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Nonlinear Control of Remote Unstable States in a Liquid Bridge Convection Experiment
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We demonstrate the stabilization of unstable periodic orbits whose trajectories in phase space
are distant from the unperturbed dynamics in a convective flow experiment. A model independent,
nonlinear control algorithm uses temperature measurements near the free surface of a convecting liquid
bridge to compute control perturbations which are applied by a thermoelectric element. The algorithm
employs a time series reconstruction of a nonlinear control surface to alter the system dynamics.
[18S0031-9007(96)01511-6]
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Understanding of nonlinear dynamical systems hadetween the boundaries drives a flow in the bridge by
been exploited to control complex behavior in physical,inducing a variation of surface tensiom at the gas-
chemical, and biological systems [1-5]; however, theliquid interface. Typically we imposAT ~ 15 °C with
range of control has typically been restricted to targetinghe upper boundary warmer than the lower; the mean
unstable states that are near the unperturbed (autonomousijnperature of the bottom boundary 18.0 °C and AT
behavior of the system. In all these cases, control ofs computer-controlled to a precision &0.05 °C.
chaotic dynamics has been implemented using OGY (Ott- The dimensionless number that characterizes the sur-
Grebogi-Yorke) [6] and related low-dimensional linearface tension driving is the Marangoni numbeéf =
methods [7-9] which rely on ergodicity to bring the orATI/pvk with liquid densityp, kinematic viscosity,
system state near to the desired orbit before control ithermal diffusivity x, andor = |‘¢’J_‘;|_ For smallM, the
applied. If the target states are far from the attractor otonvective flow is time independent. R = 14 000 the
the unperturbed system, linear methods fail because theflow becomes time dependent with a single fundamental
do not correctly describe the large feedback perturbationequency [Fig. 1(b)]; ab/ =~ 16 500, a second frequency
that are necessary for control [10]. appears. We apply our control scheme to this two fre-

In this Letter we report the first example of stabilization quency state a¥ = 17 750.
of an isolated unstable state in a laboratory experiment. The system dynamics is measured by a single sensor
Unstable states distant in phase space from the attractand perturbed by a single feedback element [Fig. 1(a)].
of a system arise frequently in nonlinear dynamics. FofThe sensor is a 0.03-cm-diameter thermistor that is placed
example, trajectories on a toroidal (quasiperiodic) attracapproximately//2 above the lower rod and 0.03 cm from
tor never approach the unstable limit cycle that gave birthhe surface of the liquid. Time series of the sensor
to the torus at a secondary Hopf bifurcation [11]. Thusresistance are recorded, and the differencelsetween
the unstable limit cycle cannot be captured by using smalhdjacent local maxima in the series are computed. The
perturbations. We target unstable periodic orbits isolatefeedback element is@1 X 0.3 cm thermoelectric device
from dynamics on a torus in a liquid bridge convectionthat is placed at the same height as the sensor on the
experiment using a nonlinear control algorithm that per-opposite side of the liquid bridge [Fig. 1(a)]. Variation
mits perturbations of large amplitude [12]. The algorithmof a voltageu changes the feedback element temperature
requires no knowledge of the underlying nonlinear equa-

tions governing the fluid flow. .

A liquid bridge is formed by trapping a liquid be- e S
tween two coaxial cylindrical boundaries [Fig. 1(a)]. Lig- Foedtback NN .
uid bridge convection models hydrodynamic effects in the R ) ‘
float-zone refinement of crystalline materials, where the LX R
appearance of time-dependent convective flow induces %“]‘“’“ﬁ_ T
a

undesired variation in the chemical composition of pro-
cessed crystals [13]. Successful application of controFIG. 1. (a) Sketch of our liquid bridge convection experiment.
methods to suppress time_dependent flow could producﬁhe boundaries are coaxial stamlesg, steel cyllnders with

crystalline materials of higher quality. 0.3 cm and/ = 0.3 cm. (b) Infrared image of the brightness

our liauid bridae is composed of purified silicone oil temperature (darker shading for colder temperatures) for time-
q 9 p p periodic liquid bridge convection. The helical structure of

