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Generalized Gradient Approximation Made Simple
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Generalized gradient approximations (GGA's) for the exchange-correlation energy improve upon
the local spin density (LSD) description of atoms, molecules, and solids. We present a simple
derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental
constants. Only general features of the detailed construction underlying the Perdew-Wang 1991
(PW91) GGA are invoked. Improvements over PW91 include an accurate description of the linear
response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential.
[S0031-9007(96)01479-2]

PACS numbers: 71.15.Mb, 71.45.Gm

Kohn-Sham density functional theory [1,2] is widely PW91 incorporates some inhomogeneity effects while
used for self-consistent-field electronic structure calcularetaining many of the best features of LSD, but has its
tions of the ground-state properties of atoms, moleculeswn problems: (1) The derivation is long, and depends on
and solids. In this theory, only the exchange-correlatiora mass of detail. (2) The analytic functigifitted to the
energyExc = Ex + Ec as a functional of the electron numerical results of the real-space cutoff, is complicated
spin densitiesy;(r) andn(r) must be approximated. The and nontransparent. (3)is overparametrized. (4) The
most popular functionals have a form appropriate forparameters are not seamlessly joined [15], leading to
slowly varying densities: the local spin density (LSD) ap-spurious wiggles in the exchange-correlation potential

proximation 8 Exc/8n,(r) for small [16] and large [16,17] dimension-
_ less density gradients, which can bedevil the construction
ExPlny,n] = ] d*r nexd (ny, ny), (1) of GGA-based electron-ion pseudopotentials [18—20].

. . _ (5) Although the numerical GGA correlation energy func-
wheren = n + ny, and the generalized gradient approxi-tional behaves properly [13] under Levy’s uniform scaling
mation (GGA) [3,4] to the high-density limit [21], its analytic parametrization

GGA . 3 (PW91) does not [22]. (6) Because PW91 reduces to the
Exc"ln.m] = [ d’r f(m,n, Vm, V). (2)  gecond-order gradient expansion for density variations

In comparison with LSD, GGA'’s tend to improve total t_hat are either slowly varying)r small, .it descibes the
near response of the density of a uniform electron gas

energies [4], atomization energies [4—6], energy barrie[f , A
and structural energy differences [7-9]. GGA's expandesssatistactorily than does LSD [20,23].

and soften bonds [6], an effect that sometimes corrects This last probler_n illustrates a fact whl_ch is often_oyer-
[10] and sometimes overcorrects [11] the LSD prediction.|°°ked: The semilocal form of Eq. (2) is too restrictive

Typically, GGA's favor density inhomogeneity more than to reproduce all the known behaviors o_f the exact func-
LSD does. tional [13]. In contrast to the construction of the PW91

To facilitate practical calculationss¥f and f must ~functional, which was designed to satisfy as many exact
conditions as possible, the GGA presented here satisfies

be parametrized analytic functions. The exchange ' ) ™
correlation energy per particle of a uniform electron gas,only those which are energetically significant. For exa-

e?{éf(m,nl), is well established [12], but the best choicelr.nple’ in the pselgdppoter:ltial trllleqry of simple m?]tals,hthe
for f(ny,ny, Vg, Vny) is still a matter of debate. Judging rl]nez:ljr—response 'fm'rt]'s physically m&por(’;ant. Ogt e other
the derivations and formal properties of various GGA’snand, recovery of the exact second-order gradient expan-

can guide a rational choice among them. Semiempirica?ion in the s]owly varying limit makes lile difference
to the energies of real systems. We solve the 6 prob-

GGA's can be remarkably successful for small moleculesl, b “h a simol derivati £ 2 simol

but fail for delocalized electrons in the uniform gas [when ems above with a simple new derivation of a simple new

F(nr,n1,0,0) # ne%réif(nT np)] and thus in simple metals. GGA ffunctlonal in whichall parameters [other than those
et ' gin exc (ny,ny)] are fundamental constants. Although the

