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Excitation of Small Quantum Systems by High-Frequency Fields

Naama Brennérand Shmuel Fishmas

'Department of Physics, Technion, Haifa 32000, Israel
2Institute for Theoretical Physics, University of California, Santa Barbara, California 93106-4030
(Received 6 May 1996

The excitation by a high-frequency field of multilevel quantum systems with a slowly varying density
of states is investigated. A general approach is presented for a large class of driven systems with
a smooth evolution operator. The Floquet eigenstates are characterized semiclassically on several
energy scales. On a small scale sharp quasiresonance are found, whose shapersl and
independent of the field parameters and the details of the system. These are used to construct an
effective tight-binding equation for the large-scale amplitude superimposed on the quasiresonances.
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The excitation of quantum systems by external fieldaunperturbed representation. The universality of the QR’s
is a fundamental problem in quantum mechanics. Anyis surprising since we find that for a wide class of chaotic
interaction between matter and electromagnetic fields isystems the characteristic behavior of the eigenstates is
described, on the simplest level, by such a model. Giveulifferent from that found for a (banded) random matrix of
the system at some initial condition, one would like tosimilar bandwidth [8]. On a larger energy scale, our local
characterize its energy absorption from the external fieldolution allows us to construct an effective equation for
as a function of time. In some cases, simple quantunthe envelope of amplitudes superimposed on the QR’s,
systems can be described effectively by one degree dfimilar in nature to the one obtained assuming that the
freedom. One-dimensional (1D) driven systems haveesonances are of zero width [9]. The form of the local
been studied widely within the field of “quantum chaos” solution is used explicitly to write a tight-binding equation
[1,2], since they provide some of the simplest examples obn the lattice of QR peaks. The parameters of this equa-
guantum systems which are chaotic in the classical limittion are nonuniversal and are related to the unperturbed
The phenomenon of dynamical localization, where thespectrum and the matrix elements of the perturbation [10].
classical energy absorption associated with chaotic motion For systems with a slowly varying density of states,
is suppressed by quantum interference [3,4], has been af constant energy spacing is a good approximation on
special interest (for review, see S. Fishman in [1]). a local energy scale, and the deviations of the spectrum

In this work, ageneralapproach is presented for sys- from harmonicity appear as an adiabatic change of this
tems with a slowly varying density of states, driven byspacing with energy. This “adiabatic nonlinearity” of
a high-frequency field with matrix elements that varythe spectrum is characteristic of many 1D systems,
slowly with the quantum numbers of the unperturbedof which several examples are the hydrogenlike atom
system. We study the quasienergy (Floquet) eigenstate11], D. L. Shepelyansky in [1]), charge bubbles in
which are the stationary states of the time dependent syfiquid helium [9,12,13], and surface electrons in a 2D
tem [5], in the unperturbed representation, and charactemetal in a perpendicular magnetic field [14]. This work
ize their properties over several energy scales. On thpresents ayeneral framework for this class of systems,
smallest scale, we find that these states are composed ofram which some new results emerge and some known
ladder of sharp peaks, or “quasiresonances” (QR), whichesults for special cases are confirmed. We focus on
are related to quantum nearly resonant transitions between monochromatic driving, which is of high frequency
the energies of the undriven system. While the existenceompared to the typical frequencies of the system. Thus,
of such peaks is well known [6,7], here they are derivednany unperturbed levels participate in the excitation, and
from a local exact solution, which enables the quantitaa two-level approximation is inadequate. The driving
tive description of their location and shape. Surprisingly field is not assumed weak and &eoid using perturbation
the QR'’s turn out to have a universal shape, independetiheory. The basic idea employed in this work is to
of field parameters and of the details of the system. Irsolve the problem in a limited energy regime, where
particular, their width is independent of the driving field the locally defined energy spacing can be considered
parameters, a result which contrasts simple perturbatioconstant. This local solution relies on the exact quantum
theory or a two-level approximation. The “universality mechanical solution of an integrable model [15], and the
class” for which this result holds is characterized by aslow variation of the driving field matrix elements with
slowly varying unperturbed density of states, and slowlyquantum number is used explicitly. We then account
varying semiclassical matrix elements of the driving in thefor the large energy scales by exploiting the adiabatic
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dependence of parameters on energy. A similar idea wabe eigenvalue equation (2) appears as the equation for a
previously applied to the “bubble” model [16]. Here it is “linear kicked rotor” [15], which is an exactly solvable
shown that the results are quite general (more details imodel. Denoting the quasienergies of the linearized model
[17]), and apply to models of experimental relevance. by Al", its spectrum iS\'"T = woT(mod 27), and the
Consider the following 1D Hamiltonian in action-angle corresponding eigenstates due ~i*"", where
variables(/, #) of the bound system: o
H = Hy(l) + kV(I)g(8) cogOr). (1) (luy=e"* > J,B)sindm(p — 1 + m/e)] (5)

