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Generalized gradient approximations (GGA’s) for the exchange-correlation energy improve u
the local spin density (LSD) description of atoms, molecules, and solids. We present a sim
derivation of a simple GGA, in which all parameters (other than those in LSD) are fundame
constants. Only general features of the detailed construction underlying the Perdew-Wang
(PW91) GGA are invoked. Improvements over PW91 include an accurate description of the lin
response of the uniform electron gas, correct behavior under uniform scaling, and a smoother pote
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Kohn-Sham density functional theory [1,2] is widely
used for self-consistent-field electronic structure calcul
tions of the ground-state properties of atoms, molecule
and solids. In this theory, only the exchange-correlatio
energyEXC ­ EX 1 EC as a functional of the electron
spin densitiesn"srd andn#srd must be approximated. The
most popular functionals have a form appropriate fo
slowly varying densities: the local spin density (LSD) ap
proximation

ELSD
XC fn", n#g ­

Z
d3r neunif

XC sn", n#d, (1)

wheren ­ n" 1 n#, and the generalized gradient approx
mation (GGA) [3,4]

EGGA
XC fn", n#g ­

Z
d3r fsn", n#, =n", =n#d. (2)

In comparison with LSD, GGA’s tend to improve tota
energies [4], atomization energies [4–6], energy barrie
and structural energy differences [7–9]. GGA’s expan
and soften bonds [6], an effect that sometimes corre
[10] and sometimes overcorrects [11] the LSD predictio
Typically, GGA’s favor density inhomogeneity more than
LSD does.

To facilitate practical calculations,eunif
XC and f must

be parametrized analytic functions. The exchang
correlation energy per particle of a uniform electron ga
e

unif
XC sn", n#d, is well established [12], but the best choic

for fsn", n#, =n", =n#d is still a matter of debate. Judging
the derivations and formal properties of various GGA’
can guide a rational choice among them. Semiempiric
GGA’s can be remarkably successful for small molecule
but fail for delocalized electrons in the uniform gas [whe
fsn", n#, 0, 0d fi ne

unif
XC sn", n#d] and thus in simple metals.

A first-principles numerical GGA can be constructe
[13] by starting from the second-order density-gradie
expansion for the exchange-correlation hole surroundi
the electron in a system of slowly varying density, the
cutting off its spurious long-range parts to satisfy sum
rules on the exact hole. The Perdew-Wang 1991 (PW9
[14] functional is an analytic fit to this numerical GGA,
designed to satisfy several further exact conditions [13
0031-9007y96y77(18)y3865(4)$10.00
a-
s,
n

r
-

i-

l
rs
d

cts
n.

e-
s,
e

s
al
s,
n

d
nt
ng
n

1)

].

PW91 incorporates some inhomogeneity effects wh
retaining many of the best features of LSD, but has
own problems: (1) The derivation is long, and depends
a mass of detail. (2) The analytic functionf, fitted to the
numerical results of the real-space cutoff, is complicat
and nontransparent. (3)f is overparametrized. (4) The
parameters are not seamlessly joined [15], leading
spurious wiggles in the exchange-correlation potent
dEXCydnssrd for small [16] and large [16,17] dimension-
less density gradients, which can bedevil the construct
of GGA-based electron-ion pseudopotentials [18–20
(5) Although the numerical GGA correlation energy func
tional behaves properly [13] under Levy’s uniform scalin
to the high-density limit [21], its analytic parametrization
(PW91) does not [22]. (6) Because PW91 reduces to
second-order gradient expansion for density variatio
that are either slowly varyingor small, it descibes the
linear response of the density of a uniform electron g
lesssatisfactorily than does LSD [20,23].

