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High Transmission through Sharp Bends in Photonic Crystal Waveguides
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We demonstrate highly efficient transmission of light around sharp corners in photonic ba
gap waveguides. Numerical simulations revealcomplete transmission at certain frequencies, and
very high transmissions.95%d over wide frequency ranges. High transmission is observed ev
for 90± bends with zero radius of curvature, with a maximum transmission of 98% as oppo
to 30% for analogous conventional dielectric waveguides. We propose a simple one-dimens
scattering theory model with a dynamic frequency-dependent well depth to describe the transmi
properties. [S0031-9007(96)01522-0]

PACS numbers: 42.79.Gn, 41.20.Jb, 03.80.+r
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Photonic crystals have inspired great interest recen
because of their potential ability to control the propagatio
of light. They can modify and even eliminate the densi
of electromagnetic states inside the crystal [1,2]. Su
periodic dielectric structures with complete band ga
can find many applications, including the fabrication o
lossless dielectric mirrors and resonant cavities for optic
light [3]. In this Letter, we demonstrate a novel metho
for guiding light around sharp corners, using photon
crystal waveguides.

Two main designs are commonly employed to guid
electromagnetic waves along a line: metallic pipe wav
guides which provide lossless transmission only for m
crowaves, and dielectric guides for infrared and visib
light. Although metallic waveguides can be used to ste
light around tight corners, the operation of convention
dielectric guides, based on the principle of total inte
nal reflection, is restricted by radiation losses to modera
curvature bends. In fact, when light is steered around
corner in such a guide, the radius of curvature must w
exceed the wavelength of the light even for high dielectr
contrasts to avoid large losses at the corners [4]. In a
cent article, Meqadeet al. showed that a linear defect in a
photonic band-gap (PBG) material can support a linea
localized mode when the mode frequency falls inside t
gap [5]. Such a defect can act as a waveguide for el
tromagnetic (EM) waves, without relying on total interna
reflection. In this Letter we shall further show that a PB
waveguide can efficiently guide light around corners. Th
losses are very low for a wide range of frequencies, a
vanish for specific frequencies, even if the radius of cu
vature of the bend is on the order of one wavelength.

For simplicity, we choose to study a 2D photonic cryst
of dielectric rods in air on a square array with lattic
constanta. Choosing the refractive index of the rod
to be 3.4 (which corresponds to GaAs at the canonic
wavelength of 1.55mm) and their radius to be 0.18a,
we find that the crystal has a TM [6] gap which extend
from frequencyv ­ 0.302 3 2pcya to v ­ 0.443 3

2pcya. One can create a single nondegenerate guided
0031-9007y96y77(18)y3787(4)$10.00
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mode inside the gap by removing a row of rods. Sin
the waveguide has translational symmetry, a mode can
characterized by its reciprocal space wave vectork along
the direction of the guide. The band appears at a freque
v ­ 0.312 3 2pcya whenk ­ 0 and reaches the top o
the gap whenk ­ 0.38 3 2pya. Since the characteristics
of a PBG material remain unchanged under rescaling,
can easily assure that the guided light will be in the infrar
or visible region. For example, if we choose a lattic
constanta of 0.58 mm, the wavelength corresponding t
the midgap frequency will be 1.55mm.

If a bend is introduced into such a waveguide, n
power will be radiated out of the guide as light trave
around the bend, since there are no extended mo
into which the propagating mode can couple. Light w
either be transmitted or reflected; only back reflection w
hinder perfect transmission. We study the transmiss
and reflection properties of waveguide bends using
vector finite-difference time-domain program with quart
perfectly matched layer boundaries [7]. In our simulatio
a dipole located at the entrance of the waveguide crea
a pulse with a Gaussian envelope in time. The fie
amplitude is monitored inside the guide at two poin
one before the bend (pointA) and one after (pointB)
as indicated in the top panel of Fig. 1. Although most
the light that reaches the edge of the computational c
is absorbed by the boundaries, some light gets reflec
back from the ends of the waveguide. By using
sizable computational cell of100 3 120 lattice constants
and by positioning each monitor point appropriatel
we can distinguish and separate all the different pul
propagating in the cell; the useful pulses, such as the in
pulse and the pulses reflected by and transmitted thro
the bend, and the parasite pulses which are reflected f
the edges of the cell. These pulses are clearly shown
the bottom panel of Fig. 1.

