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Global Persistence Exponent for Nonequilibrium Critical Dynamics
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A “persistence exponent® is defined for nonequilibrium critical phenomena. It describes the
probability, p(r) ~ ¢+, that the global order parameter has not changed sign in the time interval
following a quench to the critical point from a disordered state. This exponent is calculated in mean-
field theory, in then = o limit of the O(n) model, to first order ire = 4 — d, and for the 1D Ising
model. Numerical results are obtained for the 2D Ising model. We argu® tisah new independent
exponent. [S0031-9007(96)01451-2]

PACS numbers: 05.70.Ln, 05.50.+q, 05.70.JK,

For many years it was believed that critical phenomena&oarsening dynamics. Recently, we have shown that even
were characterized by a set of three critical exponentghe diffusion equation exhibits a nontrivial persistence ex-
comprising two independent static exponents (other statiponent, and have developed a rather accurate approximate
exponents being related to these by scaling laws) antheory for this case [6]. The diffusion equation is itself
the dynamical exponerd. Then, quite recently, it was a model of ordering dynamics, via the approximate the-
discovered that there is another dynamical exponent, thery of Ohta, Jasnow and Kawasaki (OJK) [7], and also
“nonequilibrium” (or “short-time”) exponentA, needed describes, in its essential features, the ordering kinetics
to describe two-time correlations in a system relaxing taf the nonconserved(n) model in the large: limit [8]:
the critical state from a disordered initial condition [1,2]. The exponent® for these systems (OJK and larggare
It is natural to ask “Are there any more independentjust those of the diffusion equation.
critical exponents?”. In this Letter we propose such In this Letter we introduce and calculate the analogous
an exponent—the “persistence exponefit’associated exponentd for nonequilibriumcritical dynamics. In this
with the probability, p(r) ~ +~?, that the global order case, however, one needs to consider ghabal, rather
parameter (e.g., the magnetization of a ferromagnethan thelocal order parameter. This is because individual
has not changed sign in time following a quench to degrees of freedom (“spins,” say) are rapidly flipping so
the critical point from the high-temperature phase. Wethat the probability of not flipping in an intervalhas an
calculate # in mean-field theory, in the: = o limit exponential tail. We shall see, however, that the proba-
of the O(n) model, to first order ine =4 — d (d =  bility for the global order parameter not to have flipped
dimension of space) and for the= 1 Ising model. In indeed decays as a power law. One simplifying prop-
fact, it turns out that all these results satisfy the scalingerty of the global order parameter is that, in the ther-
law 0z = A — d + 1 — /2, which can be derived on modynamic limit, it remains Gaussian at all finite times.
the assumption that the dynamics of the global ordeiThis follows from the central limit theorem, on noting
parameter is a Markov process. We shall argue, howevethat the order-parameter field(x, ) has a finite corre-
that this process is in general non-Markovian, so thi  lation length,L(z) ~ ¢'/%. If the system has a volume
in general a new, nontrivial critical exponent. V > L(t)?, the appropriate Gaussian variable is the=

The persistence exponeit was first introduced in 0 Fourier componenipo(t) = [ [ d?x¢(x,1)]/+/V. From
the context of the nonequilibrium coarsening dynamicsstandard scaling(é3(¢)) ~ L(:)>~". This follows from
of systems at zero temperature [3,4]. In that contexthe k — 0 limit of the scaling form [1{ & (1) k(1)) =
it describes the power-law decay,(r) ~ t~¢, of the k=@ "G[kL(1)].
probability that the local order parametér(x) has not Our explicit results are derived from the
changed sign during the time intervakfter the quench Langevin equation for the vector order parameter
to T = 0. Equivalently, it gives the fraction of space (;5 = (p1,...,Pn):
in which the order parameter has not changed sign
up to time:. More generally, one can consider the ;5 4. — v2¢, — r¢p; — (u/n)dh'Z(b,z +&, @
probability po(t;, ;) of no sign changes between and 7
1. Scaling considerations suggestr;, ) = f(t1/t2) ~ R
(t1/t2)? for t, > t,. where £(x, 1) is a Gaussian white noise with mean zero

Exact solutions for one-dimensional systems [4,5] indi-and correlatok¢;(x, 1)&;(x/, ')y = 28;;64(x — x')&(t —
cate that, in general is a new nontrivial exponent for ¢'). [For a vector order parameter, we are definirig) as
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the probability that a givesomponenbf the global order  1</*y, to givea,iy = 1 </*£(z). Introducing the new time

parameter®(r) = [d?x¢(x,t), has not changed sign].  variabler = ¢*, this equation reduces to the random walk
In mean-field theory, valid ford = 4, we setr =  equationd s = n(7), with » a Gaussian white noise, if