This last problem illustrates a fact which is often ove
looked: The semilocal form of Eq. (2) is too restrictiv
to reproduce all the known behaviors of the exact fun
tional [13]. In contrast to the construction of the PW9
functional, which was designed to satisfy as many exa
conditions as possible, the GGA presented here satis
only those which are energetically significant. For ex
mple, in the pseudopotential theory of simple metals, t
linear-response limit is physically important. On the othe
hand, recovery of the exact second-order gradient exp
sion in the slowly varying limit makes little difference
to the energies of real systems. We solve the 6 pro
lems above with a simple new derivation of a simple ne
GGA functional in whichall parameters [other than those
in e

unif
XC sn", n#d] are fundamental constants. Although th

derivation depends only on the most general features
the real-space construction [13] behind PW91, the resu
ing functional is close to numerical GGA.

We begin with the GGA for correlation in the form

EGGA
C fn", n#g ­

Z
d3r nfeunif

C srs, z d 1 Hsrs, z , tdg,

(3)
© 1996 The American Physical Society 3865
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where rs is the local Seitz radius (n ­ 3y4pr3
s ­ k3

Fy
3p2), z ­ sn" 2 n#dyn is the relative spin polarization,
and t ­ j=njy2fksn is a dimensionless density gradi-
ent [13,14]. Herefsz d ­ fs1 1 z d2y3 1 s1 2 z d2y3gy
2 is a spin-scaling factor [24], andks ­

p
4kFypa0 is the

Thomas-Fermi screening wave number (a0 ­ h̄2yme2).
=z corrections to Eq. (3), which are small for most pur
poses, will be derived in later work. We construct the
gradient contributionH from three conditions:

(a) In the slowly varying limit (t ! 0), H is given by
its second-order gradient expansion [24]

H ! se2ya0dbf3t2, (4)

whereb . 0.066 725. This is the high-density (rs ! 0)
limit [25] of the weaklyrs-dependent gradient coefficient
[26] for the correlation energy [with a Yukawa interaction
se2yud exps2kud in the limit k ! 0], and also the coef-
ficient which emerges naturally from the numerical GGA
[13] discussed earlier.

(b) In the rapidly varying limitt ! `,

H ! 2eunif
C , (5)

making correlation vanish. Ast ! ` in the numerical
GGA, the sum rule

R
d3u nCsr, r 1 ud ­ 0 on the corre-

lation hole densitynC is only satisfied bynC ­ 0. For
example, in the tail of the electron density of a finite sys
tem, the exchange energy density and potential domina
their correlation counterparts in reality, but not in LSD.

(c) Under uniform scaling to the high-density limit
[nsrd ! l3nslrd andl ! `, whencers ! 0 asl21 and
t ! ` as l1y2], the correlation energy must scale to a
constant [21]. Thus [27]H must cancel the logarithmic
singularity of e

unif
C [28] in this limit: e

unif
C srs, z d !

se2yaodf3fg lnsrsya0d 2 vg, where g and v are weak
functions [12] of z which we shall replace by their
z ­ 0 values,g ­ s1 2 ln 2dyp2 . 0.031 091 andv .
0.046 644, so

H ! se2ya0dgf3 ln t2. (6)

Conditions (a), (b), and (c) are satisfied by the simpl
ansatz

H ­ se2ya0dgf3

3 ln

Ω
1 1

b

g
t2

∑
1 1 At2

1 1 At2 1 A2t4

∏æ
, (7)

where

A ­
b

g
fexph2eunif

C ysgf3e2ya0dj 2 1g21.

(8)

The functionH starts out fromt ­ 0 like Eq. (4), and
grows monotonically to the limit of Eq. (5) ast ! `; thus
EGGA

C # 0. (H appears as one of two terms in the PW9
correlation energy, but withg ­ 0.025.) Under uniform
3866
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scaling to the high density limit,EGGA
C tends to

2
e2

a0

Z
d3r ngf3

3 ln

∑
1 1

1
xs2yf2 1 sxs2yf2d2

∏
, (9)

where s ­ j=njy2kFn ­ srsya0d1y2ftyc is another
dimensionless density gradient,c ­ s3p2y16d1y3 .
1.2277, andx ­ sbygdc2 exps2vygd . 0.721 61. The
correlation energy for a two-electron ion of nuclea
chargeZ ! ` is 2` by LSD, 1` by PW91,20.0482
Hartree by Eq. (9), and20.0467 exactly [29]. For afinite
system,s cannot vanish identically, except on sets o
measure zero, so Eq. (9) is finite; for aninfinite jellium, s
vanishes everywhere, and Eq. (9) reduces to2` as GGA
reduces to LSD.

