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Self-Similar Barkhausen Noise in Magnetic Domain Wall Motion
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A model for domain wall motion in ferromagnets is analyzed. Long-range magnetic dip
interactions are shown to give rise to self-similar dynamics when the external magnetic fie
increased adiabatically. The power spectrum of the resultant Barkhausen noise is of the form1yva,
where a ø 1.5 can be estimated from the critical exponents for interface depinning in rand
media. [S0031-9007(96)01590-6]

PACS numbers: 68.35.Rh, 05.40.+j, 75.60.Ej
e
of

i-
in-
s

s-
e
-

es
-
r-
t

re
-

e
nt
x-
n-
s
is
e
-

d

o-

d

to
n
m
e
l
-

When a domain wall in a ferromagnet moves in re
sponse to a change in the externally applied magne
field, it is known to do so in a jerky, irregular man-
ner. As a result of this irregular motion, the magne
tization changes in bursts, leading to the phenomeno
of Barkhausen noise. The reason for the unevenness
the motion is that the domain wall is pinned in vari-
ous places by impurities in the material. The domai
wall moves forward by breaking free of the impurities
holding it back, only to be obstructed by impurities fur-
ther ahead. A simple model for the dynamics has bee
proposed, in which the coordinate of the domain wa
is treated as a single dynamical variable [1]. As on
might expect, within such a model the temporal fluc
tuations in the motion of the domain wall (revealed in
the Barkhausen noise) yield information about the spati
distribution of the impurities in the material. However,
more recent experiments have revealed that this sing
degree of freedom model for domain wall motion is es
sentially incomplete [2].

The reason for the inadequacy of the model is tha
a magnetic domain wall is aspatially extendedobject,
with a large number of degrees of freedom. Unde
slow driving, the dynamics of the domain wall are
expected to be governed by the collective behavior o
these multiple degrees of freedom. This is reminisce
of “depinning transitions” seen in a variety of driven
systems, where close to the transition the dynamics a
affected qualitatively by collective behavior [3].

Despite the similarities, there is an important differenc
between magnetic domain wall motion and convention
depinning transitions. For any value of the externa
driving force (the magnetic field), a magnetic domain
wall reaches a stationary configuration. This stationar
configuration appears to be self-similar, a fact inferre
experimentally from the power-law correlations in the
Barkhausen noise generated when the magnetic field
slowly increased. This is in sharp contrast to convention
depinning transitions, where increasing the external forc
results in a phase transition from a static to a movin
phase at a critical force, and self-similarity is seen onl
at the transition. The apparent self-similarity in magneti
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domain walls achieved without specially adjusting th
external magnetic field is reminiscent of the concepts
self-organized criticality [4].

In a recent paper, Urbachet al. [5] provide evidence
that this departure from conventional depinning trans
tions is caused by the presence of long-range dipolar
teractions in a ferromagnet. These dipolar interaction
push the domain wall towards the center of the sy
tem. In addition, they also produce long-range effectiv
forces between different parts of the domain wall. Ur
bach et al. numerically solve a model for the dynamics
with an approximate treatment of these long-range forc
[5]. In one limit, the magnetic force is taken to be in
finite ranged, and the numerics indeed yield a powe
law distribution for the power spectrum of the resultan
Barkhausen noise. However, in the opposite limit, whe
the magnetic force is taken to be local, self-similar be
havior is not seen.

Thus while the tendency of the interactions to push th
domain wall towards the center of the system is sufficie
to destroy the moving phase commonly seen in such e
ternally driven systems (and thereby the depinning tra
sition leading to it), the exact nature of the interaction
is important in determining whether the resultant state
self-similar or not. It is not clear whether an accurat
description of the forces induced by the dipolar interac
tions, which must lie between the two limits considere
by Urbachet al. [5], will result in self-similar behavior.
In this paper I analyze the dynamics of a magnetic d
main wall without any approximations for the dipolar in-
teractions, verifying that the resultant behavior is indee
self-similar.

Following Urbach et al. [5], I consider a two-
dimensional Ising system magnetized perpendicular
the plane. A single domain wall is assumed to ru
approximately parallel to one of the sides of the syste
(the transverse direction) and close to its midpoint. Th
domain wall is characterized by its (small) longitudina
displacementhsx, td as a function of the transverse coor
dinatex and timet. [In d dimensions,x is generalized to
a sd 2 1d-dimensional vector.] The equation of motion
used for the motion of the domain wall is very similar to
© 1996 The American Physical Society 3855
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the one used by Urbachet al. [5]:

G≠thsx, td ­ k≠2
xhsx, td 1 ufhsx, td; xg 1 H

1
Z

dx0Isx, x0dhsx0, td . (1)