0 = u. Then thek = 0 Fourier componen®;(0,7) = one chooses = (2 — €)/2. The final result is therefore

®,(1)/v/V (where V is the volume) obeys the simple p(t) ~ 771/2 = t2=4/4 giving

equation (suppressing the indeand the arguments) 0 = (d — 2)/a, d<d<4(n=o). )

0 =&, (2) Ford > 4, 6 sticks at the mean-field value of2.
indicating that¢ executes a simple random walk. The Finally, we calculated to first order ine =4 — 4.
nonflipping probability p(¢) is therefore just the proba- This is most simply accomplished using the method of
bility that the random walker has not crossed the ori-Wilson [10]. To ordere the calculation can be carried out
gin up to timer. It is given by [9] p(r) ~ |dol/+/t  Ind = 4, by expandingp(r) to first order inu, settingu
for large 7, where ¢, is the initial value of¢p. Finally  equal to its renormalization-group (RG) fixed-point value,
one has to average ovép,|. For a disordered initial and exponentiating logarithms.
condition, ®(0) ~ +/V by the central limit theorem, so  The perturbative calculation ¢f(r) is in principle quite
do = ®(0)//V is 0(1), the desired average is alexl),  a difficult task. A systematic technique for performing
and p(t) ~ 1//t. We conclude tha? = 1/2 in mean- the perturbation expansion was recently developed by two

field theory. of us [11] in the general context of first-passage-time
Next we consider the largedimit. Equation (1) then problems for non-Markov Gaussian processes. It amounts
simplifies to the self-consistent linear equation to expanding around the random walk (2) within a path-

) ) integral formulation of the problem. Since the global

0=V —(r +ul@N¢ + &, ®3) order-paramete® (1) remains Gaussian at all times (in the

for each component. Defining(r) = —r — u(¢>2) and thermodynamic limit), this method is applicable. In the

b(t) = [' a(t')dr', (3) has the Fourier-space solution present work, however, we restrict ourselves to first order
in €, for which the result can be obtained by elementary

d(k,1)= $(0,1) exfdb(t) — k*t] methods. The reason is that the dynamic€¢f) remain
. Markov to this order, as we shall see.
+ [ dr' E(k, ) exdb(t) — b(t) — K2t — ')]. First we replaceu/n in (1) by u, to conform to the
0 conventional notation foe expansions. To first order in

(4)  u, one can as usual replace the nonlinear tegn> (;')]2

. . . 2
It is easy to show that the second term, involving thell (1) Py the linearized form(n + 2)u(¢;)¢;. The

. M 2 _
noise, dominates the first at large[1]. Retaining only ~required expression fof¢;) can be evaluated at = 0

the second, computingp?), and definingg = exp(—26) andr =0, sincer. is also O(u). For this part of the
leads to the equation calculation, therefore, we can use the mean-field result,

t 7 — 7 _ 72
9,8 = ng + 4”[ d[/g(l‘l) ¢k(t) ¢k(0)exp( k l‘)
0

+/"mfgwemkﬁu—tﬂ,(m)
0

X > exd—2kX(t — 1], (5)
k to give
which can be solved by Laplace transformation. Setting
r equal to its critical valuey, = —u >, k2 gives <¢f) =A Zexp(—2k2t)
K
g(s) =[s + 4u{J(0) — J(s)}]7", (6)
+ Z%[l — exp(—2k*1)], (11)
()= Dls + 237, (7) L
k where we have usetthy (0)¢—(0)) = A, appropriate to

short-range spatial correlations in the initial state.

To order the critical point is, = —(n + 2)u D>\ k2.
The effective Langevin equation for thle = 0 mode,
correct toO(u), is therefore (suppressing the indeand
the momentum subscript)

from which one deduces ~ s2~9/2 for s — 0, for 2 <
d < 4. Inverting the Laplace transform gives (with=
4 — d) g(t) ~ t~¢/% for t — o, whenceb ~ (e/4)Int,
anda(t) ~ €/4t.
The larger equation of motion (3) therefore reduces to

0b = (e/a)d + & (8) O = 0+ 2u
for the k = 0 Fourier component otb. The final step > <L _ A) k2D + E 12
is to eliminate the first term on the right by settigg= % k? X né +¢. (12)
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The k integrals are now performed ith = 4. Itis clear where A describes the asymptotics of the two-time
that the term involving the initial-condition correlatdr  correlation function of the global order parameterTat
is smaller (by one power af) than that coming from the (g (1)) (1,)) = ,(12"7)/21:(,2/,1), with F(x) ~ x@-V/z
thermal noise, and may therefore be dropped, giving for x — ». Using the known results) =0, z = 2,
~ ukyg 5« A=@Bd—4)/2 for n=o [1], =0, z=2,