The GGA for the exchange energy will be constructe
from four further conditions:

(d) Under the uniform density scaling described alon
with condition (c) above,EX must scale [30] likel. Thus,
for z ­ 0 everywhere, we must have

EGGA
X ­

Z
d3r neunif

X sndFXssd, (10)

wheree
unif
X ­ 23e2kFy4p . To recover the correct uni-

form gas limit,FXs0d ­ 1.

FIG. 1. Enhancement factors of Eq. (15) showing GGA non
locality. Solid curves denote the present GGA, while ope
circles denote the PW91 of Refs. [4,13,14].
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(e) The exact exchange energy obeys the spin-scal
relationship [31]

EXfn", n#g ­ sEXf2n"g 1 EXf2n#gdy2 . (11)
(f) For the linear response of the spin-unpolarized un

form electron gas, i.e., for small density variations aroun
the uniform density, LSD is an excellent approximatio
[23] to the exchange-correlation energy, while the grad
ent expansion is not [20]. To recover the LSD linear re
sponse, we must have (ass ! 0)

FXssd ! 1 1 ms2, (12)

where m ­ bsp2y3d . 0.219 51, the effective gradient
coefficient for exchange, cancels that for correlation.

(g) The Lieb-Oxford bound [14]

EXfn", n#g $ EXCfn", n#g

$ 21.679e2
Z

d3r n4y3 (13)

will be satisfied if the spin-polarized enhancement facto
FXsz ­ 1, sd ­ 21y3FXssy21y3d grows gradually withs
to a maximum value less than or equal to 2.273, i.e
FXssd # 1.804. A simpleFXssd satisfying Eqs. (12) and
(13) is

FXssd ­ 1 1 k 2 kys1 1 ms2ykd, (14)
herical
The

].
son.
TABLE I. Atomization energies of molecules, in kcalymol (1 eV ­ 23.06 kcalymol). EXC
has been evaluated on self-consistent densities at experimental geometries [33]. Nonsp
densities and Kohn-Sham potentials have been used for open-shell atoms [34].
calculations are performed with a modified version of theCADPAC program [35]. The
experimental values forDE (with zero point vibration removed) are taken from Ref. [36
PBE is the simplified GGA proposed here. UHF is unrestricted Hartree-Fock, for compari

System DEUHF DELSD DEPW91 DEPBE DEexpt

H 2 84 113 105 105 109
LiH 33 60 53 52 58
CH4 328 462 421 420 419
NH 3 201 337 303 302 297
OH 68 124 110 110 107
H 2O 155 267 235 234 232
HF 97 162 143 142 141
Li 2 3 23 20 19 24
LiF 89 153 137 136 139
Be2 27 13 10 10 3

C2H 2 294 460 415 415 405
C2H 4 428 633 573 571 563
HCN 199 361 326 326 312
CO 174 299 269 269 259
N2 115 267 242 243 229
NO 53 199 171 172 153
O2 33 175 143 144 121
F2 237 78 54 53 39
P2 36 142 120 120 117
Cl2 17 81 64 63 58

Mean abs. error 71.2 31.4 8.0 7.9 · · ·
ing

i-
d

n
i-
-

r

.,

where k ­ 0.804. Becke [32] proposed this form, bu
with empirical coefficients (k ­ 0.967, m ­ 0.235).

To portray the nonlocality of the new GGA, we defin
the enhancement factor [4]FXC over local exchange

EGGA
XC fn", n#g ­

Z
d3r neunif

X sndFXCsrs, z , sd.

