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Absence of Self-Averaging and Universal Fluctuations in Random Systems near Critical Points
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The distributionsPsXd of singular thermodynamic quantities, on an ensemble ofd-dimensional
quenched random samples of linear sizeL near a critical point, are analyzed using the renormalization
group. For L much larger than the correlation lengthj, we recover strong self-averaging (SA):
PsXd approaches a Gaussian with relative squared widthRX , sLyjd2d . For L ø j we show
weak SA (RX decays with a small power ofL) or no SA [PsXd approaches a non-Gaussian, with
universalL-independent relative cumulants], when the randomness is irrelevant or relevant, respectively.
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PACS numbers: 05.50.+q, 75.10.Nr, 75.40.Mg, 75.50.Lk
h

o
a

,
t
e

a
n

y

s

e
a

e
d

i

-

,
,

n,

the
di-
f
2].
d
e
ry

s
i-

r
r

es
-

ra-

the

of
nd
Systems with frozen randomness have been studied
several decades [1]. A useful early result [2], now th
so-called Harris criterion, applies to randomness in t
local transition temperatureTc (or in the local “exchange”
coupling constants). It shows that weak randomness d
not change the critical behavior near a second order ph
transition in d dimensions if the specific heat exponen
apure of the nonrandom (“pure”) system is negative
or equivalently if the correlation length exponentnpure

obeysn . 2yd. We denote this case by “P”; it applies
e.g., to the randomXY or Heisenberg spin models a
d  3. This criterion has been supported by subsequ
renormalization group (RG) analyses based on thee 
4 2 d expansion [3–5] and by a scaling analysis of
perturbation expansion in the randomness [6]. It h
also been proven [7] to hold in the presence of stro
randomness subject to certain mild assumptions. Wh
apure . 0, the RG calculations [3–6] exhibit a flow from
the pure fixed point (which is then unstable) towards
new, stable, “random” fixed point. Although the stabilit
exponent of the latter,frandom, is not equal to the value of
arandom associated with it [8], the proof of Ref. [7] seem
to indicate thatarandom , 0, namely,nrandom . 2yd, as
found by the RG [3,5]. The random behavior (denote
below by “R”) is known to describe, e.g., the random
Ising model atd  3, as confirmed experimentally [9].

It is usually not easy to test these ideas in a complet
convincing way. Experimental and numerical investig
tions are usually hampered by difficulties, having to d
with fluctuations in and extrapolation of data from finit
samples. In a random hypercubic sample of linear
mensionL and volumeN  Ld, any observable singular
propertyX has different values for different realizations o
the randomness and is thus a stochastic variable descr
by a probability distribution functionPsX, Ld. We may
characterizeP by the averagefXg and variancesDXd2 ;
fX2g 2 fXg2, where f g indicates an average over all
realizations of the randomness. IfX corresponds to a
macroscopic variable (e.g., the susceptibilityx, the mag-
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netizationM, the singular part of the energyE, or that of
the specific heatC), then the system is said to exhibit self
averaging (SA) ifRXsLd ; sDXd2yfXg2 ! 0 as L ! `.
Off criticality, whereL is much larger than the correlation
lengthj, the central limit theorem indicates “strong” SA
i.e.,RX , L2d . SA is less obvious near the critical point
whereL ø j. We say that there is no SA whenRX has
an L-independent finite value. This is known to happe
with universal finite cumulants, atL ø j with strongdis-
order, e.g., at the percolation threshold, for the mass of
spanning cluster [10] and the conductance of classical
lute resistor networks [11], and at the mobility edge o
quantum mesoscopic systems, for the conductance [1
Recently Wiseman and Domany (WD) [13] investigate
SA near criticality for weak randomness. Generalizing th
Harris criterion, they presented a heuristic scaling theo
which predicted that at criticality,RX , C , Layn, for
both P and R behavior. Sinceayn is small and nonposi-
tive for both cases at the stable fixed point [7], this implie
“weak” SA. WD then tested these predictions numer
cally on the bond-diluted Ashkin-Teller models ind  2,
which have a variable (positive and negative)apure and
a R logarithmic specific heat, and found strong SA fo
L ¿ j, and consistency with their scaling predictions fo
L ø j at P. Whenapure . 0, both their heuristic the-
ory and numerics showed an increase inRX for small L,
and a very slow (possibly logarithmic) variation ofRX