0 =n+27=¢ + ¢, A3 g [ +2)/(n +8)]e/2 1o 0(e) [1], and
wherek, = 1/872 is the usual geometrical factor. Set- 7 =L 2 =2, A =1 for the ¢ = 1 Ising model [13],
ting u equal to its RG fixed-point value [1@] = e/[(n + one can.check that all of the results derived above satisfy
8)K,] gives an equation identical to the largeequation  this scaling law.

(8), but with the replacement — [(n + 2)/(n + 8)]e. _Does this sca}ling law hoI(_:i generally? We do not
Making the same replacement in (9), we deduce immethink so: we believe tha(r) is not a Markov process
diately that the exponertt is given by in general (though it is Gaussm_m), for the following rea-
1 L /n+2 son. Consider the autocorrelation function for the= 0
0 = > Z(n " 8)6 + 0(e?), (14) mode, (¢ (11)¢(r2)). We have seen that it has the scal-

. 2—n)/z . d—MN)/z
. ) . _ ing form r, F(t2/t1), with F(x) ~ x( for x —
W;}!tCh a}grees \i‘”t? (9)1£onb:ooo. ;m_tq%s'_ng /ulr;vir— . Now construct the normalized autocorrelation func-
ooy class &= 1), (14) becomesy = 1/2 = ¢ tion a1, 12) = (@(11) (12))/(B(1)2)*(@(12?) /2. This
o - — . has th ling f ) = , with ~
The final soluble limit we consider is thé = 1 Ising x3§d+1e—ns}gﬁzlr;gr frff’g} ﬁ)we i];1('[trl()/(itfj)(:e\l¥fl1€ r{e(\)/cv)time
model with Glauber dynamics. For this model, the critical, 5 iopje7 — Int, this becomes\(T,, T>) = ¢(T) — T»),

Eoirg is atT’ = 0, S.g the;ﬁritical” and “strongbcogj_pling” i.e., the process is a Gaussian stationary process in this time
f'Xe p_omlts co_|ncf|1 €. b N pers!zten((:je pr(l)_ a LW)V variable. Also the functio(7’) has the asymptotic form
or a single spin has been considered earlier [4]. e (T) ~ exp(—AIT]), With A = (A — d + 1 — 1/2)/z.

i /8 i . . : .
recently,l I h?S fbeen shown to_decay ?§I ’ W'thh Now if the process is Markoviarg(T) necessarily has
nontrivial results for generaj-state Poits Models [5]. T € this exponential form foall T, not just for asymptotically
calculation ofp(¢) for the global magnetizatioM (¢) is largeT [16]. Futhermore, the first-passage exponeig

much simpler. Atl" = 0 the dynamics is equivalent to a [0 19.16.171. which is the origin of th i
set of annihilating random walkers (the domain walls). Atﬁl en equal tol [9,16,17], which is the origin of the scaling

each time step, each random walker moves independen %\’1\/ (16) for Markov processes. Note that, in the original
' : ) iables, iring(7) to b impl tial
one step to the left or right [12]. Let the number of spins e variables, requiring(7) to be a simple exponentia

L o is equivalent to requiring that the scaling functi t
be N. Then the number of surviving walkers at timés q d g g 16611/12)

. . . be a simple power oft;/t, for all # > t;, not just
of orderN:~1/2 [13,14]. The change iM(r) in one time e p e 2 ! J

: : = th > 1.
step is therefore of ordefN +~!/#, since the contributions 2 So tlhe question of whethab (¢) is a Markov process
from the walkers add incoherently. The= 0 Fourier

5 — M/JN theref isfies the L . comes down to the question of whether the scaling func-
Comppnent¢ = M//N therefore satisfies the Langevin tion f(#;/1,) [of the normalized autocorrelation function
equation (up to constants) [15] 5

of ¢ (¢)] is a simple power law for all, = 7;. The known
¢ =1t"4¢0), (15)  results forn = %, O(e), and thed = 1 Ising model sat-
. . . . ~ _isfy this requirement. For the last of these, the reduc-
where £(r) is a Gaussian white noise£()¢(')) = tion to a random walk makes this transparent. In the

) i
C5(t — 1), andC is a constant. other two cases, it is consequence of the simplicity of

Th's. can be reduced to the sta_mdard Zrandom—wallfhe one-loop nature of the calculations, which give simple
dynamics through the change of variable- 7°. Equa- powers. ToO(e?), however, the structure of the “water-