m=-—o
It is assumed thafH,(7) and V(I) are smooth functions
of I, and thatg(#) has a Fourier expansion with smooth,
slowly decaying components(m). Our objective is to
calculate the Floquet operator, and to characterize it
eigenstates in the unperturbed representalion where
I = nh. In the high-frequency regime, the field period
is a relatively short time scale and thus the semiclassic
approximation is expected to be very accurate. Using also sifz(l — 1; + 8j)]
a leading order approximation to the classical trajectories Q,() = a1 +5) (6)
[18], the Floquet eigenvalue equation is ! !
¢ I T/ IR =i/ RATD) |y y — o=iAT|y 0y (2)  Wherel; is the center of the QR andl; characterizes its
] ) . precise shape. For a given quasienergy, the corresponding
whereT' = 277/() is the period of the external drivind,  gjgenstate (5) is composed of only a small fraction of all
is the quasienergy, and possible Q;’s, at positions determined by’ through
T the relationE;, = Aji + jiQ — hwd;, with |8;] <
A(l,0) = kj; V(Dg(6 + e(Dr)codQr)dr.  (3)  1/2. Assuming that at each point tails of sinc functions
centered far away contribute incoherently, the absolute
(For details, see [17].) The physical reason why thevalue of the wave function is large on this sparse ladder
Floquet operator can be factored into a product of twaof QR’s. The width of the QR is independent of the
operators, as in Eq. (2), is that most of the energy transfedriving field strength and of the density of unperturbed
takes place around the singular point of the potentialstates. This is in contrast to the width associated with the
When approximating a 3D potential by one degree ofiransition rate given by Fermi’'s golden rule, and also in
freedom, usually one is dealing with the half line so acontrast to the Rabi width, both invalid approximations
special point naturally arises. For the hydrogen atom, e.gin our regime of parameters. It differs also from results
this is the nucleus; this has been the basis for constructingund for systems modeled by random matrices [8].
the Kepler map [19,20]. The existence of a singular point The next step is to construct the eigenstates of the
in space is related to the slow decrease of the Fouriagriginal nonlinear system by matching different energy
components of the drivingz (m). regimes, where in each a local solution holds. In this con-
We define a dimensionless parameter o /(), where  struction, there are two important scales in action space.
o = dHy/9I. In the absence of the driving, the solu- The first is the distance between classical resonances:
tions of Eq. (2) ared functions inn space. Fore <<  our local solution is valid only outside the close vicin-
1, the perturbation couples most effectivelyfunctions ity of classical resonances. The second is the width of
separated by approximatelyi) in energy (j integer), the resulting local solution, which is determined by the
corresponding to nearly degenerats. These form the Bessel function in Eqg. (5). Once the linearized local
QR ladder, which will be derived in what follows. For functions become wide enough to cover more than one
€ K1, classical resonance, it is expected that the different local
Al 0) lo 0<6<2m(l — €, ;olutior_ls (;na;l/t itnteract ?r;g rtnfatc?ri]ngt\zetwleen the 1Eregic()jns
1:0) = 27—0 is required. urns out that for the two classes of mod-
RCOS{T} 2m(l —€) <0 <2m, els described below, this matching condition coincides
4) with the Chirikov criterion for resonance overlap [21].
whereR = 2%kV(I)G(;m), andm is the integer closest This implies that for these cases, the matching should be
to 1/€, corresponding to classical resonaf¢e= m.w. imposed inside classically chaotic connected regions of
The Fourier series o is dominated by this resonance; phase space. Outside such regions, the decay of the eigen-
the smoothness of the driving coefficients allows us tcstates is expected to be determined by classical bounds.
take into account not only this term but also its vicinity. The QR'’s (6) are narrow compared to the classical struc-
Since Hy(nh) varies slowly as a function ofi, it  tures; therefore their shape, obtained from the solution
can be expanded around a large valeto first order:  of the linearized equation, is not expected to be strongly
Ho(nh) = Hy(noh) + wlh,wherel = (n — ng). Then effected by these structures, which vary only on much

with sindx) = sin(x)/x, ¢ = 7(u — 1) (1 — 2¢), and

B = (7 /hw)kV(ngh)G(m+)/ sin(wr/e). In the high-
grequency limit,e < 1, the function (5) is composed of a
chain of peaks separated by approximately the energy of
one photon, each weighted by an amplitude. These QR
are described by the function
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larger scales. The long range behavior of the linearized . p_2 - A
equation, determined by the Bessel function in (5), does H(p.x) = 2m + bx” + kO cog(dy), x =0,

not hold for the full nonlinear problem and therefore the (12)
matching outlined above is required.