In the specific case shown in Fig. 1, six pulses are s
down the guide, covering different ranges of frequenc
[8]. The pulses are then Fourier transformed to obta
the reflection and the transmission coefficients for eac
© 1996 The American Physical Society 3787
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FIG. 1. Top panel: Schematic view of the100a 3 120a
computational cell. The field amplitude is monitored at poin
A and B. The guide is located five lattice constants from th
edge of the cell. Bottom panel: Field amplitude recorded
pointsA andB, as a function of time. The pulses reflected b
and transmitted through the bend, as well as the pulses reflec
from the edges of the cell, are easily discernible.

frequency. The results are shown in the top two pan
in Fig. 2. The excellent agreement between the tran
mission and reflection coefficients obtained from th
different pulses demonstrates the consistency of our
proach [9]. The transmission and reflection coefficien
do add up to unity for every frequency in the gap
which confirms that there is no observable radiatio
loss, in spite of the close proximity of the waveguid
to the edge of the computational cell. The transmissi
drops sharply to zero below the cutoff frequency o
the guided mode. The transmission for frequenci
v ­ 0.392 3 2pcya is larger than 95%, and reache
100% whenv ­ 0.353 3 2pcya. The field pattern of
the propagating mode can be observed by a cw exc
tion of the guided mode. We show in the bottom pan
of Fig. 2 the electric field pattern for the case whe
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FIG. 2(color). Top two panels: Spectral profile of six inpu
pulses. Computed transmission and reflection coefficients f
each input pulse. The oscillations in transmission at lo
frequencies are numerical artifacts and are discussed in Ref.
Bottom panel: Electric field pattern in the vicinity of the
bend for frequencyv ­ 0.353 3 2pcya. The electric field
is polarized along the axis of the dielectric columns.

v ­ 0.353 3 2pcya. The mode is completely confined
inside the guide, and the light wave travels smooth
around the sharp bend, even though the radius
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curvature of the bend is on the order of the wavelen
of the light. For comparison purposes, we have cal
lated the transmission through a traditional rib dielect
waveguide of refractive index 3.5 with a similar radiu
of curvature. The radius of curvatureR was taken to
be equal to the width of the guide and the transmiss
was measured for a wide range of frequencies cente
around v ­ 0.143 3 2pcyR. The power transmission
was found not to exceed 80%.

We now propose a simple model to explain both t
high transmission through the bends and the oscillatory
havior of the transmission spectrum. Our PBG wavegu
structure can be viewed as separate waveguide sect
one in the (01) direction and one in the (10) direction, co
nected by a short waveguide section in the (11) directi
For any given frequencyv, there is a single wave vec
tor ksvd for the guided modes in any particular wavegui
section. We label these wave vectorsk1svd for propa-
gation along the (01) or (10) direction, andk2svd for the
(11) direction. These wave vectors are given by the d
persion relations [10] shown in Fig. 3. From this figur
we can define a frequency-dependent effective refrac
index nsvd ­ cksvdyv governing the wave propagatio
in each of the waveguide sections.

