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Nonlinear Control of Remote Unstable States in a Liquid Bridge Convection Experiment
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(Received 31 July 1996)

We demonstrate the stabilization of unstable periodic orbits whose trajectories in phase space
are distant from the unperturbed dynamics in a convective flow experiment. A model independent,
nonlinear control algorithm uses temperature measurements near the free surface of a convecting liquid
bridge to compute control perturbations which are applied by a thermoelectric element. The algorithm
employs a time series reconstruction of a nonlinear control surface to alter the system dynamics.
[18S0031-9007(96)01511-6]
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Understanding of nonlinear dynamical systems h
been exploited to control complex behavior in physica
chemical, and biological systems [1–5]; however, th
range of control has typically been restricted to targetin
unstable states that are near the unperturbed (autonom
behavior of the system. In all these cases, control
chaotic dynamics has been implemented using OGY (O
Grebogi-Yorke) [6] and related low-dimensional linea
methods [7–9] which rely on ergodicity to bring the
system state near to the desired orbit before control
applied. If the target states are far from the attractor
the unperturbed system, linear methods fail because t
do not correctly describe the large feedback perturbatio
that are necessary for control [10].

In this Letter we report the first example of stabilizatio
of an isolated unstable state in a laboratory experime
Unstable states distant in phase space from the attra
of a system arise frequently in nonlinear dynamics. F
example, trajectories on a toroidal (quasiperiodic) attra
tor never approach the unstable limit cycle that gave bir
to the torus at a secondary Hopf bifurcation [11]. Thu
the unstable limit cycle cannot be captured by using sm
perturbations. We target unstable periodic orbits isolat
from dynamics on a torus in a liquid bridge convectio
experiment using a nonlinear control algorithm that pe
mits perturbations of large amplitude [12]. The algorithm
requires no knowledge of the underlying nonlinear equ
tions governing the fluid flow.

A liquid bridge is formed by trapping a liquid be-
tween two coaxial cylindrical boundaries [Fig. 1(a)]. Liq
uid bridge convection models hydrodynamic effects in th
float-zone refinement of crystalline materials, where t
appearance of time-dependent convective flow induc
undesired variation in the chemical composition of pro
cessed crystals [13]. Successful application of cont
methods to suppress time-dependent flow could produ
crystalline materials of higher quality.

Our liquid bridge is composed of purified silicone oi
[14] with a Prandtl number of approximately 40 an
a volume of 0.065 cm3. A temperature differenceDT
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between the boundaries drives a flow in the bridge b
inducing a variation of surface tensions at the gas-
liquid interface. Typically we imposeDT , 15 ±C with
the upper boundary warmer than the lower; the mea
temperature of the bottom boundary is15.0 ±C and DT
is computer-controlled to a precision of60.05 ±C.

The dimensionless number that characterizes the s
face tension driving is the Marangoni numberM ;
sT DTlyrnk with liquid densityr, kinematic viscosityn,
thermal diffusivityk, andsT ; j

ds

dT j. For smallM, the
convective flow is time independent. ForM * 14 000 the
flow becomes time dependent with a single fundament
frequency [Fig. 1(b)]; atM ø 16 500, a second frequency
appears. We apply our control scheme to this two fre
quency state atM ­ 17 750.

The system dynamics is measured by a single sens
and perturbed by a single feedback element [Fig. 1(a
The sensor is a 0.03-cm-diameter thermistor that is plac
approximatelyly2 above the lower rod and 0.03 cm from
the surface of the liquid. Time series of the senso
resistance are recorded, and the differencesx between
adjacent local maxima in the series are computed. T
feedback element is a0.1 3 0.3 cm thermoelectric device
that is placed at the same height as the sensor on
opposite side of the liquid bridge [Fig. 1(a)]. Variation
of a voltageu changes the feedback element temperatu

FIG. 1. (a) Sketch of our liquid bridge convection experiment
The boundaries are coaxial stainless steel cylinders withr ­
0.3 cm andl ­ 0.3 cm. (b) Infrared image of the brightness
temperature (darker shading for colder temperatures) for tim
periodic liquid bridge convection. The helical structure o
the temperature field corresponds to a wave that propaga
azimuthally (left to right in the figure).
© 1996 The American Physical Society 3779
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and imposes a localized perturbation in the surface tens
gradients that drive the flow. During the time interva
required to determine a givenx, the correspondingu is
held constant.

