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A detailed analysis of magnetoconductance fluctuations of quasiballistic gold nanowires of va
lengths is presented. We find that the varianceksDGd2l ­ kfGsBd 2 GsB 1 DBdg2l when analyzed
for DB much smaller than the correlation fieldBc varies according toksDGd2l ~ DBg with g , 2,
indicating that the graph ofG vs B is fractal. We attribute this behavior to the existence of long-live
states arising from chaotic trajectories trapped close to regular classical orbits. We find thatg decreases
with increasing length of the wires. [S0031-9007(96)01555-4]
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It is well established that quantum interference modifie
the conductanceG of disordered conductors and ballistic
devices smaller than the phase coherence lengthLw

(mesoscopic regime) [1]. In a semiclassical descriptio
one may view the conductance electrons as movi
along their classical trajectories, i.e., ballistically betwee
collisions. Since the phase information is not lost ove
distances of orderLw , a sample specific interference
pattern arises. This interference pattern may be alter
e.g., by applying a magnetic fieldB, which gives rise to
reproducible conductance fluctuations (CF) [1–7].

It has recently been pointed out by Ketzmerick [8] tha
the dwell time probabilityPstd for an electron to stay
in the mesoscopic sample longer than a timet is related
intimately to the statistical properties of the CF. It is of
ten assumed that the typical time to cross the system,tD,
determines the behavior ofPstd for times larger thantD ,

Pstd ~ e2tytD . (1)
This form gives rise to a Lorentzian shape of the energ
dependent conductance autocorrelation functionCsDEd ­
kdGsEddGsE 1 DEdl with dGsEd ­ GsEd 2 kGsEdl
and correlation energyEc ­ h̄ytD [3,9–11]. Since
CsDEd ­ Cs0d 2 0.5ksDGd2l the variance ksDGd2l ­
kfGsEd 2 GsE 1 DEdg2l behaves asksDGd2l ~ DE2 for
DE ø Ec.

The validity of Eq. (1) has been questioned by sever
authors [8,12–14] and long-lived states have been p
dicted. If Pstd does not vary exponentially but decay
algebraically,

Pstd ~ t2g , 0 , g # 2 , (2)
a nontrivial behavior of the variance appears [8]:

ksDGd2l ~ DEg for DE ø Ec . (3)
It is important to note that exponentsg in Eq. (2) which
are larger than two cannot be detected in the varian
For g . 2 the variance stays quadratic with respect t
DE since analytic behavior dominates the lowest ord
approximation.
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Measuring the length of the graphG vs E on a scale
DE leads, as a consequence of Eq. (3), to a diverge
proportional tosDEd2s12gy2d, i.e., the graph is fractal with
fractal dimensionDF ­ 2 2 gy2 [15].

The conclusions discussed here for timet and energy
E hold similarly for other pairs of canonically conjugat
variables, e.g., for “area”A and magnetic fieldB, since
for a closed pathA can be considered as the accumulat
area of an electron moving along the path in timet.

In this Letter we present measurements of the magne
conductance fluctuations of weakly disordered quasib
listic gold nanowires with various lengthsL , Lw. We
adopt the method suggested by Ketzmerick [8]. T
analysis ofGsBd yields thatksDG2dl ~ DBg , whereg is
significantly smaller than two and decreases with incre
ing length of the nanowire. We attribute this behavior
the existence of long-lived states in the mesoscopic w
with a dwell time probabilityPstd decaying much slower
than exponentially. In addition we find that the graphG vs
B is indeed fractal with fractal dimensionDF ­ 2 2 gy2.

Gold nanowires of very high purity (99.999%) wer
fabricated using electron-beam lithography and lift-o
with a four layer polymethylmethacrylate (PMMA) base
resist system as described in Ref. [16]. The wires ha
cross-section of30 3 30 nm2 and lengths between 400
and 1000 nm with a resolution of65 nm. Current and
voltage probes were connected to the wires as shown
the inset of Fig. 4, providing a mesoscopic two-prob
arrangement [6]. The conductanceGsBd was measured
as a function of the magnetic fieldB (jBj # 6 T, 1 mT
step size) with a standard ac lock-in technique in a3He–
4He-dilution refrigerator atT ø 60 mK [6].