for largerL, which could be consistent with eitherno SA
or weak SA. As WD emphasize, when the system do
not exhibit SA, numerical studies of the asymptotic ran
dom critical behavior will be quite difficult: Even if one
fixes the temperature to be the correct transition tempe
-ture for L ! `, fTcs`dg, letting L become larger does
not lead to improved statistics.However, the theoretical
basis for these results remained unclear. Particularly,
status ofPsXd for R, and its implications concerning the
issue of SA, has not been conclusively studied, in spite
the fact that it has a crucial bearing on experimental a
numerical studies.
© 1996 The American Physical Society
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In the present Letter we use RG techniques to study th
questions for several types of quenched local randomne
We first show thatPsXd is invariant under the RG flow,
which means that it can be calculated at any stage of
flow. We then evaluate the cumulants ofPsXd perturba-
tively after eliminating the critical fluctuations and use in
formation on the RG flow to prove strong SA forL ¿ j

for both P and R, and weak SA forL ø j in P. For
L ø j in R, we show (in contrast to WD) thatPsXd flows
towards a universal scale-independent non-Gaussian
tribution, characterized by the random fixed point.

Consider first a random ferromagnetic spin mode
H  22

P
kijl JijSi ? Sj , where Si is an m-component

unit vector,kijl indicates summation over pairs of neare
neighbors on ad-dimensional hypercubic lattice, and eac
Jij is an independent random variable, with averageJ 
fJijg and variancesDJd2  fsJ 2 Jijd2g. Introducing
Fourier transforms viaSi  N21Sqeiq?ri s sqd, the RG is
conveniently done on a Ginzburg-Landau-Wilson versi
of the free energy [3–6],

2F  s2Nd21
X
q

sr 1 q2dssqd ? s s2qd

1 uN23
X

q1,q2,q3

s sq1d ? s sq2dssq3d ? s s2S3
i1qid

1 s2N2d21
X

q1,q2

dr̂sq1ds sq2d ? s s2q1 2 q2d , (1)

where r ~ T 2 fTcg (the proportionality coefficient
involves trivial scale factors [6]) while dri 
N21Sqeiq?ri dr̂sqd represents the local fluctuation in
Tc, with variancew ; fsdrd2g ~ sDJd2 ~ sDTcd2. The
RG iterations now involve integration over largeq,
rescaling lengths by factorse2l and spins by factors
z  expfsd 1 2 2 hdly2g [14], so that the renormalized
F maintains its form as above [6,15].

We now use the susceptibilityx to demonstrate
our results. For each random realization, in the diso
dered phase,x  kSi,jS

m
i S

m
j lyN  ksmsq  0dsmsq 

0dlyN, where k l denotes a thermal average with th
randomF, andSm is any component ofS. After l itera-
tions, the above rescaling ofsms0d and ofNsld  Ne2dl

yield x  z 2e2dlxsld  es22hdlxsld, where xsld is to
be calculated with the random renormalizedFsld. From
this we conclude that bothfx2g and fxg2 are multiplied
under renormalization by the same prefactore2s22hdl, and
therefore these prefactors drop out from ratios likeRx .
Hence ourfirst main result,

Rx sL, j, w, . . .d ; Rx

≥
Le2l , je2l , wsld, . . .

¥
; Rxsld ,

(2)

without any rescale prefactors.The dots represent all
the other parameters, including, e.g.,usld. In fact, every
macroscopic singular physical quantityX (like M or the
singular part inE) can also be expressed as some opera
in Fourier space, withq  0, which has a rescale facto
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like z . For example,Mm  kSiS
m
i lyN  ksms0dlyN,

with the rescale factorz e2dl . These factors will appear
in the same way insDXd2 and in fXg2, and will drop
out in the ratio RX . Thus we expect Eq. (2) to hold
for all the singular quantities. The same arguments a
apply to higher relative cumulants of the formRp,X ;
fXpgcyfXgp ; these also involve the same prefactors in th
numerator and denominator, and are therefore invari
under the RG, i.e., they can be calculated at any stagel of
the RG flow.