(15)

Equation (15) represents any GGA exactly whenz

is independent ofr, and is always approximately
valid. LSD corresponds to the further approximatio
FXCsrs, z , sd ! FXCsrs, z , 0d. Figure 1 displays the
nonlocality or s dependence ofFXC for z ­ 0 and 1
for our simplified GGA and for PW91, demonstratin
their numerical similarity. The range of interest fo
real systems [9] is0 & s & 3 and 0 & rsya0 & 10.
Exchange dominates the high-density limit, wit
FXCsrs, z , sd ! FXsz , sd as rs ! 0, where FXsz , sd is
found from Eqs. (10) and (11) by dropping=z contri-
butions. As the reduced gradients increases at fixed
rs, exchange turns on more strongly, while correlati
turns off. The exchange nonlocality is dominant fo
valence-electron densities (1 & rsya0 & 10), so that for
most physicalrs GGA favors density inhomogeneity
3867
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more than LSD does. Only in the low-density limi
is correlation so strong in comparison with exchang
that the correlation nonlocality dominates. Note also th
approximate cancellation of nonlocality in the low-densit
fully spin-polarized (rs ! `, z ­ 1) limit, where the
exchange-correlation hole becomes as deep, and there
(by the sum rule [13]) as local, as it can be on the sca
set by the local density itself.

The GGA proposed here retains correct features of LS
and combines them with the most energetically importa
features of gradient-corrected nonlocality. The corre
but less important features of PW91 which have bee
sacrificed are (1) correct second-order gradient coefficie
for EX andEC in the slowly varying limit, and (2) correct
nonuniform scaling ofEX in limits where the reduced
gradients tends tò .

Calculations of atomization energies for small molecule
(Table I) also show that our simple newEGGA

XC yields
essentially the same results as the more Byzantine PW
Except for its additional satisfaction of conditions (c) an
(f) and its smoother potential, the new GGA is close t
PW91. However, its simpler form and derivation make
easier to understand, apply, and perhaps improve.

J. P. P. acknowledges discussion of the linear-respon
limit with Raffaele Resta. We thank Don Hamann
Cyrus Umrigar, and Claudia Filippi for suggestions an
tests. This work was supported by the National Scien
Foundation under Grant No. DMR95-21353, and in pa
by the Deutsche Forschungsgemeinschaft.

*Permanent address: Department of Chemistry, Rutge
University, Camden, NJ 08102.

[1] W. Kohn and L. J. Sham, Phys. Rev.140, A 1133 (1965).
[2] R. M. Dreizler and E. K. U. Gross,Density Functional

Theory(Springer-Verlag, Berlin, 1990); R. G. Parr and W
Yang,Density Functional Theory of Atoms and Molecule
(Oxford, New York, 1989).

[3] D. C. Langreth and M. J. Mehl, Phys. Rev. B28, 1809
(1983); A. D. Becke, Phys. Rev. A38, 3098 (1988).

[4] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackso
M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev.
46, 6671 (1992);48, 4978(E) (1993).

[5] A. D. Becke, J. Chem. Phys.96, 2155 (1992).
[6] E. I. Proynov, E. Ruiz, A. Vela, and D. R. Salahub, Int. J

Quantum Chem.S29, 61 (1995); A. C. Scheiner, J. Baker,
and J. W. Andzelm (unpublished).

[7] B. Hammer, K. W. Jacobsen, and J. K. Nørskov, Phy
Rev. Lett.70, 3971 (1993); B. Hammer and M. Scheffler
Phys. Rev. Lett.74, 3487 (1995).

[8] D. R. Hamann, Phys. Rev. Lett.76, 660 (1996); P. H. T.
Philipsen, G. te Velde, and E. J. Baerends, Chem. Ph
Lett. 226, 583 (1994).

[9] A. Zupan, J. P. Perdew, K. Burke, and M. Causá, Int.
Quantum Chem. (to be published).

[10] V. Ozolins and M. Körling, Phys. Rev. B48, 18 304
(1993).

[11] C. Filippi, D. J. Singh, and C. Umrigar, Phys. Rev. B50,
14 947 (1994).
3868
t
e
e

y

fore
le

D,
nt
ct
n

nts

s

91.
d
o
it

se
,
d
ce
rt

rs

.
s

n,
B

.

s.
,

ys.

J.