This equation is obtained by neglecting inertial effec
and thermal noise, so that the dynamics are pure
relaxational. G is a constant characterizing the amount o
dissipation. The surface tension of the domain wall giv
rise to the first term on the right-hand side, the next ter
is due to the pinning forces from the impurities, andH is
the applied magnetic field. The last term in the equati
is obtained by expanding the dipolar interaction energy
second order inhsx, td as2

1
2

R
dxdx0Isx, x0dhsx, tdhsx0, td

and differentiating with respect toh.
We now evaluate the last term in Eq. (1) above. F

the perpendicular Ising system considered here, the
teraction between two dipoles atr1 and r2 is isotropic,
and proportional tojr1 2 r2j

23. Translational invari-
ance requires that (neglecting edge effects)Isx, x0d ­
Isx 2 x0d. From the scale invariance ofjr1 2 r2j

23,
and power counting, the dipolar interaction energy e
panded to second order inh must be of the form
2

1
2

R
dq hsqdhs2qdffsqLdyL2g, whereL is the linear ex-

tent of the system. By considering a uniform displac
ment,hsxd independent ofx, it is possible to verify that
fsqLd has a finiteq ­ 0 limit. Thus the q ­ 0 limit
yields an effective restoring force that drives the doma
wall towards the center of the system (h ­ 0), while for
qL ¿ 1 one obtains an effective reduction in the surfac
tensionk, which has no qualitative effect.

If the applied external magnetic field increases at a slo
constant rate, the domain wall moves forward at, on t
average, a constant rate. The deviation from this unifo
motion obeys an equation that can be obtained fro
Eq. (1). Apart from the last term, the resultant equatio
is the same as for conventional interface depinning [6].

The crucial feature of the restoring force obtained fro
the dipolar interactions is that it issmall for large systems.
Thus although thefkq2 1 fsqLdyL2ghsqd term in Eq. (1)
has a “mass term,” and therefore a cutoff to the se
similar behavior, this cutoff diverges with system size. I
fact, since1yL2 scales in the same manner asq2 under
the renormalization group (and neither term receives lo
corrections) [6], the only cutoff to the scaling of quantitie
like khsqdhs2qdl is the standard finite size cutoff. (There
is another cutoff if the external magnetic field is increase
at a finite rate instead of adiabatically.)

The scaling of the wavelength and frequency depend
fluctuations inh for the domain wall is obtained from the
corresponding interface result:

khsq, vdhs2q, 2vdl ­ Lq2s2z 111zdFsqL, qzyvd , (3)

where z is the roughness exponent of the interfac
and z the dynamic exponent. [This form can be see
to be correct by integrating overv and expressing
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khsq, tdhs2q, tdl in terms ofkhsx, tdhsx0, tdl, which scales
as jx 2 x0j2z .] The Barkhausen noise measures th
temporal fluctuations in the rate of change of the to
magnetization of the system. These are proportional
the fluctuations in the spatially averaged velocity of th
domain wall. Thus the power spectrum of the Barkhaus
noise is obtained from the velocity-velocity correlatio
function of the domain wall. Multiplying the right-hand
side of Eq. (2) byv2 and taking theq ! 0 limit yields
for the correlations in the spatially averaged velocity

L22k≠thsvd≠ths2vdl ­ FsvLzdyfLvs2z 11dyz21g . (3)

Ignoring the finite size cutoff which occurs at ver
low frequencies, this has a power-law form. Numeric
estimates for the critical exponents in two dimensio
[7] indicate thats2z 1 1dyz 2 1 is close to 1.5. This
is lower than the exponent of 2 for the power spectrum
the Barkhausen noise obtained in early experiments [
but is not inconsistent with recent experimental results [

It is clear why the short-range model of Urbac
et al. did not yield self-similar behavior, since the mas
term in the equation of motion (and thus the cutoff)
finite. The mean field limit that they consider is eve
simpler: SincefsqLd ­ 0 for q fi 0, expressing Eq. (1)
in terms of hsx, td 2 hstd results in exactly the same
equation as for conventional interface depinning. T
interface velocity is replaced by the domain wall velocit
Since this tends to zero when the external magnetic fi
is increased adiabatically, the system is at its critical poi

The analysis above is easily generalized to oth
dimensions, since in all dimensions the interaction ener
has a scaling form and aq ­ 0 limit proportional to1yL2.
The power law for the Barkhausen noise power spectr
will, however, be different in different dimensions, mos
notably for d ­ 1, where the exponent of the powe
law should be zero. This is in contrast to the sing
degree of freedom model originally proposed for th
dynamics [1], where a1yv2 dependence is predicted
independent of dimension. Extending the results obtain
above to systems with multiple domain walls remains
open issue.
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