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Self-Similar Barkhausen Noise in Magnetic Domain Wall Motion
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A model for domain wall motion in ferromagnets is analyzed. Long-range magnetic dipolar
interactions are shown to give rise to self-similar dynamics when the external magnetic field is
increased adiabatically. The power spectrum of the resultant Barkhausen noise is of thi/ &tm
where a = 1.5 can be estimated from the critical exponents for interface depinning in random
media. [S0031-9007(96)01590-6]

PACS numbers: 68.35.Rh, 05.40.+j, 75.60.Ej

When a domain wall in a ferromagnet moves in re-domain walls achieved without specially adjusting the
sponse to a change in the externally applied magnetiexternal magnetic field is reminiscent of the concepts of
field, it is known to do so in a jerky, irregular man- self-organized criticality [4].
ner. As a result of this irregular motion, the magne- In a recent paper, Urbacét al. [5] provide evidence
tization changes in bursts, leading to the phenomenothat this departure from conventional depinning transi-
of Barkhausen noise. The reason for the unevenness tions is caused by the presence of long-range dipolar in-
the motion is that the domain wall is pinned in vari- teractions in a ferromagnet. These dipolar interactions
ous places by impurities in the material. The domainpush the domain wall towards the center of the sys-
wall moves forward by breaking free of the impurities tem. In addition, they also produce long-range effective
holding it back, only to be obstructed by impurities fur- forces between different parts of the domain wall. Ur-
ther ahead. A simple model for the dynamics has beebach et al. numerically solve a model for the dynamics
proposed, in which the coordinate of the domain wallwith an approximate treatment of these long-range forces
is treated as a single dynamical variable [1]. As ond5]. In one limit, the magnetic force is taken to be in-
might expect, within such a model the temporal fluc-finite ranged, and the numerics indeed yield a power-
tuations in the motion of the domain wall (revealed inlaw distribution for the power spectrum of the resultant
the Barkhausen noise) yield information about the spatiaBarkhausen noise. However, in the opposite limit, where
distribution of the impurities in the material. However, the magnetic force is taken to be local, self-similar be-
more recent experiments have revealed that this singleavior is not seen.
degree of freedom model for domain wall motion is es- Thus while the tendency of the interactions to push the
sentially incomplete [2]. domain wall towards the center of the system is sufficient

The reason for the inadequacy of the model is thato destroy the moving phase commonly seen in such ex-
a magnetic domain wall is apatially extendedbject, ternally driven systems (and thereby the depinning tran-
with a large number of degrees of freedom. Undersition leading to it), the exact nature of the interactions
slow driving, the dynamics of the domain wall are is important in determining whether the resultant state is
expected to be governed by the collective behavior ofelf-similar or not. It is not clear whether an accurate
these multiple degrees of freedom. This is reminiscentlescription of the forces induced by the dipolar interac-
of “depinning transitions” seen in a variety of driven tions, which must lie between the two limits considered
systems, where close to the transition the dynamics arfey Urbachet al. [5], will result in self-similar behavior.
affected qualitatively by collective behavior [3]. In this paper | analyze the dynamics of a magnetic do-