The total resistance (nanowire and contacts) atT ­
60 mK varies betweenR ­ 8.2 and18.3 V for L ­ 400
and 1000 nm, respectively. The resistanceRc of the two
funnel-shaped contacts is2.4 V, as calculated from the
resistance per squareRh ­ 0.5 V. From the residual
resistance ratioR77KyR4.2K and from the electron phonon
© 1996 The American Physical Society 3885
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inelastic scattering rate we obtain an elastic mean fr
path , in all investigated devices of, ø 60 nm. This
is larger than the widthW . 30 nm and the thickness
T ­ 30 nm of the wires and much larger than the Ferm
wavelength in gold (lF . 0.52 nm), i.e., our wires are
in the quasiballistic limit. The phase-coherence leng
as determined from weak localization atT ­ 100 mK is
Lw ø 1.3 mm; the spin-orbit scattering length isLs.o. ø
0.2 mm [17].

In Fig. 1 we showGsBd ­ GexpsBd 2 GclsBd for four
samples of different lengths. HereGexpsBd is the con-
ductance as measured at 60 mK.Gcl ~ B2 is the weak
classical magnetoconductance obtained from a quadra
fit to GexpsBd. The rms-amplitude of the CF is of order
rmssGd ø 0.11 e2yh for all wires.

The correlation field Bc as determined from the
half-width of the autocorrelation functionCsDBd ­
kGsBdGsB 1 DBdl ranges between 37 and 85 mT (se
Table I). The weak dependence ofBc on L is related to
the nonlocality of the CF and was discussed elsewhere [

Before we analyzeksDGd2l we estimate the contribu-
tion of the experimental noise to the measured condu
tance as compared to that of the reproducible CF. W
write the total conductance asGsBd ­ GcfsBd 1 GnsBd,
where Gcf denotes the reproducible part andGn is due
to noise. SinceGsBd is measured in a mesoscopic two
probe configuration the CF are symmetric with respect
reversal of the magnetic field, i.e.,GcfsBd ­ Gcfs2Bd.
On the other hand, the noise component of a partic

FIG. 1. ConductanceGsBd as a function of the magnetic field
B for 4 Au wires with lengths as given in the figure. The trace
are shifted along they axis for clarity (see text).
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lar magnetoconductance trace may be viewed as bein
composed of symmetric and antisymmetric partsGs

n
and Ga

n , whereGs
n ; fGnsBd 1 Gns2Bdgy2, and Ga

n ;
fGnsBd 2 Gns2Bdgy2, so thatGa

n sBd 1 Gs
nsBd ­ GnsBd,

Gs
nsBd ­ Gs

ns2Bd, and Ga
n sBd ­ 2Ga

n s2Bd. The anti-
symmetric part of the total conductanceGa ­ fGsBd 2

Gs2Bdgy2 is a measure of the antisymmetric noise com-
ponent Ga ­ Ga

n . The symmetric partGs ­ fGsBd 1

Gs2Bdgy2 is given byGs ­ Gcf 1 Gs
n. Since it is rea-

sonable to assume that the symmetric and antisymmetr
experimental noise components are of equal magnitud
the noise contribution toGs (and thus toG) can be esti-
mated fromGa.

