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Deconfinement and chiral symmetry restoration are explored in a confining, renormalizable, Dyson-
Schwinger equation model of two-flavor QCD. An order parameter for deconfinement is introduced
and used to establish that, in the chiral limit, deconfinement and chiral symmetry restoration are
coincident at Tc ø 150 MeV. The transitions are second order and each has the same critical
exponent:b ø 0.3. The deconfinement transition exhibits sensitivity to the current-quark mass.fp

and mp change by less than 10% forT , 0.7Tc; however, asT ! Tc, thermal fluctuations cause
the pion bound state contribution to the four-point quark-antiquark correlation function to disappear.
[S0031-9007(96)01539-6]
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The Dyson-Schwinger equations (DSEs) provide a n
perturbative, renormalizable, continuum framework
analyzing quantum field theories. An important exam
is the fermion DSE, which has proven useful in the stu
of confinement and dynamical chiral symmetry break
(DCSB) [1]. The DSEs form a tower of coupled equatio
which must be truncated to arrive at a tractable probl
Truncations that preserve the global symmetries of a fi
theory are easy to implement. Preservation of a ga
symmetry is more difficult, but there is progress in that
rection [2]. The elementary quantities are the Schwin
functions whose analytic properties provide informat
about confinement and DCSB; e.g., the absence o
Lehmann representation for the two-point dressed-gl
Schwinger function (gluon propagator) entails the abse
of asymptotic gluon states; i.e., gluon confinement. T
approach is reviewed in Ref. [3].

The finite-T properties of QCD are important in astr
physics and cosmology, and may be explored in a futu
generation heavy-ion accelerator program. Theoret
tools that can be employed reliably in the nonperturba
study of deconfinement and chiral symmetry restora
are therefore valuable. In Ref. [4] a one-parameter mo
dressed-gluon propagator was proposed, which prov
a good description ofp- andr-meson observables. Th
724 0031-9007y96y77(18)y3724(4)$10.00
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single parameter in this model is a mass scale,mt , that
marks the point where the nonperturbative, infrared
hancement found in gluon DSE studies [5] becomes do
nant. The model gluon propagator has no Lehma
representation. The calculated quark propagator also
no Lehmann representation; therefore both the gluon
quark are confined. Withmt fixed at T ­ 0, one has a
renormalizable DSE model of QCD, which manifests bo
confinement and DCSB, whose finite-T behavior may
provide insight into the finite-T properties of QCD.

The DSE for the renormalized dressed-quark propaga
at finiteT involves a sum over Matsubara frequencies.
nonperturbative DSE studies, where the analytic struct
of the dressed-quark propagator is calculated rather t
assumed, it is necessary to perform this sum numeric
because the usual analytic methods of evaluating it r
upon the quark propagator having a Lehmann represe
tion, which may not be the case for a confined quark. T
absence of a Lehmann representation also complicate
not precludes, a real-time formulation of the finite tempe
ture theory.

Herein we employ a Euclidean space formulation w
hgm, gnj ­ 2dmn, gm ­ gy

m, g ? p ;
P3

i­1 gipi, vk ;
s2k 1 1dpT , andVk ; 2kpT . The DSE for the renor-
malized quark propagator,S ; f2ig ? psAsp, vk d 2

ig4vksCsp, vkd 1 sBsp, vkdg, is
S21sp, vk d ; ig ? pAsp, vkd 1 ig4vkCsp, vkd 1 Bsp, vkd (1)

­ ZA
2 ig ? p 1 Z2sig4vk 1 mbmd 1 S0sp, vkd , (2)

mbm is the bare mass and the regularized self energy is

S0sp, vkd ­ ig ? pS0
Asp, vkd 1 ig4vkS0

Csp, vkd 1 S0
Bsp, vkd , (3)

with

S
0
F sp, vk d ­

Z L̄

l,q

4
3 g2Dmnsp 2 q, vk 2 vld

1
4 trfPF gmSsq, vldGnsq, vl; p, vkdg , (4)
© 1996 The American Physical Society



VOLUME 77, NUMBER 18 P H Y S I C A L R E V I E W L E T T E R S 28 OCTOBER1996

d

v

r

e

e
h

rba-
n
ures

n-
rk
on

ac-
the
tal
t to

ce
a

ion

r

re
,
le

i-
ogy
all
ter-
].
te
ing

in
ted

na-
f
in
-

e

where F ­ A, B, C; PA ; 2sZA
1 yp2dig ? p, PB ; Z1,

PC ; 2sZ1yvkdig4, and
RL̄

l,q ; T
P`

l­2`

RL̄ d3qys2pd3.
In Eq. (4), Gnsq, vl; p, vkd is the renormalized dresse
quark-gluon vertex andDmnsp, Vkd is the renormalized
dressed-gluon propagator.

