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We work out a theory of the acoustoelectric effect in nanostructures under the ballistic condu
regime. The ultrasonic wavelength is assumed to be much smaller than the longitudinal dim
of the microstructure. We predict giant quantum oscillation of the acoustoelectric current
gate voltage variation. By this we mean that the maxima of the oscillatory part far excee
minima. The effect can be used for the investigation of the electron spectrum of microstruc
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The wave propagating in the semiconductor creates a
drag of the electrons and hence a dc acoustoelectric cur
J or, if the circuit is disconnected, a dc acoustoelect
potential differenceV . Up to now this effect has been
considered in the classical transport regime of Dru
conductivity where the relaxation plays a crucial role.
this Letter we consider the opposite limit—the ballist
transport. In the ballistic case the conductance is a step
function of the Fermi level. Each step corresponds
the inclusion of a new mode of transverse quantization
the conduction process and has a height ofG0 ­ 2e2yh
multiplied by transmission probability.

In the present Letter we are interested in a case of l
temperatures and high ultrasonic frequencies when the
teraction of ultrasound with electrons can be treated a
direct absorption and emission of ultrasonic phonons by
electrons of the nanostructure. Using the physical pictu
developed by Landauer, Büttiker, and Imry [1,2] we co
sider a semiconductor quantum nanostructure connecte
two reservoirs, each in independent equilibrium. We c
culate the voltage (or current) brought about by a traveli
acoustic wave [3].

We assume that the nanostructure has a form of quan
wire with a constant cross section, with thex axis parallel
to the wire. We also assume that the direction of t
phonon propagation is parallel to the wire, i.e., to thex
axis. Then the energy and quasimomentum conserva
law reads

enspd 1 h̄vq ­ ensp 1 h̄qd . (1)

Hereenspd ­ ens0d 1 p2y2m is the energy of the elec-
tron belonging to the one-dimensional (1D) subband (cha
nel), m is the electron effective mass,n is the quantum
number of transverse quantization,p is thex component
of the electron quasimomentum, whilevq ­ wq is the fre-
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quency of phonons with wave vectorq andw is the sound
velocity.

Equation (1) gives p ­ mw 2 h̄qy2, p 1 h̄q ­
mw 1 h̄qy2. This means that in the course of sound ab
sorption there is a quasimomentum transfer from phono
to electrons which should bring about an acoustoelect
current,J.

We consider as a typical example electron gas near t
GaAS-GaAlAs interface. The elastic properties of bot
materials are assumed to differ slightly. Therefore th
front of the acoustic wave near the interface is distorte
slightly as well. Moreover, because of the translation
symmetry along thex axis, qx remains to be a good
quantum number.

These equations give a single value for the quasim
mentum of electrons that take part in the transition
which happen if the initial electron state is either within
the thermal layer near the Fermi level (ifh̄vq ø kBT )
or within a layer of widthh̄vq betweenmn 2 h̄vq and
mn (assuming thath̄vq ¿ kBT ). When in the course
of gate voltage variation an initial electron state with
p ­ mw 2 h̄qy2 disappears from such a layer the cur
rent drops. With further change in the gate voltage a
initial electron state belonging to another subbandn0 ap-
pears now in the layer betweenmn0 2 h̄vq and themn0 ,
wheremn ­ m 2 ens0d (see Fig. 1) which leads to an in-
crease of the acoustoelectric current. Consequently, o
observes what may be calledgiant quantum oscillationof
acoustoelectric current as a function of gate voltage. Th
phenomenon is similar to the giant quantum oscillation
of ultrasonic absorption in a magnetic field [4] (as well a
in the nanostructures [5]) where due to the system of La
dau levels analogous oscillations can be observed in t
course of magnetic field variation.