A first-principles numerical GGA can be constructe tderivation depends only on the most general features of
13] by starting from the second-order density-gradien . -
[13] by g y9 e real-space construction [13] behind PW91, the result-

expansion for the exchange-correlation hole surroundinm ; . ;

the electron in a system of slowly varying density, then g functlo.nal IS close to numerical GGA'.

cutting off its spurious long-range parts to satisfy sum We begin with the GGA for correlation in the form
rules on the exact hole. The Perdew-Wang 1991 (PW91) £GGA[,, , ] = [ dr [l (ry, ) + H(ry, £,1)],
[14] functional is an analytic fit to this numerical GGA,

designed to satisfy several further exact conditions [13]. 3)
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where r, is the local Seitz radiusn(= 3/47r3 = k/  scaling to the high density limi£E°* tends to

3m?), { = (m — ny)/n is the relative spin polarization, o2

and t = |Vn|/2¢k,n is a dimensionless density gradi- — — | &Praye?

ent [13,14]. Here¢(O) =[(1 + O)¥* + (1 — H)¥3]) 4o

2 is a spin-scaling factor [24], ankd = +/4kr/may is the X In[l + 1 } (9)
Thomas-Fermi screening wave numbeg & 7i2/me?). xs2/ ¢ + (xs?/p?)?

V{ corrections to Eq. (3), which are small for most pur-\here s = \Vnl/2krn = (r/ag)/?dt/c is another
poses, will be derived in later work. We construct theyimensionless density gfadientc = (37w2/16)/3 =

gradient contributiortf from three conditions: 12277, andy = (8/y)c2 exp—w/y) = 0.72161. The
_ (&) In the slowly varying limit { — 0), H is given by  correlation energy for a two-electron ion of nuclear
its second-order gradient expansion [24] chargeZ — « is —o by LSD, +% by PW91, —0.0482

(2 3.0 Hartree by Eq. (9), ane-0.0467 exactly [29]. For dinite
H — (e“/ag)Bo’t", (4) system,s cannot vanish identically, except on sets of
where = 0.066725. This is the high-density-( — 0) ~ Measure zero, so Eq. (9) is finite; for enfinite jellium, s
limit [25] of the weakly r,-dependent gradient coefficient Vanishes everywhere, and Eq. (9) reduces toas GGA

[26] for the correlation energy [with a Yukawa interaction reduces to LSD. _
(€?/u) exp(—ku) in the limit k — 0], and also the coef- The GGA for the exchange energy will be constructed

ficient which emerges naturally from the numerical GGAfrom four further conditions:

[13] discussed earlier. _(d) Undgr the uniform density scaling dgscribed along
(b) In the rapidly varying limitr — o, with condition (c) aboveEx must scale [30] likex. Thus,
A for { = 0 everywhere, we must have
H — _Eémf’ (5)
| o | | B = [ @rngptrke), (o)
making correlation vanish. As — o in the numerical
GGA, the sum rulef d*u nc(r,r + u) = 0 on the corre- where el = —3¢2k,/47. To recover the correct uni-
lation hole densitysc is only satisfied bync = 0. For ¢, gas limit, Fx (0) = 1.
example, in the tail of the electron density of a finite sys- ’
tem, the exchange energy density and potential dominate 20 ———
their correlation counterparts in reality, but not in LSD. Fo
(c) Under uniform scaling to the high-density limit ~~ 1.8
[n(r) — A3n(Ar) andA — o, whencer, — 0 asA™! and n
t — % as A!/2], the correlation energy must scale to a L) 1.6
constant [21]. Thus [27H must cancel the logarithmic n
singularity of €' [28] in this limit: e&'(ry, ) — S
(€*/a,)d>[yIn(rs/ag) — w], wherey and w are weak \6
functions [12] of ¢ which we shall replace by their M
¢ =0values,y = (1 — In2)/72 = 0.031091 andw = I:T..
0.046 644, so
H — (¢*/ag)y¢>In’, (6)
Conditions (a), (b), and (c) are satisfied by the simple
ansatz Pl
73]
H = (&/a))yd’ "
B 1+ A }} [
xln{1+ 5 t|:—1+At2+A2t4 . (7N b
where &
Fy

A= o= /(4 fa)} ~ 117

(8)

