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Scale Distributions and Fractal Dimensions in Turbulence
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A new geometric framework connecting scale distributions to coverage statistics is employed
analyze level sets arising in turbulence as well as in other phenomena. A 1D formalism is describ
and applied to Poisson, lognormal, and power-law statistics. Ad-dimensional generalization is also
presented. Level sets of 2D spatial measurements of jet-fluid concentration in turbulent jets a
analyzed to compute scale distributions and fractal dimensions. Lognormal statistics are used
model the level sets at inner scales. The results are in accord with data from other turbule
flows. [S0031-9007(96)01540-2]
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Many phenomena exhibit complex structure with
wide range of coexisting spatial and/or temporal scal
participating in the dynamics [1], e.g., turbulent flow
[2,3], nephron cells [4], etc. The geometry of such phe
nomena can be quantified in terms of (constant) fract
dimensions, where power-law behavior is observed [1–
or, in other cases, in terms of extensions of the fract
framework [5–11]. In turbulent mixing and combustion
in particular, such measures are useful for estimating t
volume-fill fraction of isosurfaces of species composition
In this Letter, a new framework connecting coverage st
tistics to distributions of (various measures of) scales
applied to level sets in turbulence. Specifically, a 1D
framework in terms of the probability density function o
spacings formed by level crossings of signals is present
and applied to Poisson and lognormal statistics report
in 1D velocity and species-concentration measurements
various turbulent flows. Generalizations to multidimen
sional geometries are also introduced and applied to lev
sets of 2D spatial measurements of the jet-fluid conce
tration in turbulent jets. Lognormal statistics are used
model the level sets at small scales.

Dimensions of 1D point sets can be connected
the point-spacing probability density function (pdf) [10]
For homogeneous statistics, the fraction of contiguousl

intervals required to cover the set, or coverage fractio
F1sld, can be identified as the geometric probability that
randomly locatedl interval contains part of the set. This
can be expressed in terms of the (point) spacing pdfp1sld
as [10],

F1sld ­
1
lm

Z l

0

Z `

l0

p1sld dl dl0;

lm ;
Z `

0
lp1sld dl , (1)

assuming a finite mean spacinglm. Inverting,

p1sld ­ 2lm
d2F1sld

dl2
, (2)

as was previously derived for zero crossings of rando
Gaussian functions [12]. Denoting byD1sld the coverage
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(box-counting) dimension at a scalel,

D1sld ; 1 2
d ln F1sld

d ln l
­ 1 2

l
R

`

l p1sld dlRl
0

R`
l0 p1sld dl dl0

.

(3)

This can be viewed as a 1D (forward) transform betwe
the dimensionD1sld and the (point-spacing) scale distri
butionp1sld. This transform is invertible,

p1sld ­
lm

l2

(
D1sldf1 2 D1sldg 1 l

dD1sld
dl

)

3 exp

(
2

Z `

l
f1 2 D1sl0dg

dl0

l0

)
, (4)

where lm ­ liml!0hl expfff
R`

l f1 2 D1sl0dgdl0yl0gggj, for a
finite mean spacing [cf. Eq. (1)]. In the limit,F1sl !

0d ! lylm, i.e., the mean spacing determines the sma
scale coverage fraction.

A first investigation of level crossings in turbulenc
was conducted by Liepmann [13], who measured t
mean spacing of zero crossings in 1D velocity dat
The corresponding spacing pdf was reported as descri
by Poisson statistics from measurements in turbule
boundary layers [14,15], with constant fractal dimensio
reported for such data [2]. For a Poisson point proce
i.e.,p1slddl ­ exps2lylmddlylm, however, the dimension
is [cf. Eq. (3)]

D1sld ­ 1 2
lylm

elylm 2 1
. (5)

Figure 1 comparesD1sld, from Eq. (5), to ensemble-
averaged estimates from five Monte Carlo simulatio
(standard deviation is smaller than symbol size
Figs. 1–3). Poisson-spacing records of lengthL, with
Lylm ­ 103, were partitioned into contiguousl intervals
and the number of intervals that cover the set w
counted.