H 7 — 1/2 2\ —
Sv%r:ar(éLS)(r;hﬁgs L%??;a‘ifr{dz;)_ (2:,); i(Z(?‘TZB(Zz(TI melon” two-loop graph leads to a nontrivial dependence
o) — ;C@(T =i (Z)Ti’S a%aussian e noise. ©M f1/12, Which does not reduce to a simple power [18].
We conclude thap(t’) 'oc';_?l/z — 14 e = 1/4for " It follows that the putative scaling law (16) will fail at

. ) P T O(€?): The dynamics of the global order parameter are
this model. It is rem.arkablg, but certainly Comc'der!tal’non—Markovian in general, and the exponents an in-
tha_t ;heo(e) result gives this result exactly, on setting dependent critical exponent. Similar conclusions follow
€= consideration of the next term in thé¢n expansion.

At this point we note a simplifying feature of all the The exponen® was measured numerically for 2D Ising

irsezugzsreisaer?tl\slgrio \1;ar,r ncam:Iiyn, tt:/e rund:rg'nghﬁglirgbcﬁ/stems, using a finite-size scaling technique for square lat-
SS ov proces every case. ces of linear sizd. = 24, 32, 48, 64, 96, and 128, with

be apparent fro(rjn Egs. (2)’é8?’ (13), an(lj_ (l?)' Folrﬁs.ucq)eriodic boundary conditions. Starting from a random
cases one can derive (see below) a scaling law relating initial condition, the systems were evolved using heat-

to other exponents, namely, bath Monte Carlo dynamics at the bulk critical coupling
Oz=A—d+1—-1n/2, (16) K. =[In(1 + +/2)]/2. Each system was evolved until the

3706



VOLUME 77, NUMBER 18 PHYSICAL REV

IEW LETTERS 28 OTOBER 1996

global magnetization first changed sign. The fractign)
of surviving systems was then computed at each time
over a number of runs varying from 200 000 fbr= 24
to 91008 forL = 128. Finite-size scaling suggests the
scaling formp(t) = t79f(t/L?) = L™ % f(¢t/L*), where
z is the dynamic exponent. We therefore pldt: p(z)
againstr/L?, and vary# for the best data collapse. The
dynamic exponent was taken to be= 2.172 [19]. Data

ordered phase. We have argued thas in general an
independent critical exponent, not related by scaling laws
to other critical exponents, although the relation (16) is
exact forn = oo, to first order ine = 4 — d, and for the

d = 1 Ising model (for which the dynamics are Markov-
ian). The numerical results for thé = 2 Ising model,
however, show evidence for non-Markovian effects. The
corresponding exponent for the global order parameter

for + < 20 were discarded. The best collapse was obfollowing a quench into the ordered phase is also of in-

tained fordz = 0.505 = 0.020. Scaling plots fordz =
0.485, 0.505, and0.525 are shown in Fig. 1.

terest, and is currently under investigation by numerical
simulations.

A finite-size scaling analysis is essential here, as the Note added—Recent work by D. Stauffer has extended

data show significant curvature in the “early” time regime,
even for the largest systems studietR&?). In the
scaling form L% p(t) = F(t/L%), the scaling function
F(x) must vary asx ¢ for small x, but the “smallx”
regime in the data is not extensive enough to extract th
exponent from this part of the plot alone. In the lange-
regime, one expect8(x) ~ exp(—consk), sinceL? is the

our Ising model simulations ta = 3, 4, and 5. The

d = 3 result is in good agreement with tleexpansion
(14), while ford = 4 and 5 the results are consistent with
the mean-field resuli = 1/2, as predicted.

e A.B. and S.C.’s research was supported by EPSRC
(UK), S.M.’s by NSF Grant No. DMR-92-24290. A.B.
thanks SISSA (Italy), and Amos Maritan, in particular, for

characteristic relaxation time of the system. This behaviohospitality during the final stages of this work, and Alan
is confirmed in studies of smaller systems, where longeMcKane for discussions.
runs are feasible. The final part of the scaling plots in

Fig. 1 shows the entry into this exponential regime.

It is interesting to compare the numerical result for
0z with the prediction of the “scaling law” (16). Us-
ing A = 1.585 = 0.006 [19], and the exact resuly =
1/4, (16) givesfz = 0.460 = 0.006, compared with the
measured valu€.505 = 0.020. This suggests that non-
Markovian violations of the relation (16) may be small, but
measurable.

In summary we have identified a new exponéntor

critical dynamics. It is the analog of the persistence ex-
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