[14] with a Prandtl number of approximately 40 andihe temperature field corresponds to a wave that propagates
a volume of0.065 c®. A temperature differencd7  azimuthally (left to right in the figure).
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and imposes a localized perturbation in the surface tensioquence is completed. We use these sequences to define
gradients that drive the flow. During the time interval y(i) = [x,(i), u,(i),x,(i),u,(i)]. The values oft andu
required to determine a given, the corresponding is  betweenx,, u, andx, andu,, i.e., (X;j+1,...,Xj+m+a)
held constant. and (u;—g+1,...,ui+m—1), describe the trajectory from
Controlling the dynamics requires finding the perturba-the present state to the target state; however, aply
tions that move the system from the present state to this computed at théth iterate; at subsequent iterates, the
target state. The algorithm proceeds in two stagém- remaining values ofu are determined by updating the
tification andcontrol. During the identification stage uni- control lawC.
formly distributed, random perturbatiomsare applied to Figure 2 schematically demonstrates the approximation
the liquid bridge, and the corresponding respornsese  of C from the reference data accumulated during the iden-
measured to create a reference set. During the contrdification stage. In the experiment, one thousand pertur-
stage,u andx that define the present state are recordedbationsu and the corresponding temperature resporses
while u andx for the target state are preset to values deare used to form a set of reference sequeiycanad cor-
termined by the control objective. The reference set isesponding:.. The points ¥, u.) are scattered about the

then used to compute the necessary perturbations. control surfaceC due to errors in measurement (Fig. 2).
For discrete dynamics at thith iterate, the next applied During control at time step, the N nearest neighbors
perturbationu; +; is given by a control lawC y(ix), k = 1,...,N to the vectory(i) are used to compute

