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Scale Distributions and Fractal Dimensions in Turbulence
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A new geometric framework connecting scale distributions to coverage statistics is employed to
analyze level sets arising in turbulence as well as in other phenomena. A 1D formalism is described
and applied to Poisson, lognormal, and power-law statisticsd-dimensional generalization is also
presented. Level sets of 2D spatial measurements of jet-fluid concentration in turbulent jets are
analyzed to compute scale distributions and fractal dimensions. Lognormal statistics are used to
model the level sets at inner scales. The results are in accord with data from other turbulent
flows. [S0031-9007(96)01540-2]

PACS numbers: 47.27.Ak, 02.50.—r, 47.10.+g, 47.53.+n

Many phenomena exhibit complex structure with a(box-counting) dimension at a scale
wide range of coexisting spatial and/or temporal scales

participating in the dynamics [1], e.g., turbulent flow p (\) =1 — dinFi() _ | — A)\ £A pi(D)dl ‘
[2,3], nephron cells [4], etc. The geometry of such phe- dina [o [y pi)diax
nomena can be quantified in terms of (constant) fractal 3)

dimensions, where power-law behavior is observed [1—4]|.
or, in other cases, in terms of extensions of the fracta{
framework [5-11]. In turbulent mixing and combustion,
in particular, such measures are useful for estimating th

his can be viewed as a 1D (forward) transform between
he dimensionD;(A) and the (point-spacing) scale distri-
gution p1(1). This transform is invertible,

volume-fill fraction of isosurfaces of species composition. Ly dD,(])

In this Letter, a new framework connecting coverage sta- nl) = 7 Di(O[1 = Di(D)] + 1 al

tistics to distributions of (various measures of) scales is " ar

applied to level sets in turbulence. Specifically, a 1D X exp‘—f [1 - Dl(l’)]—}, (€]
framework in terms of the probability density function of ! I

spacings formed by level crossings of signals is presentedhare ;. — lim—oll expl [7[1 — D:(")]dl'/I']}, for a
and applied to Poisson and lognormal statistics reportef,ita mrgan spacing [cf. Eél- Q)]. In the Iimifj“l()\ -

in 1D velocity and species-concentration measurements i65 — A/l,,, i.e., the mean spacing determines’ the small-
various turbulent flows. Generalizations to multidimen-¢..,o c0\’/ne’ragé fraction.

sional geometries are also introduced and applied to level 5 fst investigation of level crossings in turbulence

sets of 2D spatial measurements of the jet-fluid conceng oo conducted by Liepmann [13], who measured the
tration in turbulent jets. Lognormal statistics are used Q040 spacing of zero crossings ’in 1D velocity data.

model the level sets at small scales. The corresponding spacing pdf was reported as described

Dimensions of 1D point sets can be connected 1q,, pgisson statistics from measurements in turbulent
the point-spacing probability density function (pdf) [10]. 6,nqary layers [14,15], with constant fractal dimensions
For homogeneous statistics, the fraction of contigudus reported for such data [2]. For a Poisson point process,
intervals required to cover the set, or coverage fraction o p1(D)dl = exp(—1/1,,)dl/1,,, however, the dimension
Fi(A), can be identified as the geometric probability that g [(’:f_ Eq. (3)] " " '

randomly located\ interval contains part of the set. This

can be expressed in terms of the (point) spacingmdf _ ALy
as [10], Di(V) =1 - 5= (5)
A o
Fi(A) = L[ f pi()dld)N; Figure 1 comparesD(A), from Eq. (5), to ensemble-
lm Jo averaged estimates from five Monte Carlo simulations

B (standard deviation is smaller than symbol size in
ln = o Ipi()dl, (1) Figs. 1-3). Poisson-spacing records of lengthwith
S o . . )
assuming a finite mean spacihg Inverting, L/l, = 10°, were partl_tloned into contiguouk intervals
L (1) and the number of intervals that cover the set was
pi(l) = =1, 12 i (2)  counted. ' _
dl In various turbulent flows, level-crossing spacings
as was previously derived for zero crossings of randonderived from 1D scalar or velocity signals have been
Gaussian functions [12]. Denoting i (A) the coverage reported as well approximated by a lognormal pdf,
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as indicated for level crossings of 1D scalar measurelent boundary layers (in addition to Poisson fits) [14].
ments in turbulent jets [7] and in plumes dispersingFor a lognormal pdf, i.e.,p,(l)dl = exg{—[In({/1,)/

in the atmospheric surface layer [16] as well as foro + o/21?/2}dl/(N2m7 o), the dimension is [cf.
zero crossings of 1D velocity measurements in tur?qu. 3)]

! {1 + erf[(IN(A/1,,) /o — a/z)/\/i]“‘ ©

Di(A) =1 - [1 el erfl(IN(A/Ly)/o + o/2)/32]

