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Continuum Study of Deconfinement at Finite Temperature
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Deconfinement and chiral symmetry restoration are explored in a confining, renormalizable, Dyson-
Schwinger equation model of two-flavor QCD. An order parameter for deconfinement is introduced
and used to establish that, in the chiral limit, deconfinement and chiral symmetry restoration are
coincident atT. = 150 MeV. The transitions are second order and each has the same critical
exponent:3 = 0.3. The deconfinement transition exhibits sensitivity to the current-quark m#ss.
and m, change by less than 10% fdf < 0.7T.; however, asT — T,, thermal fluctuations cause
the pion bound state contribution to the four-point quark-antiquark correlation function to disappear.
[S0031-9007(96)01539-6]

PACS numbers: 12.38.Aw, 11.10.Wx, 11.15.Tk, 24.85.+p

The Dyson-Schwinger equations (DSESs) provide a nonsingle parameter in this model is a mass scaig, that
perturbative, renormalizable, continuum framework formarks the point where the nonperturbative, infrared en-
analyzing quantum field theories. An important examplehancement found in gluon DSE studies [5] becomes domi-
is the fermion DSE, which has proven useful in the studynant. The model gluon propagator has no Lehmann
of confinement and dynamical chiral symmetry breakingrepresentation. The calculated quark propagator also has
(DCSB) [1]. The DSEs form a tower of coupled equations,no Lehmann representation; therefore both the gluon and
which must be truncated to arrive at a tractable problemquark are confined. Withm, fixed at7T = 0, one has a
Truncations that preserve the global symmetries of a fieldenormalizable DSE model of QCD, which manifests both
theory are easy to implement. Preservation of a gaugeonfinement and DCSB, whose finile-behavior may
symmetry is more difficult, but there is progress in that di-provide insight into the finité&- properties of QCD.
rection [2]. The elementary quantities are the Schwinger The DSE for the renormalized dressed-quark propagator
functions whose analytic properties provide informationat finite T involves a sum over Matsubara frequencies. In
about confinement and DCSB; e.g., the absence of aonperturbative DSE studies, where the analytic structure
Lehmann representation for the two-point dressed-gluonf the dressed-quark propagator is calculated rather than
Schwinger function (gluon propagator) entails the absencassumed, it is necessary to perform this sum numerically
of asymptotic gluon states; i.e., gluon confinement. Théecause the usual analytic methods of evaluating it rely
approach is reviewed in Ref. [3]. upon the quark propagator having a Lehmann representa-

The finite properties of QCD are important in astro- tion, which may not be the case for a confined quark. The
physics and cosmology, and may be explored in a futureabsence of a Lehmann representation also complicates, if
generation heavy-ion accelerator program. Theoreticatot precludes, a real-time formulation of the finite tempera-
tools that can be employed reliably in the nonperturbativeure theory.
study of deconfinement and chiral symmetry restoration Herein we employ a Euclidean space formulation with
are therefore valuable. In Ref. [4] a one-parameter modely,,, y,} = 26,,, v, = y;g, v-p= Z;Ll YViDiy O =
dressed-gluon propagator was proposed, which provide@k + 1)#T, andQ; = 2k« T. The DSE for the renor-

a good description ofr- and p-meson observables. The malized quark propagator§ = [—iy - poa(p, wi) —

iyswroc(p, wp) + op(p, wi)l, is

SN (p,wi) =iy - pA(p, wr) + iyswiC(p, i) + B(p, i) (1)
= Z8iy - p + Zo(iyswr + mpm) + 3 (p, wy), 2

mpm 1S the bare mass and the regularized self energy is

2/(psa)k) = 17 : pgg(pswk) + i'}’4wk2/c(p’wk) + ElB(p’wk)’ (3)

