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The complex conductanceGsvd of site-diluted Josephson junction arrays close to the percolation
threshold was measured over a wide range of frequenciesv. Well below Tc both the superfluid
fvImGg and dissipativefReGg components are independent ofv below a critical frequencyvc,
whereasGsvd ~ v2u with u ø 1

2 for v . vc. This is shown to reflect the crossover from a Euclidean
regimesv , vcd dominated by phononlike modes of the phase system to a fractal regimesv . vcd,
where the relevant excitations are localized fractons. Percolative critical exponents extracted from
data are consistent with theoretical predictions. [S0031-9007(96)01507-4]

PACS numbers: 74.50.+r, 63.50.+x, 64.60.Ak, 74.80.–g
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Percolation is the simplest idea to understand a diso
dered system. Near the percolation threshold, percol
ing systems exhibit a natural self-similar structure wit
geometrical inhomogeneities occurring over a broad ran
of length scales and are therefore conveniently describ
in terms of fractal geometry [1]. With regard to su
perconductivity, fractal and percolation concepts hav
proven very useful in acquiring insight into the physics o
granular superconductors [2–8]. Although a number
investigations have been performed on disordered gran
lar materials, in most cases the structural aspects of th
randomness are so poorly known that a detailed co
parison with theoretical predictions is almost impossibl
With the advent of modern microfabrication technique
however, it has become possible to investigate model s
tems, such as Josephson junction arrays and superc
ducting wire networks, where both the nature and th
amount of disorder can be accurately controlled. Ear
work has focused on the superconducting-to-normal pha
boundary of percolating wire networks exposed to a ma
netic field [9,10]. More recently, a Berezinskii-Kosterlitz
Thouless (BKT) transition has been shown to persist
randomly diluted Josephson junction arrays in zero fie
[11], whereas the unusual scaling properties of vortic
as well as the effect of field-induced frustration on su
perconducting phase coherence have been investigate
a deterministic fractal lattice (the Sierpinski gasket) sha
ing essential geometrical elements with a truly percolatin
system near threshold [12,13].

Almost no attention has been paid so far to thedy-
namicsof the phase degrees of freedom associated w
the randomly distributed superconducting islands in a d
ordered array. In this Letter we report a study, cov
ering five decades in driving angular frequencyv, of
the linear complex ac sheet conductanceGsv, p, T d of
site-diluted triangular arrays of proximity-effect coupled
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Josephson junctions with site occupation probabilitiesp
very close to the percolation thresholdpc. By explor-
ing the response as a function ofv in zero magnetic
field (i.e., at zero frustration) and at temperatures whe
thermally created vortices are irrelevant, we observe,
a critical valuevc, a remarkable crossover from a low
frequencysv , vcd regime, where bothvImGsvd (the
inverse sheet kinetic inductance measuring supercond
ing phase coherence in the system) and ReGsvd (the com-
ponent measuring dissipation) are independent ofv, to a
high-frequencysv . vcd behavior, whereGsvd ~ v2u

with u ø 1
2 . Our theoretical interpretation strongly sup

ports the idea that the crossover in response, observe
v ­ vc, reflects the profound change in phase dyna
ics occurring whenlsvd, the frequency-dependent lengt
scale at which we are probing the system in the cond
tance measurements, becomes of the order of the pe
lation correlation lengthjp [1]. For lsvd . jp (i.e., for
v , vc) the array is in the two-dimensional (2D) Eu
clidean (or homogeneous) regime, where the respons
dominated by extended “phononlike” modes of the pha
system similar to those occurring in an ordered 2D la
tice. In contrast, forlsvd , jp (i.e., for v . vc) the
array is in the fractal regime, where localized “frac
tonlike” phase excitations lead to anomalous dyna
ics [1,14]. A further unusual feature emerging from
our experiments is that the (expected) depression
vImGsv, p, T d caused by percolative disorder is accom
panied by additional dissipation, as demonstrated by
discovery of a contribution to ReGsv, p, T d which grows
stronger and stronger asp ! pc.