[12] J. P. Perdew and Y. Wang, Phys. Rev. B45, 13 244
(1992), and references therein.

[13] J. P. Perdew, K. Burke, and Y. Wang, Phys. Rev. B (
appear).

[14] J. P. Perdew, inElectronic Structure of Solids ‘91,edited
by P. Ziesche and H. Eschrig (Akademie Verlag, Berli
1991), p. 11.

[15] E. Engel and S. H. Vosko, Phys. Rev. B47, 13 164 (1993).
[16] C. Filippi, C. J. Umrigar, and M. Taut, J. Chem. Phys

100, 1290 (1994).
[17] R. Neumann, R. H. Nobes, and N. C. Handy, Mol. Phy

87, 1 (1996).
[18] G. Ortiz and P. Ballone, Phys. Rev. B43, 6376 (1991).
[19] R. N. Barnett and U. Landman, Phys. Rev. Lett.70, 1775

(1993).
[20] G. Ortiz, Phys. Rev. B45, 11 328 (1992).
[21] M. Levy, Int. J. Quantum Chem.S23, 617 (1989).
[22] C. J. Umrigar and X. Gonze, inHigh Performance

Computing and its Application to the Physical Science
Proceedings of the Mardi Gras 1993 Conference,edited
by D. A. Browne et al. (World Scientific, Singapore,
1993).

[23] C. Bowen, G. Sugiyama, and B. J. Alder, Phys. Re
B 50, 14 838 (1994); S. Moroni, D. M. Ceperley, and
G. Senatore, Phys. Rev. Lett.75, 689 (1995).

[24] Y. Wang and J. P. Perdew, Phys. Rev. B43, 8911 (1991).
[25] S.-K. Ma and K. A. Brueckner, Phys. Rev.165, 18 (1968).
[26] D. J. W. Geldart and M. Rasolt, Phys. Rev. B13, 1477

(1976); D. C. Langreth and J. P. Perdew, Phys. Rev. B21,
5469 (1980).

[27] M. Levy and J. P. Perdew, Phys. Rev. B48, 11 638 (1993).
[28] M. Gell-Mann and K. A. Brueckner, Phys. Rev.106, 364

(1957).
[29] S. Ivanovet al. (unpublished).
[30] M. Levy and J. P. Perdew, Phys. Rev. A32, 2010 (1985).
[31] G. L. Oliver and J. P. Perdew, Phys. Rev. A20, 397

(1979).
[32] A. D. Becke, J. Chem. Phys.84, 4524 (1986).
[33] D. J. DeFrees, B. A. Levi, S. K. Pollack, W. J. Hehre, J.

Binkley, and J. A. Pople, J. Am. Chem. Soc.101, 4085
(1979). Geometries of NO, Cl2 and P2: K. P. Huber and
G. Herzberg,Molecular Spectra and Molecular Structure
IV: Constants of Diatomic Molecules(Van Nostrand
Reinhold, New York, 1979). Geometry of Be2: Ref. [36].

[34] F. W. Kutzler and G. S. Painter, Phys. Rev. Lett.59, 1285
(1987).

[35] CADPAC6: The Cambridge Analytical Derivatives Packag
Issue 6.0 Cambridge (1995). R. D. Amos, I. L. Alberts
J. S. Andrews, S. M. Colwell, N. C. Handy, D. Jayatilaka
P. J. Knowles, R. Kobayashi, G. J. Laming, A. M. Lee
P. E. Maslen, C. W. Murray, P. Palmieri, J. E. Rice,
Sanz, E. D. Simandiras, A. J. Stone, M.-D. Su, and D.
Tozer.

[36] J. A. Pople, M. Head-Gordon, D. J. Fox, K. Raghavacha
and L. A. Curtiss, J. Chem. Phys.90, 5622 (1989); L. A.
Curtiss, C. Jones, G. W. Trucks, K. Raghavachari, a
J. A. Pople, J. Chem. Phys.93, 2537 (1990). Be2: V. E.
Bondybey and J. H. English, J. Chem. Phys.80, 568
(1984).