In various turbulent flows, level-crossing spacing
derived from 1D scalar or velocity signals have bee
reported as well approximated by a lognormal pd
© 1996 The American Physical Society 3795
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as indicated for level crossings of 1D scalar measu
ments in turbulent jets [7] and in plumes dispersin
in the atmospheric surface layer [16] as well as f
zero crossings of 1D velocity measurements in turb
o
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lent boundary layers (in addition to Poisson fits) [14
For a lognormal pdf, i.e.,p1slddl ­ exph2flnslylmdy
s 1 sy2g2y2jdlys

p
2p sld, the dimension is [cf.

Eq. (3)]
D1sld ­ 1 2

(
1 1

lm

l
3

"
1 1 erffsss lnslylmdys 2 sy2dddy

p
2 g

1 2 erffsss lnslylmdys 1 sy2dddy
p

2 g

#)21

. (6)
ge

e,
e

le
ded
st-
e
at

a
It

s

y-
ly
the
Figure 2 comparesD1sld, from Eq. (6), to five Monte
Carlo simulationssLylm ­ 3 3 103d. This dimension
also increases smoothly with scale, in accord with pr
vious simulations [7].

Power-law statistics forp1sld, over a finite range of
scales, e.g.,p1slddl ­ adlyl1, for l , l1; aslyl1d2ndlyl1,
for l1 , l , l2; and 0, for l2 , l, correspond to a
dimension plotted in Fig. 3, forn ­ 3y2 andl2yl1 ­ 103.
A comparison with five Monte Carlo simulations is als
shownsLylm ­ 4 3 103d. In the limit of l2yl1 ¿ 1 and
for scalesl1 ø l ø l2 [cf. Eq. (3)],

D1sld ! n 2 1 , (7)

for 1 , n , 2 (cf. dashed line in Fig. 3 for

FIG. 1. Dimension as a function of scale for a Poisson po
process. Theory: solid line, simulations: squares.

FIG. 2. D1sld for a lognormal spacing pdfss ­ 1d. Theory:
solid line, simulations: squares.
e-

nt

n ­ 3y2). Conversely, ifD1sld ­ D1 ­ const., i.e. if
F1sld , l12D1 , for l1 ø l ø l2,

p1sld , l2D121 (8)

[cf. Eq. (4)], i.e., the scale dependence ofD1sld, in this
case, is a finite scale-range effect. A power-law covera
fraction, over a range of scales, implies a power-lawp1sld
in the same range [cf. Eqs. (2) and (8)]. The convers
however, is not true—cf. the nonlocal nature of th
forward transform [Eq. (1)].

For multidimensional geometries, an alternative sca
measure is needed; the spacing scale cannot be exten
to higher dimensions. Such a measure is the large
empty-interval scale (in 1D) defined as the size of th
largest interval (centered) at a random location, th
covers no part of the set [10]. The pdf of this scalef1sld
is the probability (density) that a random location is
distancely2 away from the nearest element of the set.
is given by [10]

f1sld ­
1
lm

Z `

l

p1sld dl ­
dF1sld

dl
. (9)

Generalizations tod dimensions can be made. In term
of the coverage fractionFdsld,

fdsld ;
dFdsld

dl
, (10)

fdsld can be identified as the pdf of the largest-empt
box (LEB) scale, or size of the largest box, random
located (centered), that contains no part of the set. For

FIG. 3. D1sld for a power-law spacing pdfsn ­ 3y2, l2yl1 ­
103d. Theory: solid line, simulations: squares.
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FIG. 4. Level set of jet-fluid concentration in the far field
szydj ­ 275d of a liquid-phase turbulent jet at Re. 9 3 103.