Quite generally, in the classical overdamped limit o
interest in this study the sheet conductance of a Joseph
junction array follows from a two-fluid description of the
system in which the superfluid and the normal fluid a
associated, respectively, with the sheet kinetic inductan
© 1996 The American Physical Society 3905
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L and the sheet resistanceR of the array:
G ­ sivLd21 1 R21. (1)

Let us first consider an unfrustrated regularsp ­ 1d tri-
angular array driven by a small ac current at temperat
well below the BKT transition temperatureTc. Using a
resistively shunted junction model, it is straightforwa
to show that forT ø Tc, i.e., at temperatures where t
phase differenceshfjkstdj across the junctions are sma
and, consequently, only plane “phase waves” (the “s
waves” of the classicalXY model isomorphic to the array
are the relevant excitations of the system, the arra
equivalent to a lattice whose bonds consist of the junc
inductanceLJ sTd ­ s"y2ed2J21sT d, where JsTd is the
temperature-dependent Josephson coupling energy,
nected in parallel to the junction resistanceRJsTd. Then,
it is readily shown thatL ­ LJy

p
3 andR ­ RJy

p
3 for

a regular triangular array.
The essential features of the dynamic response of a

with percolative disorderare most easily understood
terms of bond percolation. According to the “univers
ity hypothesis,” the main conclusions drawn from t
description should also be valid for site percolation (
type of disorder actually present in our samples) onany
2D lattice. If one assumes that Josephson couplingshJjkj
only involve nearest-neighbor pairsk jkl of superconduct
ing islands, then bond disorder amounts to setJjk ­ J on
a fractionp of the bonds andJjk ­ 0 on the remaining
portion s1 2 pd. The suppression of a bondk jkl also
affects the corresponding resistanceRjk . However, ran-
domness in thehRjkj can hardly be expected to be of a
relevance in arrays of proximity-effect coupled junctio
the shunting resistance of the junctions being always
nite because of the underlying normal-conducting s
strate. Thus, at low enough temperatures (where vo
excitations can be ignored), an array of proximity-eff
coupled junctions with bond disorder can be modeled
a two-component random network with elements hav
conductancesG1 ­ s1yivLJ d 1 s1yRJ d andG2 ­ 1yRJ

with, respectively, probabilitiesp ands1 2 pd.
To calculate the sheet conductanceGsv, pd of the

system, we focus on the critical region nearpc relevant
to our experiments and consider first of all the c
p ­ pc. Sincejp diverges at the percolation thresho
the array is in the fractal regime at all frequencies
p ­ pc and, consequently,Gsvd is expected to obey
power law,Gsvd ~ v2u, reflecting the dynamic scalin
resulting from the self-similar structure of the system. T
dynamical critical exponentu follows by noticing that,
because of the self-duality of the problem, the conducta
can be calculated exactly [15,16] for bond percolat
on a square 2D lattice:G ­ sG1G2d1y2. Substituting the
expressions forG1 and G2, we then obtain in the limi
vtJ ø 1 of interest (tJ ­ LJyRJ is the phase relaxatio
time)

L21 ­ cLL21
J svtJd12u,

R ­ cRRJsvtJ du, u ­ 1y2 ,
(2)
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wherecL andcR are numerical coefficients of order unity
depending on the structural details of the lattice.

Above pc, jp is finite and Eq. (2) is no longer valid
at all frequencies. Below some crossover frequencyvc,
we must recover the 2D homogeneous regime where b
L21 and R are expected to be length scale indepe
dent, i.e., independent ofv. Using general scaling ar-
guments [1,17], nearpc the conductance can be writte
as G ­ sG1G2d1y2Sszd, where Sszd is a complex scal-
ing function and z a scaling variable proportional to
sp 2 pcd sG1yG2d1y2t with t the conductivity exponent
[1]. At low frequencies, in the 2D Euclidean regime co
responding tojzj ¿ 1 or, equivalently, tovtJ ø sp 2

pcd2t, Sszd ~ zts1 1 const3 z22td [17]. Then, denoting
by L0spd andR0spd the sheet kinetic inductance and th
sheet resistance in the limitv ! 0, we find

L21
0 spd ­ c0

LL21
J sp 2 pcdt ,

R0spd ­ c0
RRJsp 2 pcdt,

(3)

where c0
L and c0

R are again numerical factors of orde
unity depending on the lattice structure. Notice that th
result is consistent with the loss of superconducting pha
coherencesL21

0 ­ 0d and the formation of the infinite
superconducting clustersR0 ­ 0d at pc.