with N
S(p,wr) = fl 38°D,(p — g 0r — @) 1t Pry,S(q, )T, (g, w13 p, @], (4)
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where F = A,B,C; Py = —(Zf‘/pz)iy -p, Ps =27, canceled at small distances and one recovers the perturba-
Pe=—(Z,/wi)iys, and szq =7y [“d3q/@m)3. tive result. D(p,Q;m) has no Lehmann representation
In Eq. (4), T, (q, @;; p, wi) is the renormalized dressed a@nd hence represents a confined particle, since this ensures
quark-gluon vertex and,,,(p, Q) is the renormalized the absence of gluon production thrgsholdsSmne_ltrlx
dressed-gluon propagator. elements describing color-singlet to singlet transitions.
In renormalizing we require that Equation (9) is an Ansatz based @n= 0 studies aug-
mented by finitef' perturbation theory. Solving the gluon
3*1(11,,(,)0)|pzm5=M2 =iy - p+ iyswo + mg, (5) DSE at finiteT would provide additional insight, but no
such studies are currently available. Without further in-
which entails that the renormalization constants are giveformation; for example, solving the coupled gluon-quark

by Z3(u,A) =1 — Sh(p,w0;A), Zo(u,A) =1 —  DSE system or lattice estimates of the two-point gluon
S, wo; ), mp(p) = Zompm(A?) + S5(u, wo; A),  Schwinger function, we cannot be sure that thede-
and the renormalized self energies are pendence we have introduced provides a qualitatively ac-

_ ~ curate representation of the temperature evolution of the
Fp.opw) = éx + 3(p, o A) — 2%(p,wo; A),  gluon propagator. The paucity of relevant experimental
(6) data means that one cannot presently use experiment to
constrain this extrapolation. This is the primary source
F =AB,C,éxs=1=éc,andép = mp(u). of uncertainty in our study, and we therefore advocate a
Itis invalid to neglectd(p, wy; u) andC(p, wi; w) and  cautious interpretation of our results near the transition
their dependence on their arguments. In studying confingemperature.
ment the(p, w;) dependence od andC is qualitatively The model of Ref. [4] is recovered with two further
important since it can conspire with that Bfto eliminate  simplifying specifications. The approximation
free-particle poles in the quark propagator [6].

The finite7" gluon propagator in Landau gauge is Z =2, and Z{ =74 (10)
2 _ pL
8" Dur(p. Q) = P (p. D)Ar(p. Q) is used. Gauge invariance in finife-QED entails these
+ P, (p)Ac(p,Q), (7)  Ward identities. In QCD the analogous identities are more
, _[0; m andfor v =4, cor_nplicated, and this_is _onIy a simplify.ing. truncaFion,
P, (p)= 5ij — P{;Igf; wov =1,2,3, (8)  which has proven qualitatively and quantitatively reliable

in Landau gaugel = 0 studies. In nonperturbative DSE
studies [4,9]Z, andZ4 are finite and=1.

with P2 (p)+ PL (p.ps)=8,, — i ; *: : o=
o (P)+ Py (Do Pa) = Oy = Pulv/ 2zt ParPe In addition, the rainbow approximation

u,v =1,...,4. A “Debye-mass” for the gluon appears
as aT-dependent contribution tA .

Herein we employ a one-parameter model dressed- (g, 0i5p, 00 = vy (11)
gluon propagator. The value of this parameter, =
0.69 GeV, was fixed in thel = 0 studies of Ref. [4]. is used. InT = 0 studies this has proven to be reli-
Our extension of this model to finit&, which involves able in Landau gauge; i.e., an efficacious phenomenology

no additional parameters, is defined witty(p, Q) =  With a more sophisticated Ansatz only requires a small
D(p,Q;mp) andAg(p, Q) = D(p,Q;0); quantitative modification of the parameters that character-

ize the smallk’> behavior of the gluon propagator [6,10].
2 To verify our assumption that this remains true at finite
. = 2 =4 2 3
D(p.Qim) = 4m d[ 7 Mi%0n0°(p) T, one must repeat the development of our model using

| - e[_(pzm:+m2)/4mg]} one of the more sophisticated vertex Ansatz discussed in
, (9)

pr+ Q2+ m?

Refs. [3,11] or employ the systematic procedure presented

in Ref. [12].

where d = 12/(33 — 2N;) and the “Debye mass’ is Confinement can be investigated by studying the ana-
2 oo - 5 ! S Iytic properties of the two-point Schwinger function of

mp = ¢T*, ¢ = 4m*dc, c = (N./3 + N;/6), which is : o . .

