SinceL; =~ 0.1-1 pH
and 7;, = 1077-10"% s in the temperature range of
interest, at 317 Hzm" turns out to be~5 orders of FIG. 2. Frequency dependence of the inverse sheet kinetic
magnitude below our sensitivity thresholeh’( ~ 0.2%, inductanceL ! and of the sheet resistan&eat three different

. . s temperatures well below the critical region for the disordered
corresponding to an inductance sensitivity-ef pH) for array with p = 0.51 on a log-log plot. The dashed lines are

a regular array(R;/R ~ 1), whereas for our disordered /i power laws. The dotted lines are guides to the eye to
samples nearp. [R;/Ry = (p — p.)~' for w < w., identify the low-frequency plateaus &f(w).
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superconductors. In particular, by probing the arrays
over a wide range of length scales, we have found
strong evidence for a crossover from a low-frequency
two-dimensional Euclidean regime, where the response
is dominated by extended phononlike modes of the su-
perconducting phase, to a high-frequency fractal regime,
where the relevant phase excitations are localized fracton
modes. Percolative critical exponents inferred from the

10 10° 102 10" 10° 10!
(LyRpo

analysis of the data are found to be consistent with theo-
retical predictions.
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(Lo/Ry)w, for the disordered array witp = 0.51. The dotted
line is a power law with an exponett— u = 0.45 [EqQ. (2)].
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