Since the 2D-fractal dynamic crossover is expected
occur for jzj , 1, using Eq. (3) we obtain the following
estimate ofvc:

vc , sp 2 pcd2tytJ , R0spdyL0spd . (4)

The crossover atvc reflects the drastic change in phas
dynamics at the transition from the low-frequencysv ,

vcd 2D Euclidean regime, characterized by extend
phononlike modes of the phase degrees of freedom, to
high-frequencysv . vcd fractal regime where localized
fractonlike modes are the dominant phase excitatio
Calculations [18] based on a self-consistent effecti
medium approximation [19] reproduce, quite remarkab
the correct value ofu and lead to a dynamic behavio
similar to that described by Eqs. (2)–(4), however, wi
t ­ 1.

To test these predictions, we have measured, us
a sensitive SQUID-operated two-coil mutual inductan
technique [13,20] covering a wide range of driving fre
quencies (0.1 Hz–20 kHz), the sheet conductance of t
site-diluted triangular arrays of proximity-effect couple
PbyCuyPb junctions with percolation fractionsp ­ 0.55
and p ­ 0.51 close to the thresholdpc ­ 0.50 [1] and
normal-state junction resistancesRN ø 7mV sp ­ 0.55d
andRN ø 3mV sp ­ 0.51d. Their inverse sheet kinetic
inductances at 0.5 Hz, a frequency well belowvc, are
shown in Fig. 1(a) as a function of temperature. B
cause of their 2D nature at 0.5 Hz, both arrays exhib
as demonstrated by superfluid drops consistent with
2D universal prediction [11], a BKT transition at a tem
peratureTcspd whose features will be discussed in deta
elsewhere. To analyze the superfluid depression cau
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FIG. 1. Temperature dependence of (a) the inverse sh
kinetic inductance at 0.5 Hz and (b) the normalized dissipat
component of the mutual inductance change at 317 Hz
two disordered arrays with different percolation fractions on
semilog plot. In (a), the dashed line is the universal predict
for the Berezinskii-Kosterlitz-Thouless transition. In (b), th
shaded area is below the sensitivity threshold of the mut
inductance measurements.

by disorder below the critical region, we notice tha
below Tcspd, the L21sT , pd curves manifestly display
the same temperature dependence, thereby showing
Eq. (3)] that the junction inductancesLJsT d ; LJs0dfsT d
in both samples differ only in their valuesLJ s0d at T ­ 0.
Then, recalling thatLJ s0d ~ RN [21], the superfluid ratio
L21sT , 0.55dyL21sT , 0.51d ø 4.1 extracted from Fig. 1(a)
can be matched to that given by Eq. (3) by choos
t ø 1.4, in good agreement with the predictiont ø 1.3
for percolation in two dimensions [1].

To illustrate the importance of disorder with rega
to dissipation, in Fig. 1(b) we show the temperature d
pendence of the dissipative componentm00 of the mutual
inductance change at 317 Hz (still belowvc) directly
detected by the SQUID and caused by the screen
currents flowing in the arrays belowTcspd (m00 is nor-
malized to the purely inductive mutual inductance chan
at the transition of a perfectly diamagnetic sampl
Using a simplified analytical treatment of our measuri
technique [20], it can be shown that, well belowTcspd,
m00 ø CLJsT d svtJd sRJyRd3 where C is a calibration
constant of the order of109 H21. SinceLJ ø 0.1 1 pH
and tJ ø 1027 1028 s in the temperature range o
interest, at 317 Hzm00 turns out to be,5 orders of
magnitude below our sensitivity threshold (m00 ø 0.2%,
corresponding to an inductance sensitivity of,1 pH) for
a regular arraysRJyR ø 1d, whereas for our disordere
samples nearpc [RJyR0 ~ sp 2 pcd2t for v , vc,
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see Eq. (3)] m00 should still be below threshold for
p ­ 0.55, but well above it (about an order of magnitude
for p ­ 0.51. These predictions are consistent wit
the low-temperature results shown in Fig. 1(b) whic
demonstrate the dramatic growthf~sp 2 pcd23tg of m00

in percolative arrays asp ! pc. We attribute this effect
to the scattering of phase (or “spin”) waves in a mediu
whose periodicity is broken by disorder.