. .’ ’ ¢ Jroh a given excitation. The confinement test proposed in

included in a manner analogous to that in Ref. [7]. Thequef [11], and used to good effect in Ref. [1], is ap-

is no T-dependent mass ifi;. g . : _
The first term in Eq. (9) is an integrable, infrared Singu_proprlate to this task. Considex, (x,0) = (T/2mx) X

o k
larity [8] that generates long-range effects associated Witgk:o A%, ()
confinement [5]. The second term ensures that, neglect- 2 [
ing quantitatively unimportant logarithmic corrections, the A%, (x) = p f dp psin(px)og,(p,@r),  (12)
propagator has the correct perturbative behavior at large 0
spacelike arguments. In this model the large-distancayhere the subscript)f” denotes a quantity calculated in the
confining effects associated with,, 8°(p) are completely chiral limit, mz — 0, in this caseB.
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For a free fermion of masa, o3(p, w;) = m/[w,% + ko(T.) = 0; at this point thermal fluctuations have over-
p? + m?], henceAb(x) = mexp(—xy/w? + m?). This  whelmed the confinement scale parameter and the poles
illustrates that thé& = 0 term dominates the sum. In this have migrated to the real axis.

case,M(x;T) = —(d/dx)In|A%Y(x)| = V72T? + m2, a We solve the DSE fof(p, wi) numerically with
finite constant. Finite- effects become important for
T ~ m/a. In DSE studies is a mass-scale charac- m, = 0.69 GeV, mp(p) = 1.1 MeV, (13)

teristic of dynamical mass generaticME/d =~ 300 MeV;
hence we expect finitg- effects to become noticeable at
T ~ 100 MeV.

A Schwinger function with complex-conjugate poles
with R(p?) < 0 (timelike) and3I(p?) = b, does not have
a Lehmann representation; i.e., it represents a confined e
citation with no associated asymptotic state. This s the na: .
ture of the quark Schwinger function obtained in Ref. [4]?3\/;:?]?:6'{;? results in Table 1 of Ref. [4] are reproduced to
In such caseA%O(x) has at least one zero. Denote the po- At finite'T the pion mass is given by [4]
sition of the first zero imgo(x) by rg', which is inversely
proportional to_b [11]. _Define Ko E_l/rél, then k « miNfT = (mr(w) (G9) u)ws (14)
b, and deconfinement is observed if, for soffie= T, |

which were fixed in Ref. [4] by requiring a begt fit to a
range ofr-meson observables&t= 0. We used = 4/9
in Eq. (9) and renormalize gi = 9.47 GeV [4]. With
’these choices our current study has no free parameters. We
useA/u = 1, |k, |/] Plmax = 1,1, = 64 points in the
T(I_?| array. Our results are cutoff independent. At=

A
(mg(n) (Gq)u)m = 8Nc fk Bo(op, — Bolwiot + p*oi + ojl), (15)
P
which vanishes linearly withng(x), and
A
N2 = 2NC] Bi{ o3 — 2wiocol + pPosch + opoy]
k.p

= 3p*(wilocol — (00 + plloach — (@) + ooy — (o)}, (16)

with o = dos(p?, wi)/op?, etc. N, is the canonicall  We plot x (T) andxo(T) in Fig. 1. The curves, fitted on
normalization constant for the Bethe-Salpeter amplitudg” € [120, 150] MeV, are of the formx (1 — T /T,)? with
in ladder approximation. The pion decay constant isT. = 150 MeV ande«, B8 given in Table I. The transitions

obtained from are coincident ang, = B,,, within errors,~10%.
i N2, N, fn, and(mg(n) (Gq),) behave similarly and the
faNz = 4ch Bo{oaos + 3p*(chos — oach)}. parameters characterizing their behavior at the transition
k,p
17) . .

*

*ee0
¢
*
*

Equation (14) accurately estimates the mass obtained
in solving the dressed-ladder pion Bethe-Salpeter equa- (4
tion [4]. Equations (15)—(17) neglect(@2 ) corrections,
which are unimportant{3%) for all values ofT’; i.e., m
is dominated by a linear responsertg at all T

In deriving these formulas one assumes the pion Bethe-
Salpeter amplitudé’,, = iysBy, which is a manifestation
of Goldstone’s theorem [12]. Sind& # 0 only if chi- 04
ral symmetry is dynamically broken, these formulas are
not valid above any chiral symmetry restoration tempera-
ture, T¢ .