Controlling the dynamics requires finding the perturb
tions that move the system from the present state to
target state. The algorithm proceeds in two stages:iden-
tification andcontrol. During the identification stage uni-
formly distributed, random perturbationsu are applied to
the liquid bridge, and the corresponding responsesx are
measured to create a reference set. During the con
stage,u and x that define the present state are recorde
while u andx for the target state are preset to values d
termined by the control objective. The reference set
then used to compute the necessary perturbations.

For discrete dynamics at theith iterate, the next applied
perturbationui11 is given by a control lawC

ucsid ; ui11 ­ Csssysidddd , (1)

where ysid is a vector that describes both the prese
and target states. Figure 2 illustrates schematically h
ucsid is obtained fromysid via the nonlinear mappingC.
We will consider the case whereysid is constructed from
time seriesx from a single sensor andu from a single
perturbing element, although the control law in Eq. (1
can be generalized for the case of multiple sensors a
perturbing elements.

For an m-dimensional linear system, the state of
system is sufficiently described in a time-delay space
sequencesu and x, each of lengthm [12]; we assume
that u and x of length m are also sufficient to specify
m-dimensional dynamics in the weakly nonlinear regim
[15]. The present state at theith iterate is determined
by xpsid ; sxi2m11, . . . , xid andupsid ; sui2m2d11, . . . ,
ui2dd, whered is a delay which includes the time for an
applied perturbation to propagate to the spatially separ
sensor. The target state is separated from the pres
state bym 1 d iterations and is characterized by time
forwarded sequencesxtsid ; sxi1m1d11, . . . , xi12m1dd
and utsid ; sui1m11, . . . , ui12md after the control se-

FIG. 2. Schematic representation of the multidimension
control surfaceC used to determine the next applied feedbac
perturbationuc from the present and target statesy. In the
experimentC is reconstructed from reference points (y, uc)
[±≤] gathered during the identification stage. During contr
at the ith iterate, nearby points [ysikd, ucsikd] [±] are used to
approximateC for determiningucsid from ysid.
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quence is completed. We use these sequences to de
ysid ; fxpsid, upsid, xtsid, utsidg. The values ofx andu
betweenxp, up and xt and ut , i.e., sxi11, . . . , xi1m1dd
and sui2d11, . . . , ui1m21d, describe the trajectory from
the present state to the target state; however, onlyui11

is computed at theith iterate; at subsequent iterates, th
remaining values ofu are determined by updating the
control lawC.

Figure 2 schematically demonstrates the approximati
of C from the reference data accumulated during the ide
tification stage. In the experiment, one thousand pertu
bationsu and the corresponding temperature responsesx
are used to form a set of reference sequencesy and cor-
respondinguc. The points (y, uc) are scattered about the
control surfaceC due to errors in measurement (Fig. 2)
During control at time stepi, the N nearest neighbors
ysikd, k ­ 1, . . . , N to the vectorysid are used to compute
a linear approximation ofC. For anm-dimensional sys-
tem, a minimum ofN ­ 4m data points is required for
a linear approximation; to improve the robustness of th
method we setN ­ 8m and use singular value decom-
position to find the4m coefficients of the approximating
hypersurface in this over-determined system. The pertu
bation ucsid is then computed and applied. The entir
computation procedure takes only0.2 sec on a 120 MHz
Pentium PC; however, the discrete time description of th
dynamics forces a one iteration delay (2.3 sec) before the
perturbation is applied.