Figure 2 compare®;()), from Eg. (6), to five Monte! » = 3/2). Conversely, ifDi(A) = D; = const., i.e. if
Carlo simulations(L/l,, = 3 X 10%). This dimension Fj(A) ~ AP forl; < A < Iy,
also increases smoothly with scale, in accord with pre- —D,—1
vious simulations [7]. p) ~ 1 (8)
Power-law statistics fop;(/), over a finite range of [cf. Eq. (4)], i.e., the scale dependencel®f(A), in this
scales, e.gpi1(l)dl = adl/ly,forl < I1;a(l/ly)""dl/l;, case, is a finite scale-range effect. A power-law coverage
for Iy <1 <1; and O, for/, <[, correspond to a fraction, over a range of scales, implies a power-}aW)
dimension plotted in Fig. 3, for = 3/2 andl,/l; = 10°.  in the same range [cf. Egs. (2) and (8)]. The converse,
A comparison with five Monte Carlo simulations is also however, is not true—cf. the nonlocal nature of the
shown(L/l,, = 4 X 10°). Inthe limitof,//; > 1 and  forward transform [Eq. (1)].
for scaled; < I < [, [cf. Eq. (3)], For multidimensional geometries, an alternative scale
D) — v — 1 ) measure is _neede_d; the spacing scale cannot be extended
’ to higher dimensions. Such a measure is the largest-
for 1 <wpv <2 (cf.dashed line in Fig.3 for empty-interval scale (in 1D) defined as the size of the
largest interval (centered) at a random location, that
covers no part of the set [10]. The pdf of this scAjéA)

1.0 ) . X S
is the probability (density) that a random location is a
o8l h distanceA/2 away from the nearest element of the set. It
Tt is given by [10]
0.6 — _ 1 r- _dF,(A)
2" _ am = [ a4 @
04r ] Generalizations t@/ dimensions can be made. In terms
[ of the coverage fractiofi (1),
0.2F .
[ ] _ dF4(})
0.0k . . L faA) = i (10)
_ 1
1 10g1o (%98.“) fa(A) can be identified as the pdf of the largest-empty-

box (LEB) scale, or size of the largest box, randomly

FIG. 1. Dimension as a function of scale for a Poisson point,q4eq (centered), that contains no part of the set. For the

process. Theory: solid line, simulations: squares.
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FIG. 2. D;(A) for a lognormal spacing pdic = 1). Theory:  FIG. 3. D;(A) for a power-law spacing pdl = 3/2,1,/l; =
solid line, simulations: squares. 10%). Theory: solid line, simulations: squares.
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FIG. 4. Level set of jet-fluid concentration in the far field r
(z/d; = 275) of a liquid-phase turbulent jet at Re 9 X 10°. - o
o i
dimension at a scal& and the LEB-scale pdf [cf. Egs. (3) -3 -2 -1 0
and (4)], logyo (A/6)
FIG. 5. Top: DimensionD,(A) as a function of scale for
D, =d — M =d — M, level sets of concentration in a turbulent jet at Red X 10°.
din A fo fa(A)dx Bottom: Pdf of LEB scaleg(A).
Dd(/\) dx
Falh) = p‘ [ 1= paon®y .
(11) Figure 5 shows the ensemble-averaged dimension
D>(A) for level sets of concentration at Re9 X 10°
are the forward and inversedimensional transforms. (six images) at a threshold corresponding to the peak

This framework can be used to compute the LEB-scal®f the concentration pdf. The smallest (diffusion)
pdf for level sets derived from multidimensional mea-scale of the concentration field is estimated to be
surements in turbulence, for example. Experiments werg,,(Ap/8,) = —3.0, on the jet axis. For each level
conducted to measure the jet-fluid concentration in theet, thed,-sized bounding box was identified and parti-
far field of liquid-phase turbulent jets for Reynolds num-tioned into contiguoud boxes to compute the (coverage)
bers,4.5 X 10° = Re= 18 X 10°, at a Schmidt number, fraction of the number of boxes that cover the level set,
Sc= 1.9 x 10% [11]. Figure 4 depicts a level set of 2D as a function of scale [11]. The dimension increases
spatial measurements of concentration at=R@ X 103,  smoothly with the scale\ and spans the full range of
recorded perpendicular to the jet axig{; = 275, where  possible values for such data (error bars indicated if larger
d; is the jet-nozzle diameter) using laser-induced fluothan symbol size).
rescence and digital-imaging techniques. This level set Coverage statistics can now be used to compute the
corresponds to the peak of the concentration pdf at thifEB-scale pdf (Fig. 5). While the jet is not (spatially)
Re. The geometric complexity of such level sets is attribsstatistically homogeneoug;()) retains its meaning, i.e.,
utable, in part, to the large number700, in each realiza- it is the pdf of the size of LEBs, randomly placed, interior
tion, on average) of islands and lakes, i.e., closed contouts the §, box. The data indicate that the probability
whose immediate interior is at higher or lower concentradensity of a LEB scale increases continuously with
tion, respectively, at this Reynolds number. decreasing scale, tending to a constani as 0.
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At this stage, several models could be employed tan turbulence, for example, can be analyzed and modeled
fit the data in Fig. 5. Analysis of the size pdf of the with this formalism. In turbulent jets, in particular, the
islands/lakes, however, indicates lognormal statistics dtEB-scale pdf of level sets of concentration is consistent
inner scales (Fig. 6), where size, here, is defined'ds ~ with a lognormal size pdf of islands/lakes, at the inner
where A is the area of each island/lake. Such statisticscales. Arguments for lognormal statistics have been put
are consistent with fragmentation and growth (fissionforth by Kolmogorov [17,19] and others [e.g., Ref. [18]]
fusion) processes [17,18]. This finding suggests thator stochastic fragmentation and growth processes, as may
lognormal statistics may be used to model the level selbe expected to occur in turbulence, in general.
at inner scales. A 2D lognormal model [derived using The support under AFOSR Grant No. F49260-94-1-
the LEB-scale pdf computed for 1D lognormal spacings;0353 and discussions with C.L. Bond, M.C. Cross,
cf. Eq. (6)] is shown in Fig. 5 at inner scales (solid lines)A. Leonard, D.I. Pullin, and P. G. Saffman are gratefully
for the scale pdf (and for the dimension), acknowledged.
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