As an example we show in Fig. 2Ga and Gs for
the 1000 nm long wire. Similar results are obtained
for all other wires. The rms-noise-amplitude rmssGa

n d ø
rmssGs

nd, calculated in the magnetic field range up to
6 T, is of order rmssGs,a

n d # 0.03 e2yh, which is clearly
smaller than the amplitude of the reproducible CF am
plitude rmssGd ø 0.11 e2yh (see Table I). It should be
noted that the rms-noise-amplitudes rmssGa

n d calculated
on magnetic field scalesDB , Bc, which are relevant for
the determination ofg, are much smaller (#0.007 e2yh).
This is a reflection of the 1yf component of the total ex-
perimental noise as function of the magnetic field [18].
The value for the rms-noise amplitude obtained from
Ga is in accordance with a more direct method where
we measured the system noise at a fixed magnetic fie
(B ­ 0 T).

We turn now to the calculation ofksDGd2l as a function
of DB. We have used bothGsBd and GssBd for this
calculation. Figure 3 shows on a double logarithmic
scale ksDGd2l as a function ofDB. We also analyzed
the experimental noiseksDGad2l (inset of Fig. 3). As
shown, the values of the derivatived lnksDGd2lyd lnsDBd
for the noise Ga are higher than those forGs. A
region, approximately flat, which corresponds to a powe
law behavior withg , 2 can be observed only forGs.
Therefore, it is clear that the observation ofg , 2 for Gs

is not caused by experimental noise.

TABLE I. L: Length of the nanowires;G: Total conduc-
tance; rmssGd: Root mean square of the CF with an accuracy
of 60.01 e2yh; Bc: Correlation field extracted from the half-
width of the autocorrelation functionCsDBd with an accuracy
of 610 mT; g? andg have been extracted by fits of the vari-
ance ksDGd2l calculated fromGsBd and GssBd, respectively,
with an uncertainty of60.05. gF was obtained by a direct frac-
tal analysis of the graphG vs B with an uncertainty of60.04.

L G rms(G) Bc gp g gF
smmd se2yhd se2yhd (mT)

0.4 3135 0.105 37 1.86 1.89 1.88
0.6a 1968 0.13 80 1.77 1.78 1.75
0.6b 1645 0.12 80 1.68 1.76 1.74
0.8 1286 0.1 78 1.75 1.68 1.68
1.0 1408 0.1 85 1.74 1.72 1.70
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FIG. 2. SymmetricGs and antisymmetric partGa of GsBd.
Ga is a measure of noise, whereasGs measures the repro
ducible conductance fluctuations (see text).Gs is shifted by
0.6e2yh for clarity.

We find thatksDGd2l varies asDBg for DB ø Bc with
an uncertainty of the exponent of60.05 (see Table I).
Thus we conclude that at least for the wires of lengthL $

600 nm, g is definitely smaller than 2 which indicate
long-lived states with a dwell time probabilityPstd ~

t2g . In addition we find thatg decreases with increasin
system lengthL of the nanowires (see Fig. 4) while th
signal to noise ratio increases. We also performed a di

FIG. 3. VarianceksDGd2l calculated fromGssBd as a function
of DB for the gold wires on a double logarithmic scale. Th
correlation fieldsBc are indicated by the arrows. The slopeg
of ksDGd2l versusDB has been extracted by linear fits in th
region 2 3 mT # DB # 10 mT ø Bc. For comparison we
show a thick solid line of slope 2. Inset: logarithmic derivativ
d lnksDGs,ad2lyd lnsDBd for the nanowire withL ­ 600 nm.
ct

fractal analysis on the graphG vs B [15]. The results
obtained are in very good agreement with those analyz
the variance and are listed in Table I. Measureme
at higher temperatures (T # 4.2 K) or on longer wires
with ratio LyLw & 2 show reduced CF and no significan
change in the exponentg.

For comparison we have also measured various d
ordered aluminum nanowires withlF ø , ø W , T and
phase coherence lengthLw ø 350 nm , L ­ 500, 1000,
1500 nm. All the wires show values ofg ­ 2 within the
experimental uncertainty.