The influence of nonequilibrium phonons on the elec
trons of a microcontact has been considered by Koz
© 1996 The American Physical Society 3881
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FIG. 1. Horizontal dashed lines define a layer of widthh̄vq

between ms2d
n ­ mn 2 h̄vq and mn which is wider than

the thermal layer ifh̄vq ¿ kBT . When an initial electron
state with p ­ mw 2 h̄qy2 is not within such a band, the
transitions are forbidden and no current can flow.

and Rudin [6]. They have investigated thermopower
the quantum point contacts as a consequence of ther
phonon drag of electrons (see also Ref. [7]). Wit
electron-phonon interaction taking place mainly in th
reservoirs. In contrast, we are interested in situatio
where the main effect of the phonon drag on electro
comes from the electron-phonon interaction in th
nanowire region, while the effects of phonon drag in th
reservoirs can be ignored. For instance, the geometry o
wire and reservoirs can be arranged in such a way that
ultrasound beam is directed along much of the wire wh
it is practically perpendicular to the large leads that for
reservoirs. In such a situation the phonon drag in t
reservoirs does not contribute at all to the acoustoelec
current.

We treat the acoustic wave as a flux of phonon
The distribution function of the electrons,fnspd, in
the absence of sound is the Fermi function,fsFdse, d
wheree ­ enspd is the electron energy. Adding a wea
interaction of electrons with the ultrasonic phonons w
havef ­ fsFd 1 Df with Df satisfying the equation

y
≠Df
≠x

­ Iffg 1 e
≠Df

≠x
≠fs0d

≠p
. (2)

Here y ­ ≠eny≠p is the electron velocity (which does
not depend explicitly on the quantum numbern) andDf

is the time averaged electrostatic potential which may
brought about by the ultrasound wave. This term will b
omitted below as it gives no contribution to the curren
Iffg represents the electron-phonon collision term. F
p . 0 sp , 0d the solution of Eq. (2) is

Df
.

, sxd ­ sx 6 Ly2dIffgyy . (3)

Here we have assumed that the zero of the coordin
lies at the midpoint of the conductor of a total lengthL
and that the boundary conditionDf

.

, ­ 0 is satisfied at
x ­ 7Ly2. The explicit form of the collision term reads
3882
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Iffg ­
Z dp0

2p h̄

Z d2q'

s2pd2 W sbs1d 1 bs2dd ,

bs6d ­ ff 0s1 2 fd sN 1 1y2 6 1y2d

2 fs1 2 f 0d sN 1 1y2 7 1y2dg

3 ds´0 2 ´ 7 h̄vqd , (4)

where N is the phonon distribution function andW is
the coefficient of electron-phonon interaction (see belo
The total current is given by

J ­ 2eL
X
n

Z `

0

dp
2p h̄

Iffg

2 2eL
X
n

Z 0

2`

dp
2p h̄

Iffg

1 4ex
X
n

Z `

2`

dp
2p h̄

Iffg . (5)

The last term in the square brackets vanishes si
collisions do not change the total number of electrons.

For the deformation potential DP interaction we ha
W ­ pL2q2yrvq , whereL is the DP constant for the
phonon branch in consideration andr is the mass density
For the unscreened piezoelectric interaction

Wa ­ spyrvqd f4pebq,lqnlsq, ady´qqg2. (6)

Here bi,ln is the tensor of piezoelectric moduli whic
is symmetric in the last two indices (see, for instanc
Ref. [8]), ´il is the tensor of dielectric susceptibility, an
nlsq, ad is the polarization vector (i.e., a unit vector alon
the elastic displacementu) of the phonon with wave
vector q, belonging to the brancha. Index q indicates
the projection of a tensor on theq direction.

The frequency dependence of the piezoelectric inter
tion differs from that of the DP interaction. If the sym
metry allows the piezoelectric interaction, it should
predominant for comparatively small values ofvq ­ wq.
The integrations in Eq. (4) are in fact over the three co
ponents of the phonon wave vector. The phonon dis
bution functionNk can be presented in the formNk ­
fs2pd3Syh̄w2kgds3dsk 2 qd , whereS is the sound inten-
sity. One can discard 1 as compared toNk in Eq. (4).
Then for the electron distribution function determined
Eq. (3) one has

Df ­

µ
x 6

L
2

∂
Sm2W

psh̄vqd2

3

Ω
sfp1 h̄q 2 fpdd

∑
p 2

µ
mw 2

h̄q
2

∂∏
1 sfp2 h̄q 2 fpdd

∑
p 2

µ
mw 1

h̄q
2

∂∏æ
. (7)