The functionH starts out froms = 0 like Eq. (4), and

grows monotonically to the limit of Eq. (5) as— <; thus

FGGA FIG. 1. Enhancement factors of Eq. (15) showing GGA non-
C

= 0. (H appears as one of two terms in the PW91ocality. Solid curves denote the present GGA, while open
correlation energy, but witlh = 0.025.) Under uniform circles denote the PW91 of Refs. [4,13,14].
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(e) The exact exchange energy obeys the spin-scalinghere « = 0.804. Becke [32] proposed this form, but

relationship [31] with empirical coefficients€ = 0.967, u = 0.235).
To portray the nonlocality of the new GGA, we define
Ex[ny,m] = (Ex[2m] + Ex[2m])/2. (11)  the enhancement factor [#]x¢c over local exchange

(f) For the linear response of the spin-unpolarized uni-
form electron gas, i.e., for small density variations around _
the uniform density, LSD is an excellent approximation ESZAlng, ] = f d*rned (n)Fxc(rs. £, 5).
[23] to the exchange-correlation energy, while the gradi-
ent expansion is not [20]. To recover the LSD linear re-
sponse, we must have (as— 0)

Fx(s) = 1 + us?, (12) _EqL!ation (15) represents any GGA exactly _whg*n
is independent ofr, and is always approximately

where u = B(7°/3) = 0.21951, the effective gradient valid. LSD corresponds to the further approximation

(15)

coefficient for exchange, cancels that for correlation. Fxc(rs, £,s) = Fxc(ry,£,0).  Figure 1 displays the
(9) The Lieb-Oxford bound [14] nonlocality or s dependence ofxc for ¢ = 0 and 1
Ex[ny, n]] = Exclny,n|] for our simplified GGA and for PW91, demonstrating

their numerical similarity. The range of interest for
B 2 [ 54 real systems [9] iSO <s =<3 and 0 < r,/ap =< 10.
= —1.67% fdr” (13)  Exchange dominates the high-density limit, with

will be satisfied if the spin-polarized enhancement facto' xc(rs, £, 5) = Fx({,s) as r; — 0, Where.FX(f,s) i_S
Fx(¢ = 1,5) = 213Fx(s/2'73) grows gradually withs found from Egs. (10) and (11) by droppifg/ contri-
to a maximum value less than or equal to 2.273 i e butions. As the reduced gradiestincreases at fixed
Fx(s) = 1.804. A simple Fx(s) satisfying Egs. (12) and s exchange turns on more strongly, while correlation
(13) is turns off. The exchange nonlocality is dominant for
valence-electron densities &€ r;/ap < 10), so that for
Fx(s) =1+ «k — «/(1 + us*/k), (14) most physicalry, GGA favors density inhomogeneity

TABLE I. Atomization energies of molecules, in k¢aiol (1 eV = 23.06 kcal/mol). Exc

has been evaluated on self-consistent densities at experimental geometries [33]. Nonspherical
densities and Kohn-Sham potentials have been used for open-shell atoms [34]. The
calculations are performed with a modified version of thwbPAC program [35]. The
experimental values foAE (with zero point vibration removed) are taken from Ref. [36].
PBE is the simplified GGA proposed here. UHF is unrestricted Hartree-Fock, for comparison.

System AEUHF AELSD AEPW91 AEPBE A Ecxpt
H, 84 113 105 105 109

LiH 33 60 53 52 58
CH, 328 462 421 420 419
NH; 201 337 303 302 297
OH 68 124 110 110 107
H,0 155 267 235 234 232
HF 97 162 143 142 141

Li, 3 23 20 19 24
LiF 89 153 137 136 139

Be, -7 13 10 10 3

C,H, 294 460 415 415 405
C,H, 428 633 573 571 563
HCN 199 361 326 326 312
CcO 174 299 269 269 259
N> 115 267 242 243 229
NO 53 199 171 172 153
O, 33 175 143 144 121

F, —-37 78 54 53 39
P, 36 142 120 120 117

Cl, 17 81 64 63 58

Mean abs. error 71.2 31.4 8.0 7.9
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