Now we turn to the discussion of our results. As ou
lined in the introduction the observation ofg , 2 indi-
cates the existence of long-lived states. We know of tw
possible explanations for the existence of long-lived sta
in mesoscopic conductors. To distinguish between th
it is helpful to consider the classification of mesoscop
conductors as introduced recently by Aleiner and Lark
[19]. A mesoscopic conductor for which the electron
path between scattering events can be considered as pu
classical was denoted as being in the quantum chaos (Q
regime. In this case, not only the Fermi wavelengthlF has
to be much smaller than the (transport) mean free pat,
but also the typical scaled over which the potential energy
varies has to satisfy the constraintd2 . lF,. Typical ex-
amples for such systems are antidot arrays [20] whered
plays the role of the diameter of an antidot and ballis
cavities whered coincides with the size of a cavity. Con
ductors withd2 , lF, are denoted as being in the quan
tum disorder (QD) regime since the uncertaintydx of the

FIG. 4. g versusL (see text). The inset shows the samp
layout, i.e., a Au nanowire of lengthL ­ 1 mm with two
funnel-shaped current-voltage probes with an opening angle
90±. This corresponds to a mesoscopic two-probe arrangem
current and voltage leads are attached far outside the ph
coherence volume. The dotted line serves as a guide to the
3887



VOLUME 77, NUMBER 18 P H Y S I C A L R E V I E W L E T T E R S 28 OCTOBER1996

,

in-

,

-

.

,

ic
electron position in the direction of its momentum after
collision is larger thand.

It is now well known [8] that in the QC regime
the corresponding classical phase space is neither fu
chaotic nor fully integrable but contains in general island
of regular trajectories with a self-similar structure. Thos
classical chaotic trajectories that spend a long time clo
to regular orbits give rise to power law behavior in th
classical dwell time probabilityPstd ~ t2g. So far the
prediction of the exponentg for a given system does not
seem to be possible. However, according to Ketzmeri
[8] several values forg which are ofO s1d have been
reported for ballistic cavities as well as for antidot array

Another approach to the existence of long-lived stat
goes back to the work of Altshuleret al. (AKL) [12].
They claim that quasilocalized states already exist in t
metallic regime of mesoscopic conductors with a none
ponentially small probability. These states are trapped
Bragg reflection in an optimal potential fluctuation an
should appear in the QC as well as in the QD regime
They have attracted considerable interest in the last t
years and the results of AKL have been confirmed a
improved [13,14]. The crucial result is that due to suc
quasilocalized states the dwell time probability (in a wire
should behave for not to large timest ¿ tD as

Pstd ~ expf2g ln2stytDdg ~ t2g lnstytDd. (4)

Hereg ­ Ghye2 is the dimensionless conductance whic
is large in a metallic wireg ¿ 1 (see Table I). Thus one
cannot detect the corresponding long-lived states in t
CF which are sensitive only to a power law behavior
Pstd with an exponentg smaller than two.

Turning now to our experiments we note that ou
gold wires are characterized by an elastic mean fr
path which is caused mainly by diffusive boundar
scattering, . W , T . In addition there is also a certain
amount of specular boundary scattering and one m
classify the samples as QC conductors withd ø W .
We therefore conclude that the observed behavior of t
varianceksDGd2l ~ DBg in the Au wires indicates the
existence of long-lived states with a dwell time probabilit
Pstd ~ t2g, g , 2. In contrast, the aluminum wires are
definitely in the QD regime, sincelF ø ,, consistent with
g . 2.

In summary, we have presented measurements of m
netoconductance fluctuations in mesoscopic gold wir
which are in the quantum chaos regime. Analysis of t
CF pattern reveals power law behavior of the varian
ksDGd2l ­ kfGsBd 2 GsB 1 DBdg2l ~ DBg with g , 2
for small magnetic field intervalsDB ø Bc. This non-
analyticity of ksDGd2l is a signature of long-lived states
in the samples. Such states are a generic feature of s
tems with a mixed (chaotic and regular) phase space
the corresponding classical system. Additional measu
ments, e.g., of the temperature dependence ofg, should
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provide further insight into the origin of the fractal con-
ductance fluctuations.
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