InsertingNk into Eq. (4) one finally gets for̄hq . 2mw

J ­
emSWL
2p h̄3v2

q
ffsFdses2d 2 mnd 2 fsFdses1d 2 mndg ,

(8)
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wherees6d ­ sh̄qy2 6 mwd2y2m.
For h̄q , 2mw, one cannot use the approach develo

ped above to calculate a nonvanishing currentJ. This
is a consequence of the ballistic nature of transport, a
it is due to the current conservation in combination wit
the charge conservation in the course of electron-phon
collisions. To consider this issue in detail we calculate th
rate of variation of 1D electron densityn due to electron-
phonon collisions. It can be presented as∑

≠n
≠t

∏
coll

­ 2
Z `

0

dp
p h̄

Iffg 1 2
Z 0

2`

dp
p h̄

Iffg .

The current is proportional to the difference of the sam
integrals

J ­ 2eL
Z `

0

dp
2p h̄

Iffg 2 2eL
Z 0

2`

dp
2p h̄

Iffg .

When h̄q , 2mw and therefore bothmw 2 h̄qy2 and
mw 1 h̄qy2 are positive thed functions in Eq. (7) do not
contribute to the second integral so we are left with∑

≠n
≠t

∏
coll

­
J

eL
­ 2

Z `

0

dp
2ph

If fg . (9)

The integral Eq. (9) should vanish as the collision
conserve the concentration of electrons. Therefore t
current which is proportional to the same integral shou
also vanish. This means in fact that one can expect
abrupt change of the acoustoelectric current ath̄q ­ 2mw.
When other collisions, not related to the ultrasound wav
are taken into account the above considerations are
valid and the currentJ due to the ultrasound is no longer
zero forh̄q , 2mw. One can show, however, that in this
case too an abrupt change of the acoustoelectric curren
a function of a dimensionless parameterh ­ h̄qy2mw is
still expected at̄hqy2mw ­ 1.

For h̄q . 2mw one can consider two limiting cases
i.e., h̄vq ¿ kBT

J ­ semSWLy2p h̄3v2
qd

X
n

usmn 2 es2dduses1d 2 mnd

(10)

and h̄vq ø kBT

J ­
X
n

emSWL

8p h̄2vqkBT cosh2fsh̄2v2
qy8mw2 2 m

s1d
n dy2kBT g

,

(11)

wherem
s1d
n ­ m 2 ens0d 2 mw2y2. Both of these limits

are illustrated in Fig. 2. It is worth mentioning that the
peak-to-valley ratio is either infinite or exponentially large
in this theory.

The currentJ generated by the ultrasound wave of an
brancha in the piezoelectric media can be obtained from
equations above with the following substitution:L2 !

L2
a 1 f4pebq,lqnlsq, adyq´qqg2. HereLa denotes the DP

constant for the acoustic wave belonging to brancha.
Let us consider as an example a piezoelectric intera

tion. Then for h̄vqykBT ¿ 1, assuming thatq ­ 3 3
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FIG. 2. Plotted is the acoustoelectric current (in units o
emSWLy8p h̄2vqkBT ) as a function of the chemical potential
mn ­ m 2 ens0d (which itself is controlled by gate voltage)
for a quantum wire of constant cross section. The soli
line represents thēhvq ø kBT case described by Eq. (10).
The dashed line represents thēhvq ¿ kBT case described
by Eq. (11), with peaks atm0 ­ sh2 1 1dmw2y2, whereh ­
h̄qy2mw. Inset: a schematic plot of the giant oscillations o
the acoustoelectric current as a function of the gate voltage f
h̄vq ø kBT in the limit of h̄q . 2mw described by Eq. (11).
Both J and gate bias are given in arbitrary units.

106 m21 and for the effective massm ­ 0.07m0,
the piezoelectric coupling coefficient [9]4pb2y
´rw2 ­ 6 3 1024, the velocity of soundw ­ 5 3

105 cmysec and mass densityr ­ 5 gycm3, we have
J ø 2 3 1027 AyW andV ø 2 mVyW. Such an effect
could be used as an experimental tool for the detectio
of high frequency ultrasound. It can also be used t
investigate the electron spectrum of the microstruc
ture, particularly the positions of levels of transvers
quantization.

So far we have assumed that the reservoirs give n
contribution to the current. Let us now investigate th
contribution from the reservoirs. To do so, it is natura
to consider a general case of a nanostructure of a varia
cross section which consists of two reservoirs connect
by a so-called “wire” region.