We model the transmission through the bend as
simple one-dimensional scattering process in which
mode propagating with wave vectork1 is scattered into the
mode with wave vectork2, then back into the mode with
wave vectork1. At the interface, we require continuity o
the field and of its derivative, as we would in the case o
plane EM wave normally incident on a boundary betwe
materials with different refractive indices. By comple
analogy with the one-dimensional Schrödinger equati
we can map this problem onto that of a wave propagat
in a “dielectric potential.” This potential consists o

FIG. 3. Dispersion relationk1svd for propagation along the
(01) or (10) direction, andk2svd for the (11) direction. The
gray regions correspond to the edges of the band gap.
“potential” associated with the bend is shown in the inset.
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three constant pieces, corresponding to the (01), (1
and (10) propagation directions, respectively, as sho
in the inset of Fig. 3. Our model differs from the usu
one-dimensional scattering problem in that the depth
the well, determined by the differencek2

1 svd 2 k2
2svd,

now depends on the frequency of the traveling wave.
The reflection coefficient is then given by

Rsvd ­

"
1 1

√
2k1svdk2svd

fk2
1svd 2 k2

2 svdg sinfk2svdLg

!2#21

.

(1)
The sole parameter in Eq. (1) is the lengthL of the well
(or of the bend). To set this parameter, we select a sin
point from the computational results shown in Fig.
We choose the point atv ­ 0.353 3 2pcya, where the
reflection coefficient is zero. Our choice of solution
L ­ 1.33

p
2 a, which is the one closest to the physic

length of the (11) portion of the waveguide.
To test the validity of this model, we vary the

length of the (11) waveguide section and compa
the reflection coefficients computed from the nume
cal simulations to those obtained from Eq. (1). Th
value L ­ 1.33

p
2 a found above is used to set th

parameterL in each case. As we vary the bend leng
by integer multiples of

p
2 a, the effective length

L should also change by the same amount, givi
L ­ 0.33

p
2 a, 1.33

p
2 a, 2.33

p
2 a, and3.33

p
2 a for

the four bends shown in Fig. 4. The reflection coef
cients are plotted in Fig. 4. We find good agreeme
between the one-dimensional scattering model (solid li
and the numerical simulations (diamonds). Our mod
correctly predicts the frequencies where the reflect
coefficient vanishes, as well as the general quantitat
features of the transmission spectrum. The appar
disagreement at low frequencies arises from numer
limitations. Our simulations cannot accurately determi
reflection in this frequency regime [9].

We note that the 90± bend with zero radius of curva-
ture, as shown in the top panel of Fig. 4, is not describ
in this model by a uniformly constant potential, but b
the potential shown in the inset of Fig. 3 with an effectiv
length L ­ 0.33

p
2 a. This length is extrapolated from

the bends with longer (11) sections. Our model acc
rately predicts the existence of reflection from the ben
with transmission exceeding 95% for guided modes bel
v ­ 0.403 3 2pcya. This behavior is in marked con
trast to that of a conventional dielectric waveguide with
sharp 90± bend. Power transmission reaches at most 3
even for a guide with a refractive index contrast of 3
to 1 with its surroundings, due to large radiation losses
the corner.

The one-dimensional scattering analysis presen
above relies on the existence of a band gap along ev
direction in the plane of the 2D crystal. Therefor
our analysis should also hold for 3D photonic crysta
3789
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FIG. 4(color). Reflection coefficients computed from numer
cal simulations (diamonds) and from one-dimensional scatter
theory (solid line), for four different bend geometries.

with complete omnidirectional band gaps. By adjustin
the length of the bend section, we should be able
achieve 100% transmission through sharp bends
several frequencies. Furthermore, transmission sho
remain high as long as the dispersion relations in t
two different waveguides making up the bend do n
differ considerably, that is, as long as the depth of th
“dielectric potential well” remains small.

Finally, a natural question to pose about these photo
crystal waveguides concerns the possible existence
bound states localized in the vicinity of the corne
These bound states are known to exist in other simi
structures such as quantum wires [11]. In the case
photonic crystals, bound states may appear in a freque
range where guided modes exist inside the bend sect
while being forbidden in the other sections of the guid
Although this particular condition does not hold in th
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waveguide structures investigated above, it is possi
to alter the waveguide geometry in order to chan
the dispersion relations, thereby creating a configurat
which would support bound states.
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