dimension at a scalel and the LEB-scale pdf [cf. Eqs. (3)
and (4)],

Ddsld ; d 2
d ln Fdsld

d ln l
­ d 2

lfdsldRl

0 fdsl0d dl0
,

fdsld ­
d 2 Ddsld

l
exp

(
2

Z `

l

fd 2 Ddsl0dg
dl0

l0

)
,

(11)

are the forward and inversed-dimensional transforms.
This framework can be used to compute the LEB-sca

pdf for level sets derived from multidimensional mea
surements in turbulence, for example. Experiments we
conducted to measure the jet-fluid concentration in t
far field of liquid-phase turbulent jets for Reynolds num
bers,4.5 3 103 # Re # 18 3 103, at a Schmidt number,
Sc . 1.9 3 103 [11]. Figure 4 depicts a level set of 2D
spatial measurements of concentration at Re. 9 3 103,
recorded perpendicular to the jet axis (zydj ­ 275, where
dj is the jet-nozzle diameter) using laser-induced flu
rescence and digital-imaging techniques. This level s
corresponds to the peak of the concentration pdf at t
Re. The geometric complexity of such level sets is attri
utable, in part, to the large number (,700, in each realiza-
tion, on average) of islands and lakes, i.e., closed conto
whose immediate interior is at higher or lower concentr
tion, respectively, at this Reynolds number.
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FIG. 5. Top: DimensionD2sld as a function of scale fo
level sets of concentration in a turbulent jet at Re. 9 3 103.
Bottom: Pdf of LEB scalesf2sld.

Figure 5 shows the ensemble-averaged dimen
D2sld for level sets of concentration at Re. 9 3 103

(six images) at a threshold corresponding to the p
of the concentration pdf. The smallest (diffusio
scale of the concentration field is estimated to
log10slD ydbd . 23.0, on the jet axis. For each leve
set, thedb-sized bounding box was identified and par
tioned into contiguousl boxes to compute the (coverag
fraction of the number of boxes that cover the level s
as a function of scale [11]. The dimension increa
smoothly with the scalel and spans the full range o
possible values for such data (error bars indicated if la
than symbol size).

Coverage statistics can now be used to compute
LEB-scale pdf (Fig. 5). While the jet is not (spatiall
statistically homogeneous,f2sld retains its meaning, i.e
it is the pdf of the size of LEBs, randomly placed, inter
to the db box. The data indicate that the probabili
density of a LEB scale increases continuously w
decreasing scale, tending to a constant asl ! 0.
3797
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At this stage, several models could be employed
fit the data in Fig. 5. Analysis of the size pdf of th
islands/lakes, however, indicates lognormal statistics
inner scales (Fig. 6), where size, here, is defined asA1y2,
whereA is the area of each island/lake. Such statist
are consistent with fragmentation and growth (fissio
fusion) processes [17,18]. This finding suggests t
lognormal statistics may be used to model the level
at inner scales. A 2D lognormal model [derived usi
the LEB-scale pdf computed for 1D lognormal spacin
cf. Eq. (6)] is shown in Fig. 5 at inner scales (solid line
for the scale pdf (and for the dimension),

f2sld ~ erfcfhlnslylmdys 1 sy2jy
p

2 gy2lm , (12)

with log10slmydbd . 21.5 and s . 1.2, as fitted to the
inner scales. The departure from the lognormal mode
large scales, indicates a break in behavior, suggesting
an alternate description at the outer scales of the flow
appropriate, as expected.

A useful interpretation of the LEB scale is as a meas
of (twice) the distance to the nearest element of
level set. In turbulent combustion, for example,fdsld
indicates the surface-to-volume (perimeter-to-area in 2
ratio of surfaces (contours), located a distancely2 (within
a proportionality constant) from the instantaneous burn
(level-set) surface. The LEB-scale pdffdsld is, therefore,
a scale-dependent measure of the surface-to-volume r
with the small-scale limitfdsl ! 0d indicating the level-
set surface-to-volume ratio.

In conclusion, the proposed framework can be used
compute the LEB-scale pdf from coverage statistics
complex, multidimensional geometries. Level sets aris

FIG. 6. Size pdf of islands and lakes at Re. 9 3 103.
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in turbulence, for example, can be analyzed and mode
with this formalism. In turbulent jets, in particular, th
LEB-scale pdf of level sets of concentration is consiste
with a lognormal size pdf of islands/ lakes, at the inn
scales. Arguments for lognormal statistics have been
forth by Kolmogorov [17,19] and others [e.g., Ref. [18
for stochastic fragmentation and growth processes, as m
be expected to occur in turbulence, in general.
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