In renormalizing we require that

S21sp, v0djp21v
2
0 ­m2 ­ ig ? p 1 ig4v0 1 mR , (5)

which entails that the renormalization constants are gi
by ZA

2 sm, L̄d ­ 1 2 S
0
Asm, v0; L̄d, Z2sm, L̄d ­ 1 2

S
0
Csm, v0; L̄d, mRsmd ­ Z2mbmsL̄2d 1 S

0
Bsm, v0; L̄d,

and the renormalized self energies are

F sp, vk ; md ­ jF 1 S
0
F sp, vk ; L̄d 2 S

0
F sp, v0; L̄d ,

(6)

F ­ A, B, C, jA ­ 1 ­ jC , andjB ­ mRsmd.
It is invalid to neglectAsp, vk; md andCsp, vk; md and

their dependence on their arguments. In studying confi
ment thesp, vkd dependence ofA andC is qualitatively
important since it can conspire with that ofB to eliminate
free-particle poles in the quark propagator [6].

The finite-T gluon propagator in Landau gauge is

g2Dmnsp, Vd ­ PL
mnsp, VdDFsp, Vd

1 PT
mnspdDGsp, Vd , (7)

PT
mnspd ;

Ω
0; m andyor n ­ 4 ,
dij 2

pipj

p2 ; m, n ­ 1, 2, 3 , (8)

with PT
mnspd 1 PL

mnsp, p4d ­ dmn 2 pmpny
P4

a­1 papa ;
m, n ­ 1, . . . , 4. A “Debye-mass” for the gluon appea
as aT-dependent contribution toDF .

Herein we employ a one-parameter model dress
gluon propagator. The value of this parameter,mt ­
0.69 GeV, was fixed in theT ­ 0 studies of Ref. [4].
Our extension of this model to finiteT , which involves
no additional parameters, is defined withDFsp, Vd ;
D sp, V; mDd andDGsp, Vd ; D sp, V; 0d;

D sp, V; md ; 4p2d

∑
2p

T
m2

t d0nd3spd

1
1 2 ef2s p21V21m2dy4m2

t g

p2 1 V2 1 m2

∏
, (9)

where d ­ 12ys33 2 2Nfd and the “Debye mass” is
m2

D ­ c̄T2, c̄ ­ 4p2dc, c ­ sNcy3 1 Nfy6d, which is
included in a manner analogous to that in Ref. [7]. Th
is noT-dependent mass inDG .

The first term in Eq. (9) is an integrable, infrared sing
larity [8] that generates long-range effects associated w
confinement [5]. The second term ensures that, negl
ing quantitatively unimportant logarithmic corrections, t
propagator has the correct perturbative behavior at la
spacelike arguments. In this model the large-distan
confining effects associated withd0nd3spd are completely
en
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canceled at small distances and one recovers the pertu
tive result. D sp, V; md has no Lehmann representatio
and hence represents a confined particle, since this ens
the absence of gluon production thresholds inS -matrix
elements describing color-singlet to singlet transitions.

Equation (9) is an Ansatz based onT ­ 0 studies aug-
mented by finite-T perturbation theory. Solving the gluon
DSE at finiteT would provide additional insight, but no
such studies are currently available. Without further i
formation; for example, solving the coupled gluon-qua
DSE system or lattice estimates of the two-point glu
Schwinger function, we cannot be sure that theT de-
pendence we have introduced provides a qualitatively
curate representation of the temperature evolution of
gluon propagator. The paucity of relevant experimen
data means that one cannot presently use experimen
constrain this extrapolation. This is the primary sour
of uncertainty in our study, and we therefore advocate
cautious interpretation of our results near the transit
temperature.