All calculated observables are quantitatively sensitive sesoeees
to A andC; e.g., in the present study we fidd0, wg) ~
1.5 and C(0, wy) ~ 1.5-1.8 (increasing with7') and they 0.0 L— — _—

A . . . 0.0 50.0 100.0 150.0

return to1 at the renormalization point—neglecting this
variation entailsf, — 2f.,, which one may not be able T(MeV)
to compensate by readjusting a model’s parameters. FIG. 1. The order parameters for chiral symmetry restoration

We employ the simplest order parameter for DCSB, [x(7), diamonds] and deconfinementq[7), circles] both
vanish atT, = 150 MeV. The parameters for the fitted curves

X = Bo(p = 0,wp) . (18) are presented in Table I.
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TABLE I.
quantities, fitted tax(1 — T/T,.)?, nearT. = 150 MeV.

a B
Y 1.1 GeV 0.33
Ko 0.16 GeV 0.30
N2 (0.18 GeV)? 1.1
faN, (0.15 GeV)? 0.93
(mr(Gq)) (0.15 GeV)* 0.92
oy 0.12 GeV —0.11
fr 0.12 GeV 0.36

are presented in Table I. To avoid round-off errors asso
ciated with division neafl” = T., we used the results for
these quantities to determine the parameters describing t
behavior ofm,, andf, near the transition, which are listed
in Table I. We plotm.(T) and f.(T) in Fig. 2.

The massive quark is not deconfined at the same te
perature. However, denoting ly, the deconfinement or-
der parameter evaluated witky # 0, we observe that the
behavior ofx,, undergoes a qualitative changeZat =
T&, where no contribution t®(p, ;) remains that does
not vanish asng — 0. Fitting k,, = a(1 — T/T*")? we
find

a (GeV) B T+ (GeV)
T=T¢: 015 023 0.16, (19)
T>TY: 026 071 0.18.

For T > T¥, a fit with 8, = 0.23 has a 5-times larger
standard deviation. The/d quark in this model is
therefore deconfined & ~ 180 MeV, suggesting that
the deconfinement temperature increases wigh

We explored the finite- properties of a renormalizable,
confining, DSE model of QCD [4]. Introducing an

order parameter for confinement we found that, in the

chiral limit, a deconfinement transition &= 150 MeV

is accompanied by the coincident restoration of chiral

200.0 ‘: ]
°
°
.
160.0 | m, (MeV) ° ]
L ]
® 000000000 06 g000°°®
120.0 | ]
%O-’ $e00 00004 40 teee, ]
f. MeV) * .
40.0 - ‘.“ ]
.
0.0 ' I I
0.0 50.0 100.0 150.0
T (MeV)

FIG. 2. Temperature dependence of the pion mass(T),
circles] and pion weak-decay constayit (T'), diamonds].

m

Parameters characterizing the behavior of the listedsymmetry. The single model parameter, fixed'at 0,

is appropriate for two-flavor QCD: the transitions are
second order and are not described by mean-field critical
exponents. Similar results have been obtained in recent
numerical simulations of lattice QCD at finit€ [13].
Some aspects of the non-mean-field behavior obtained in
Ref. [13] are discussed in Ref. [14].

f= andm, are weakly sensitive t@ for T < 0.7TX.
However, ag" approache§, the mass eigenvalue in the
pion Bethe-Salpeter equation moves to increasingly larger
values, as thermal fluctuations overwhelm attraction in the
channel, until af = T there is no solution anf, — 0.

This means that the pion-pole contribution to the four-

Hoeoint, guark-antiquark correlation function disappears;

I.e., there is no quark-antiquark pseudoscalar bound state
for T > TZ. This may have important consequences for
a wide range of physical observables [15], if borne out by
improved studies; e.g., this dependence of,, and m,,
would lead to a 20% reduction in the — wv, decay
widths at7 ~ 0.97¢.
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