Following Glazmanet al. [10] we shall represent the
electrostatic confining potentialfsx, yd asfsxd along the
direction of current and the width of an “aperture”Dsxd.
We explicitly assume such form of the gates that on
can represent the problem in this way. The transver
dimensions widen adiabatically from the wire region to
the reservoirs; namely,Dsxd has a minimumD0 at the
midpoint x ­ 0 while Dsxd ! ` for x ! 6`, i.e., deep
within the reservoirs. BothDsxd and the electrostatic
potentialefsx, yd change slowly on the scale of the de
Broglie wavelengthl [10]. This is what one refers to as
the adiabatic transport. We also assume that the width
D0 is of the order of the de Broglie wavelengthlF .
Since Dsxd and fsxd change withx adiabatically, only
the electrons with total energy above the threshold o
3883
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propagation atx ­ 0 will be transmitted, all others are
totally reflected. We shall further assume that such a w
region is of lengthL and of essentially constant effective
confinement width alongx, the orientation of a wire.

Turning our attention to the reservoirs we first con
sider a case of a wire so narrow that the two reservo
are effectively decoupled. The ultrasound wave bring
about the acoustoelectric effect in each reservoir, so th
one can write for the total current density in a reservo
j ­ 2ssyed=sm 1 efd 1 jsacd where the acoustoelec-
tric currentjsacd is proportional to the sound intensityS:
jsacd ­ aS and wherea depends in particular on the scat
tering rate within the reservoir. Under the assumption
that j ­ 0 and that the sound is weakly absorbed ove
the length of a reservoirLr one can write for the differ-
ence of electrochemical potentials overLr , Dsm 1 efd ­
esaysdSLr . In such a case the reservoirs act as two ba
teries connected in series and determine the current i
short circuited situation.

Since the wire is significantly narrower than the rese
voirs, the difference given will be practically unaffected
by the tiny current in the wire. The differenceDsm 1

efd is one of the sources which contribute to the acoust
electric current through a nanowire. On the one hand, th
source could be excluded in the experimental setup (by
ranging the geometry of the nanostructure). On the oth
hand, if one chooses to investigate this contribution, th
difference in the electrochemical potential will drive the
ballistic current though a nanostructure much in the sam
way as an ordinary voltage bias in the absence of ultr
sound. If one measuresa independently, one can then
measure the intensity of sound near the nanostructure.

The third contribution to the acoustoelectric effect is du
to the fact that the reservoirs and the regions where t
reservoirs converge into a wire can also contribute to t
ballistic transport. This contribution, however, is not a
ways present. For instance, in the temperature range wh
the electron-electron scattering is significant, and ther
fore results in energy relaxation of electrons, the effects
the phonon drag in the reservoirs are of little importanc
At the same time, the possibility of electron-electron co
lisions in the microstructure itself is severely restricte
(cf. with Ref. [11]). Indeed, one can easily check that th
conditions for the energy and quasimomentum conserv
tion in the course of electron-electron collisions cannot b
satisfied due to the 1D nature of electron dynamics.

The electrochemical potential of the electrons injecte
into the wire region from the right and the left is deter
mined by the electrochemical potential of the regions of fi
nite extent located roughly where the reservoirs conver
into a wire. This region is determined by the conditio
ens0, xd 2 en0s0, xd , kBT for adjacent values ofn and
n0. This difference decreases with an increasingDsxd as
jxj increases. An injection of electrons into the wire re
gion, and their subsequent absorption of a quasimoment
3884
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from the ultrasound, takes place predominantly for thos
electrons which are injected fromx that do not satisfy this
condition. For this reason the integration overx in Eq. (5)
is not performed from2` to 1` but rather from some
2Ly2 to 1Ly2.

In summary, we have calculated acoustoelectric curre
in a nanostructure under the ballistic conductance regim
We predict giant oscillations of the current as a functio
of the gate voltage. We predict also an abrupt variation
the acoustoelectric effect as a function of the ultrason
frequency atvq ­ 2mw2yh̄. It is pointed out that the
effect can be used for the detection of ultrasound as w
as for the investigation of the electron spectrum of
microstructure.
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