The model of Ref. [4] is recovered with two furthe
simplifying specifications. The approximation

Z1 ­ Z2 and ZA
1 ­ ZA

2 (10)

is used. Gauge invariance in finite-T QED entails these
Ward identities. In QCD the analogous identities are mo
complicated, and this is only a simplifying truncation
which has proven qualitatively and quantitatively reliab
in Landau gauge,T ­ 0 studies. In nonperturbative DSE
studies [4,9]Z2 andZA

2 are finite andø1.
In addition, the rainbow approximation

Gmsq, vl ; p, vkd ­ gm (11)

is used. InT ­ 0 studies this has proven to be rel
able in Landau gauge; i.e., an efficacious phenomenol
with a more sophisticated Ansatz only requires a sm
quantitative modification of the parameters that charac
ize the small-k2 behavior of the gluon propagator [6,10
To verify our assumption that this remains true at fini
T , one must repeat the development of our model us
one of the more sophisticated vertex Ansätz discussed
Refs. [3,11] or employ the systematic procedure presen
in Ref. [12].

Confinement can be investigated by studying the a
lytic properties of the two-point Schwinger function o
a given excitation. The confinement test proposed
Ref. [11], and used to good effect in Ref. [1], is ap
propriate to this task. ConsiderDB0 sx, 0d ; sTy2pxd 3P`

k­0 D
k
B0

sxd

Dk
B0

sxd ;
2
p

Z `

0
dp p sinspxdsB0 sp, vkd , (12)

where the subscript “0” denotes a quantity calculated in th
chiral limit, mR ! 0, in this caseB.
3725
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For a free fermion of massm, sBsp, vkd ­ myfv2
k 1

p2 1 m2g, henceD
k
Bsxd ­ m exps2x

p
v2

k 1 m2 d. This
illustrates that thek ­ 0 term dominates the sum. In this
case,Msx; Td ; 2sdydxd ln jD

0
Bsxdj ­

p
p2T2 1 m2, a

finite constant. Finite-T effects become important for
T , myp. In DSE studies,m is a mass-scale charac-
teristic of dynamical mass generation,M

uyd
E ø 300 MeV;

hence we expect finite-T effects to become noticeable a
T , 100 MeV.

A Schwinger function with complex-conjugate poles
with Rsp2d , 0 (timelike) andIsp2d ~ b, does not have
a Lehmann representation; i.e., it represents a confined
citation with no associated asymptotic state. This is the n
ture of the quark Schwinger function obtained in Ref. [4
In such casesD0

B0
sxd has at least one zero. Denote the po

sition of the first zero inD0
B0

sxd by r
z1
0 , which is inversely

proportional tob [11]. Define k0 ; 1yr
z1
0 , then k0 ~

b, and deconfinement is observed if, for someT ­ Tc,
d

u

r

s

3726
t

,
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k0sTcd ­ 0; at this point thermal fluctuations have over
whelmed the confinement scale parameter and the po
have migrated to the real axis.

We solve the DSE forSsp, vkd numerically with

mt ­ 0.69 GeV, mRsmd ­ 1.1 MeV , (13)

which were fixed in Ref. [4] by requiring a bestx2 fit to a
range ofp-meson observables atT ­ 0. We used ­ 4y9
in Eq. (9) and renormalize atm ­ 9.47 GeV [4]. With
these choices our current study has no free parameters.
useL̄ym ­ 1, jvkmax jyj $pjmax ø 1, njpj ­ 64 points in the
jpj array. Our results are cutoff independent. AtT ­
5 MeV the results in Table I of Ref. [4] are reproduced to
within 6%.

At finite T the pion mass is given by [4]

m2
p N2

p ­ kmRsmd sq̄qdmlp ; (14)
kmRsmd sq̄qdmlp ; 8Nc

Z L̄

k,p
B0ssB0 2 B0fv2

ks2
C 1 p2s2

A 1 s2
Bgd , (15)

which vanishes linearly withmRsmd, and

N2
p ­ 2Nc

Z L̄

k,p
B2

0hhh s2
A 2 2fv2

ksCs0
C 1 p2sAs0

A 1 sBs0
Bg

2
4
3 p2ssshv2

kfsCs00
C 2 ss0

Cd2g 1 p2fsAs00
A 2 ss0

Ad2g 1 sBs00
B 2 ss0

Bd2jdddjjj , (16)
ion

on

s

with s
0
B ; ≠sBsp2, vkdy≠p2, etc. Np is the canonical

normalization constant for the Bethe-Salpeter amplitu
in ladder approximation. The pion decay constant
obtained from

fpNp ­ 4Nc

Z L̄

k,p
B0hsAsB 1

2
3 p2ss0

AsB 2 sAs0
Bdj .