Under conditions that the matching is valid, we use whereo is a real number;-2 < o <2 (b < 0foro <

0). The driving field is described in the dipole approxi-
E, = E, + (0E,/dn)n,l; (7 mation, and it is convenient to use dijferent gauges for the

to find that in the matched nonlinear solution, the QRcases of positive or negative; thus O = % for o > 0,

e and® = p/Q for o < 0. Both classes have a slowly
appear on the ladder of statessatisfying varying density of states, the interaction with the field is
E, = Ah + jiQ — (JE,/dn),,d; . (8) described by a functiok (1) which is slowly varying with
I, and g(#) with smooth Fourier coefficients. For high
nergies, (12) is well approximated by (1). Thus, on the

e scale they exhibit the universal QR structure. The
differences between the models appear in the envelope of

Thus the eigenvalug sets the origin of the ladder for the
corresponding eigenstate, and the QR’s are nhumbered [}
their position; on this ladder. Each is described approxi-
mately by the functiorQ;(n) of Eq. (6), characterized by . .
the peak positiom; ané the detuningé;| < 1/2, both amplitudes supﬁrlrgp%s_ed on the.pleaI;] structure. lelik
satisfying Eq. (8). The matching may alter the amplitudes . For o= 0, the bin ng po_tentlas ave a trianglelike
of the QR’s; therefore we write the global eigenstate in thesmgularlty near the originc = 0. The speC|a.I case Of.
following approximate form: o =1 corresp_onds to the bu_bble mode_:l, which is a tri-
angular potential well. The dipole matrix elements have
B B si7(n — n; + §;)] the asymptotic form{n|z|m) « (nh)*>?*9/(n — m)?.
(nluy = ZA,-Q,-(n) - ZA,- 7(n—n +06;,) The eigenstates for this case may be characterized by two
! ! ! / (9) qualitatively different regimes in space. In the smait

) ) ) ] ] regime they are exponentially localized, while for larger
This equation, together with Eq. (8) which defines the payjyes of # they are more extended, with a crossover
rameters:; andé;, constitutes the main result concerning point n, between the two regions, satisfying

c )

the structure of the Floquet eigenstates on a small scale.
They predict, for a given, the precise location and shape ne ~ (Q*/ k). (13)
of the QR’s of the corresponding eigenstate.

We now turn to determine the amplitudes. The
Floquet eigenvalue equation can be equivalently writte
in an extended Hilbert space of variablgs j) of which

In, j) = Inye” "9 are basis functions [22]: _
(Ev = 1} Q)b + 53,0 GO [brsir + bujoi] (S'”(}‘S"")(ﬁc“:z)fx]. FR Ay R Ay ~ 0,
~ By, (10) ! 1 14)
whered, ; = (n,j| ¢)andO = V(I)g(#). For smooth where C; is a constant andR™ = (1 * 6jileji1)‘2.
functionsV(I) the semiclassical matrix elements may beThe diagonal potential is given by the pseudorandom

written as{n|O|n’) = V(I)G(n — n'). Using the local function sif(75;), where §; = frac{3[Aa(A + j)]V/*}
structure of the QR’s and the properties of the sincanda = 2¢/(2 + o), damped along the lattice by \/J.

This is a generalization of a result previously found for the
special case of the bubble model [16]. In the asymptotic
Negimen — o, Eq. (11) becomes similar to the Anderson

model in a static electric field:

functions on a lattice, the equation reads The hopping terms depend weakly on positipn For
oo a random potential and strictly constant hopping, the
W sin(w8))A; — G Aj+1 — G Aj—1 =0, eigenstates are power localized with a power proportional
o nj

(11) to the square of the prefactor of the diagonal potential
[23]. Numerical calculations for the model (14) with

whereG= = G[(¥1/e;+1) + §;=1]ande;~ isthevalue o =1 provide evidence that these differences do not

of € at the (j = 1)th QR. This is a tight-binding alter the qualitative conclusion from the theorem (see

equation on the 1D lattice of QR’s labeled The [16], following [9]). Thus the eigenstates are power-law

diagonal potential is determined by tide, which are the decaying,

detunings of the energies,, from exact resonance, and A~ 1) (e FOY/R?) (15)

the hopping is related to matrix elements of the driving / J ’

between neighboring QR’s. The fact that there is onlywhere ¢; is a constant. This implies the existence of

near-neighbor coupling is a result of the driving beinga critical crossover field strength. ~ vAQ3 beyond

harmonic. which the tails of the eigenstates turn non-normalizable.
We consider two classes of models in some detailA similar result was stated previously in [9]. For the
These are described by the Hamiltonian special case of the bubble model, it was first obtained by
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