Despite the similarities, there is an important differencemain wall without any approximations for the dipolar in-
between magnetic domain wall motion and conventionateractions, verifying that the resultant behavior is indeed
depinning transitions. For any value of the externalself-similar.
driving force (the magnetic field), a magnetic domain Following Urbach et al.[5], | consider a two-
wall reaches a stationary configuration. This stationandimensional Ising system magnetized perpendicular to
configuration appears to be self-similar, a fact inferredhe plane. A single domain wall is assumed to run
experimentally from the power-law correlations in the approximately parallel to one of the sides of the system
Barkhausen noise generated when the magnetic field {ghe transverse direction) and close to its midpoint. The
slowly increased. This is in sharp contrast to conventionatlomain wall is characterized by its (small) longitudinal
depinning transitions, where increasing the external forcéisplacement:(x, r) as a function of the transverse coor-
results in a phase transition from a static to a movingdinatex and timer. [In d dimensionsy is generalized to
phase at a critical force, and self-similarity is seen onlya (d — 1)-dimensional vector.] The equation of motion
at the transition. The apparent self-similarity in magneticused for the motion of the domain wall is very similar to
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the one used by Urbadadt al. [5]: (h(q, t)h(—qz,gt» in terms of{(h(x, t)h(x', t)), which scales
0 ) as |x — x'|**.] The Barkhausen noise measures the
Poihn(x,1) = kochx, 1) + ulh(x, t);x] + H temporal fluctuations in the rate of change of the total
/ / / magnetization of the system. These are proportional to
+ [ dx’l(x, xDh(x', 1) () thegfluctuations in the )s/patially averaged \f)elort):ity of the
This equation is obtained by neglecting inertial effectsdomain wall. Thus the power spectrum of the Barkhausen
and thermal noise, so that the dynamics are purelyioise is obtained from the velocity-velocity correlation
relaxational. T is a constant characterizing the amount offunction of the domain wall. Multiplying the right-hand
dissipation. The surface tension of the domain wall giveside of Eq. (2) byw* and taking theg — 0 limit yields
rise to the first term on the right-hand side, the next ternfor the correlations in the spatially averaged velocity
is due to the pinning forces from the impurities, afids _ . 1)/
the applied mpagnet?c field. The last terrr)n in the equation * H0uh(@)dh(=w)) = FoL)/[Lo® TV (@)
is obtained by expanding 1the dipolar interaction energy 9gnoring the finite size cutoff which occurs at very
second order itk(x, 1) as—5 [ dxdx'I(x,x")h(x,1)h(x',1)  low frequencies, this has a power-law form. Numerical
and differentiating with respect to estimates for the critical exponents in two dimensions
We now evaluate the last term in Eq. (1) above. For7] indicate that(2¢ + 1)/z — 1 is close to 1.5. This
the perpendicular Ising system considered here, the ins lower than the exponent of 2 for the power spectrum of
teraction between two dipoles af andr; is isotropic, the Barkhausen noise obtained in early experiments [8],
and proportional tolr; — r;|7?. Translational invari- put is not inconsistent with recent experimental results [9].
ance requires that (neglecting edge effedt§),x’) = It is clear why the short-range model of Urbach
I(x — x'). From the scale invariance df; — r,|™, et al. did not yield self-similar behavior, since the mass
and power counting, the dipolar interaction energy exterm in the equation of motion (and thus the cutoff) is
palnded to second order ih must be of the form finite. The mean field limit that they consider is even
—5 [dq h(q)h(—q)[f(qL)/L*], whereL is the linear ex- simpler: Sincef(gL) = 0 for ¢ # 0, expressing Eq. (1)
tent of the system. By considering a uniform displace-in terms of a(x,t) — h(¢) results in exactly the same
ment, 2(x) independent ok, it is possible to verify that equation as for conventional interface depinning. The
f(gL) has a finiteq = 0 limit. Thus theg = 0 limit  interface velocity is replaced by the domain wall velocity.
yields an effective restoring force that drives the domairSince this tends to zero when the external magnetic field
wall towards the center of the systern € 0), while for  is increased adiabatically, the system is at its critical point.
gL > 1 one obtains an effective reduction in the surface The analysis above is easily generalized to other
tensionk, which has no qualitative effect. dimensions, since in all dimensions the interaction energy
If the applied external magnetic field increases at a slovhas a scaling form andg@ = 0 limit proportional tol/L2.
constant rate, the domain wall moves forward at, on th&he power law for the Barkhausen noise power spectrum
average, a constant rate. The deviation from this unifornwill, however, be different in different dimensions, most
motion obeys an equation that can be obtained fronmotably for ¢ = 1, where the exponent of the power
Eqg. (1). Apart from the last term, the resultant equationaw should be zero. This is in contrast to the single
is the same as for conventional interface depinning [6]. degree of freedom model originally proposed for the
The crucial feature of the restoring force obtained fromdynamics [1], where al/w? dependence is predicted
the dipolar interactions is that it @nallfor large systems. independent of dimension. Extending the results obtained
Thus although thékg? + f(gL)/L*]h(q) term in Eq. (1) above to systems with multiple domain walls remains an
has a “mass term,” and therefore a cutoff to the selfopen issue.
similar behavior, this cutoff diverges with system size. In | thank Karin Dahmen, Mehran Kardar, Jim Sethna,
fact, sincel/L? scales in the same manner @gsunder  Jeff Urbach, and Mike Weissman for useful discussions.
the renormalization group (and neither term receives loofThis work was partly completed at the Aspen Institute for
corrections) [6], the only cutoff to the scaling of quantities Physics and supported by the A. P. Sloan Foundation.
like (h(g)h(—q)) is the standard finite size cutoff. (There
is another cutoff if the external magnetic field is increased
at a finite rate instead of adiabatically.)
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