(17)

Equation (14) accurately estimates the mass obtain
in solving the dressed-ladder pion Bethe-Salpeter eq
tion [4]. Equations (15)–(17) neglect Osm2

pd corrections,
which are unimportant (,3%) for all values ofT ; i.e., mp

is dominated by a linear response tomR at all T .
In deriving these formulas one assumes the pion Beth

Salpeter amplitudeGp ­ ig5B0, which is a manifestation
of Goldstone’s theorem [12]. SinceB0 6; 0 only if chi-
ral symmetry is dynamically broken, these formulas a
not valid above any chiral symmetry restoration temper
ture, T

x
c .

All calculated observables are quantitatively sensitiv
to A andC; e.g., in the present study we findAs0, v0d ,
1.5 andCs0, v0d , 1.5 1.8 (increasing withT ) and they
return to1 at the renormalization point—neglecting thi
variation entailsfp ! 2fp , which one may not be able
to compensate by readjusting a model’s parameters.

We employ the simplest order parameter for DCSB,

x ; B0sp ­ 0, v0d . (18)
e
is

ed
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e-
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e

We plotxsTd andk0sT d in Fig. 1. The curves, fitted on
T [ f120, 150g MeV, are of the formas1 2 TyTcdb with
Tc ­ 150 MeV anda, b given in Table I. The transitions
are coincident andbx ­ bk0 , within errors,,10%.

N2
p , Npfp , andkmRsmd sq̄qdml behave similarly and the

parameters characterizing their behavior at the transit

FIG. 1. The order parameters for chiral symmetry restorati
[xsT d, diamonds] and deconfinement [k0sT d, circles] both
vanish atTc ­ 150 MeV. The parameters for the fitted curve
are presented in Table I.
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TABLE I. Parameters characterizing the behavior of the liste
quantities, fitted toas1 2 TyTcdb , nearTc ­ 150 MeV.

a b

x 1.1 GeV 0.33
k0 0.16 GeV 0.30
N2

p s0.18 GeVd2 1.1
fpNp s0.15 GeVd2 0.93
kmRsq̄qdl s0.15 GeVd4 0.92
mp 0.12 GeV 20.11
fp 0.12 GeV 0.36

are presented in Table I. To avoid round-off errors ass
ciated with division nearT ­ Tc, we used the results for
these quantities to determine the parameters describing
behavior ofmp andfp near the transition, which are listed
in Table I. We plotmp sTd andfpsT d in Fig. 2.

The massive quark is not deconfined at the same te
perature. However, denoting bykm the deconfinement or-
der parameter evaluated withmR fi 0, we observe that the
behavior ofkm undergoes a qualitative change atTk0

c ­
T

x
c , where no contribution toBsp, vkd remains that does

not vanish asmR ! 0. Fitting km ­ as1 2 TyT km db we
find

a sGeVd b T km sGeVd
T # T

x
c : 0.15 0.23 0.16 ,

T . T
x
c : 0.26 0.71 0.18 .

(19)

For T . T
x
c , a fit with bkm ­ 0.23 has a 5-times larger

standard deviation. Theuyd quark in this model is
therefore deconfined atT , 180 MeV, suggesting that
the deconfinement temperature increases withmR.

We explored the finite-T properties of a renormalizable,
confining, DSE model of QCD [4]. Introducing an
order parameter for confinement we found that, in th
chiral limit, a deconfinement transition atT ø 150 MeV
is accompanied by the coincident restoration of chir

FIG. 2. Temperature dependence of the pion mass [mp sT d,
circles] and pion weak-decay constant [fpsT d, diamonds].
d

o-

the

m-

e

al

symmetry. The single model parameter, fixed atT ­ 0,
is appropriate for two-flavor QCD: the transitions ar
second order and are not described by mean-field critic
exponents. Similar results have been obtained in rece
numerical simulations of lattice QCD at finiteT [13].
Some aspects of the non-mean-field behavior obtained
Ref. [13] are discussed in Ref. [14].

fp and mp are weakly sensitive toT for T , 0.7T
x
c .

However, asT approachesT
x
c , the mass eigenvalue in the

pion Bethe-Salpeter equation moves to increasingly larg
values, as thermal fluctuations overwhelm attraction in th
channel, until atT ­ T

x
c there is no solution andfp ! 0.

This means that the pion-pole contribution to the fou
point, quark-antiquark correlation function disappear
i.e., there is no quark-antiquark pseudoscalar bound st
for T . T

x
c . This may have important consequences fo

a wide range of physical observables [15], if borne out b
improved studies; e.g., thisT dependence offp and mp

would lead to a 20% reduction in thep ! mnm decay
widths atT ø 0.9T

x
c .
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