N _ . a linear approximation of. For anm-dimensional sys-
ue(i) = uivy = Cly(®), (1) tem, a minimum ofN = 4m data points is required for
where y(i) is a vector that describes both the present linear approximation; to improve the robustness of the
and target states. Figure 2 illustrates schematically hownhethod we setv = 8m and use singular value decom-
u.(i) is obtained fromy(i) via the nonlinear mapping.  position to find the4m coefficients of the approximating
We will consider the case whesi) is constructed from hypersurface in this over-determined system. The pertur-
time seriesx from a single sensor and from a single  bation u.(i) is then computed and applied. The entire
perturbing element, although the control law in Eq. (1)computation procedure takes orfl2 sec on a 120 MHz
can be generalized for the case of multiple sensors andentium PC; however, the discrete time description of the
perturbing elements. dynamics forces a one iteration del&y3(sec) before the
For an m-dimensional linear system, the state of aperturbation is applied.
system is sufficiently described in a time-delay space by For stabilization of an unstable periodic orbit in the
sequences1 and x, each of lengthvn [12]; we assume liquid bridge, the target dynamics are givenxyy= 0 and
that u and x of length m are also sufficient to specify u, = 0. When the control algorithm is applied to the two-
m-dimensional dynamics in the weakly nonlinear regimefrequency convective flow, the second oscillation is rapidly
[15]. The present state at th¢h iterate is determined
by Xp(i) = (xi7m+l’ e »xi) andup(i) = (ui*m*d+l’ CERR)
u;—q), whered is a delay which includes the time for an
applied perturbation to propagate to the spatially separate
sensor. The target state is separated from the present
state bym + d iterations and is characterized by time-
forwarded sequencesX;(i) = (Xitm+d+1»---sXit2m+d) i
and u;(i) = (Wj+m+1,...,Ui+2m) after the control se-
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FIG. 2. Schematic representation of the multidimensionalFIG. 3. The application of control is illustrated for discretized
control surfaceC used to determine the next applied feedbackdynamics by time series of temperature differencegtop)
perturbationu. from the present and target statgs In the  and applied perturbations; (bottom). The control is applied
experimentC is reconstructed from reference pointg @.) at time stepi = 400 and the second oscillation in the two-
[o ] gathered during the identification stage. During controlfrequency state is rapidly suppressed. Removing the control at
at theith iterate, nearby pointsy[iy), u.(i;)] [°] are used to time stepi = 800 allows the system to rapidly return to the
approximateC for determiningu. (i) from y(i). unperturbed dynamics.
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suppressed (Fig. 3). Initially, the applied perturbations aréion. More sophisticated methods developed for nonlinear
large; ati = 400 the root-mean-squared power appliedtime series prediction [16] may help extend the parameter
to the thermoelectric element is approximately 10 mW,range for control by improving the approximation of the
which is comparable to the heat flow through the liquidcontrol surfaceC.
bridge due to the temperature difference applied to the Feedback linearization [17], an alternative approach
boundaries. However, once the periodic orbit is stabilizedo nonlinear control, has been demonstrated in low-
(~500 < i < 800), the thermoelectric power drops to dimensional nonlinear systems [18]. In this method a
about 100 uW, less thanl% of the heat flow through feedback loop is constructed specifically to linearize the
the bridge (Fig. 3). After the control is turned off, the system dynamics; control is then implemented using
system rapidly returns to the two-frequency dynamics oftandard techniques from linear control theory that adjust
the unperturbed state. the eigenvalues of the closed-loop system. This procedure
We attempt control for several different values ofis sensitive to the errors in parameter estimation from time
m and d, which are free parameters in our algorithm. series and fails as the dimensionality is increased. Our
The fastest convergence is achieved #ior= 4 andd =  nonlinear control method constructs a control law based
2, which suggests two independent frequencies in then the desired target state rather than on the adjustment
unperturbed dynamics. Two dimensions are required tof eigenvalues. Comparison of the two methods indicates
describe the second frequency present in the unperturbesh order of magnitude higher tolerance to noise for our
system; the other two dimensions effectively describe thenethod as compared to feedback linearization.
decay of stable modes in the liquid bridge and the thermal Our experiments demonstrate that a single local mea-
relaxation of the feedback element. The delay 2 is  surement and feedback perturbation are sufficient to con-
approximately equal to the sum of the calculation delaytrol low-dimensional spatiotemporal dynamics. However,
and the time for waves with azimuthal wave number 1 andhe spatial structure for some states cannot be ignored. In
period of 2.3 s to propagate from the feedback elemenparticular, we have attempted to stabilize unstable time-
location to the sensor location. independent states using the present experiment. Os-
Figure 4 demonstrates that our control method is effeceillations can be suppressed at the sensor location, but
tive for stabilizing states that lie far from the unperturbedinfrared imaging reveals the presence of standing waves
dynamics in the phase space. The target dynamics camith antinodes between the feedback element and the sen-
lie in any region of phase space that can be accessed dwer. In this case, multiple spatially distributed measure-
ing the identification stagej must be chosen sufficiently ments and perturbations will be required for control; we
large to move states in phase space over distances compae presently modifying our control algorithm and experi-
rable to the separation between the isolated unstable orbitent to include two sensors and two feedback elements.
and the attractor of the unperturbed system. The contrdh this way liquid bridge convection serves as an ideal
scheme fails forM = 19000 because the dynamics be- testbed for methods of controlling spatially extended non-
comes highly nonlinear, and the one thousand points itinear systems.
our reference set become insufficient for good interpola- This research is supported by the NASA Micro-
gravity Science and Applications Division (Grant
No. NAG3-1839) and the Office of Naval Research
10 ‘ ‘ , (Grant No. N00014-89-J-1495). S.J.V.H. is supported
R by the NASA Graduate Student Researchers Program.
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