The central results of this paper, shown in Figs. 2 a
3, relate to the frequency dependence ofG at tempera-
tures well belowTcspd, where our discussion in terms o
random networks applies. In Fig. 2 we show, on a log-lo
plot and at three different temperatures, bothL21svd and
Rsvd over the whole frequency range accessible to o
experiments for the array closer to the percolation thres
old sp ­ 0.51d. The L21svd data exhibit, at,1 kHz, a
marked crossover from a frequency-independent regi
below 1 kHz to a power-law behaviorL21svd ~ vs12ud

with u ø 0.5 above 1 kHz. This observation is clearly
consistent with the behavior predicted by Eqs. (2) a
(3). Although taken, in part, at the limit of our sensitivity
and thus lacking the degree of precision achieved in t
measurements of the superfluid component, the resis
data Rsvd also show, at about the same frequency,
crossover consistent with the model predictions, ho
ever, with a somewhat larger exponentsu ø 0.7d in the
fractal regime. Notice thatRsvd is strongly temperature
dependent, thereby reflecting the reduction ofRJsT d
with decreasing temperature caused by the expand

FIG. 2. Frequency dependence of the inverse sheet kine
inductanceL21 and of the sheet resistanceR at three different
temperatures well below the critical region for the disordere
array with p ­ 0.51 on a log-log plot. The dashed lines arep

v power laws. The dotted lines are guides to the eye
identify the low-frequency plateaus ofRsvd.
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FIG. 3. Normalized inverse sheet kinetic inductance vs no

malized angular frequency on a log-log plot showing th
universal nature of the phonon-fracton dynamic crossover
sL0yR0dvc for the disordered array withp ­ 0.51. The dotted
line is a power law with an exponent1 2 u ­ 0.45 [Eq. (2)].

superconductivity in the normal Cu link of the PbyCuyPb
junctions. Remarkably, the temperature dependen
of RJsT d turns out to be very similar to that of
LJ sT d, thereby makingtJ sTd only weakly temperature
dependent.

To stress the universal character of the “phono
fracton” crossover, in the log-log plot of Fig. 3 we
show, as a function of the scaling variablesL0yR0dv ,
vyvc , jzj21, the normalized inverse sheet kinetic in
ductancesLyL0d21 calculated from a collection of data
taken at four different temperatures on the sample w
p ­ 0.51. L0sT d and R0sT d were extracted from the
low-frequency plateaus ofL21svd andRsvd (see Fig. 2).
Within experimental accuracy, all the data collapse o
a single curve, thereby demonstrating the scaling
sLyL0d21 with vyvc predicted by the model [Eqs. (2)–
(4)]. From the power-law behavior in the high-frequenc
fractal regime we deduceu ­ 0.55 6 0.07, a value con-
sistent with the theoretical prediction. Moreover, th
crossover occurs atsL0yR0dvc ø 0.2, a value compatible
with the estimatefsL0yR0dvc ø 1g provided by Eq. (4),
which entirely neglects numerical factors.

In conclusion, a study of the complex sheet condu
tance of site-diluted Josephson junction arrays near
percolation threshold has provided novel insight in
phase dynamics and dissipative processes in disorde
3908
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superconductors. In particular, by probing the array
over a wide range of length scales, we have foun
strong evidence for a crossover from a low-frequenc
two-dimensional Euclidean regime, where the respons
is dominated by extended phononlike modes of the su
perconducting phase, to a high-frequency fractal regim
where the relevant phase excitations are localized fracto
modes. Percolative critical exponents inferred from th
analysis of the data are found to be consistent with the
retical predictions.
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