For stabilization of an unstable periodic orbit in the
liquid bridge, the target dynamics are given byxt ­ 0 and
ut ­ 0. When the control algorithm is applied to the two
frequency convective flow, the second oscillation is rapid

FIG. 3. The application of control is illustrated for discretized
dynamics by time series of temperature differencesxi (top)
and applied perturbationsui (bottom). The control is applied
at time stepi ­ 400 and the second oscillation in the two-
frequency state is rapidly suppressed. Removing the control
time stepi ­ 800 allows the system to rapidly return to the
unperturbed dynamics.
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suppressed (Fig. 3). Initially, the applied perturbations a
large; at i ­ 400 the root-mean-squared power applie
to the thermoelectric element is approximately 10 mW
which is comparable to the heat flow through the liqui
bridge due to the temperature difference applied to th
boundaries. However, once the periodic orbit is stabilize
(,500 , i , 800), the thermoelectric power drops to
about 100 mW, less than1% of the heat flow through
the bridge (Fig. 3). After the control is turned off, the
system rapidly returns to the two-frequency dynamics
the unperturbed state.

We attempt control for several different values o
m and d, which are free parameters in our algorithm
The fastest convergence is achieved form ­ 4 and d ­
2, which suggests two independent frequencies in th
unperturbed dynamics. Two dimensions are required
describe the second frequency present in the unperturb
system; the other two dimensions effectively describe th
decay of stable modes in the liquid bridge and the therm
relaxation of the feedback element. The delayd ­ 2 is
approximately equal to the sum of the calculation dela
and the time for waves with azimuthal wave number 1 an
period of 2.3 s to propagate from the feedback eleme
location to the sensor location.

Figure 4 demonstrates that our control method is effe
tive for stabilizing states that lie far from the unperturbe
dynamics in the phase space. The target dynamics c
lie in any region of phase space that can be accessed d
ing the identification stage;u must be chosen sufficiently
large to move states in phase space over distances com
rable to the separation between the isolated unstable o
and the attractor of the unperturbed system. The cont
scheme fails forM * 19 000 because the dynamics be-
comes highly nonlinear, and the one thousand points
our reference set become insufficient for good interpol

FIG. 4. Second return map constructed from experiment
time series illustrating both the toroidal dynamics (contro
“off ”) and the stabilized periodic orbit (control “on”).
re
d
,

d
e
d

of

f
.

e
to
ed
e
al

y
d
nt

c-
d
an
ur-

pa-
rbit
rol

in
a-

al
l

tion. More sophisticated methods developed for nonline
time series prediction [16] may help extend the parame
range for control by improving the approximation of th
control surfaceC.

Feedback linearization [17], an alternative approa
to nonlinear control, has been demonstrated in lo
dimensional nonlinear systems [18]. In this method
feedback loop is constructed specifically to linearize th
system dynamics; control is then implemented usin
standard techniques from linear control theory that adju
the eigenvalues of the closed-loop system. This proced
is sensitive to the errors in parameter estimation from tim
series and fails as the dimensionality is increased. O
nonlinear control method constructs a control law bas
on the desired target state rather than on the adjustm
of eigenvalues. Comparison of the two methods indica
an order of magnitude higher tolerance to noise for o
method as compared to feedback linearization.

Our experiments demonstrate that a single local me
surement and feedback perturbation are sufficient to co
trol low-dimensional spatiotemporal dynamics. Howeve
the spatial structure for some states cannot be ignored.
particular, we have attempted to stabilize unstable tim
independent states using the present experiment.
cillations can be suppressed at the sensor location,
infrared imaging reveals the presence of standing wav
with antinodes between the feedback element and the s
sor. In this case, multiple spatially distributed measur
ments and perturbations will be required for control; w
are presently modifying our control algorithm and exper
ment to include two sensors and two feedback elemen
In this way liquid bridge convection serves as an ide
testbed for methods of controlling spatially extended no
linear systems.
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