We now continue the RG iterations until eitherjslpd 
1 (when L ¿ j), or Lslpd  Le2lp

 1 (when L ø
j). In the former case,Rxslpd  Rx sssLyj, 1, wslpd, . . . ddd.
Since jslpd  1, there are no critical fluctuations left,
and therefore we can use the central limit theorem a
find that Rxslpd  Rs1d

x yNslpd  Rs1d
x sjyLdd , whereRs1d

x

denotes the variance ofx for a single renormalized spin
[of sizejslpd  1]. At this point, fxslpdg  1yrslpd  1
[r appears in Eq. (1)], andfDxslpdg2  wslpd. Thus
Rs1d

x  wslpd. In the latter case,Rxslpd measures the
relative variance ofx for a single renormalized spin of
size Lslpd  1, and we have already identified this a
Rs1d

x  wslpd [16]. Both cases can be combined into ou
second main result,

Rx  wslpdyNslpd  wslp  ln xd sxyLdd , (3)

with x  elp

 minhL, jj. All that now remains is to
use explicit expressions for the dependence ofw on l.
These have been known for more than 20 years [3–5]:
case P,w scales as [6]wsld  w expflsayndpureg, hence
wsln xd  wxsayndpure . This implies weak SA forL ø j,
Rx  wLsayndpure , and strong SA,Rx  wj2ynpure yLd ,
sT 2 fTcgd22yLd for L ¿ j. In case R, wsld first
increases and then approaches the random fixed po
with a finite fixed point valuewp

random and with wsld 2

wp
random ~ expflsfyndrandomg, where frandom , 0. In

d  4 2 e dimensions, wp
random  Osed for m . 1,

or Ose1y2d for the Ising casem  1 [4,17,18]. For R,
this maintains strong SA whenL ¿ j, now with Rx 
wp

randomsjyLdd. However, when L ø j this yields
a complete asymptotic absence of SA, with Rx 
wp

random 1 OsLsfyndrandomd, contradicting WD’s conjecture
that RX , Lsayndrandom . Note that Eq. (3) also applies
when wsld , l2t, in which caseRx , sln xd2t . For
example, the R behavior for the random Ising model
d  4 and for the random dipolar Ising model ind  3
has wsln xd , sln xd21y2 [18]. Such a decay probably
also yields logarithmic behavior ind  2 [13,19].

The heuristic argument which led to Eq. (3) can b
replaced by an explicit perturbative expansion ofRxslpd,
which should be analytic and converge since atlp all the
critical fluctuations are removed. SinceRx  0 when
w  0, the leading term in this expansion is linear i
wslpd. Keeping track of factors ofN in the various
Fourier transforms, a simple calculation yieldsdx 
dr̂s0dsNGd2yN3 1 fdr̂s0dg2sNGd3yN5 1 Osssdr̂s0d3ddd, with
3701
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G21  r 1 q2. Using also fsssdr̂s0dddd2g  Nw and
fxslpdg  Gslpd  1 [16], we recover Eq. (3) to leading
order in w. Exactly the same results, as well as a mo
direct proof of Eq. (2), are found from the replica versio
of this calculation [5], wherefx2gc is replaced by an
annealed replica average of the formkxsadxsbdl with
different replicas, i.e.,a fi b.

It is straightforward to extend these results to higher c
mulants. Ignoring higher cumulants of the initial distrib
tion of dr [20], Rp,x is found diagrammatically from the
connected partfsdxdpgc. For example, using the abov
expansion ofdx to second order indr̂ yields (to leading
order)fx3gc  6N211fNGg7fNwg2  6N22G7w2, which
reduces atlp to 6wslpd2yNslpd2. The result for genera
p . 1 may be written as

Rp,x  p! 2p23fwslpdyNslpdgp21  p! 2p23Rp21
x . (4)

This leads to ourthird main conclusion: For strong
or weak SA, Rx vanishes as a power ofL, and the
distribution of xyfxg goes to a Gaussian with a widt
dx , R1y2

x ; for L ¿ 1, the pth cumulant becomes muc
smaller thansdxdp. However, in the R critical regime
(L ø j) we have Rp,x  Osssswp

randomdp21ddd [20], and
these are all finite. Thus in this case the limitin
distribution function for x is L independent andnot
Gaussian. It is interesting to note in this connection t
the distributions measured by WD donot look Gaussian.
Thus Psxd remains fixed under rescaling and does n
become sharper by going to largerL. This is obviously
important for simulations or measurements on critic
random systems.

We can now extend these results to other critical qu
tities such as the magnetizationM. The heuristic esti-
mate ofR

s1d
M then follows from the fact that atlp one has

roughly the mean-field relationMslpd2  2rslpdyuslpd
[15] so thatdMyM  dry2r, henceR

s1d
M  wslpdy4, i.e.,

RM  Rxy4. A diagrammatic calculation ofRMslpd re-
quires a shift ofS by M [21,22], and yields the same
result. In fact,sDMd2 is equal to the quenched rando
part of the structure factorCssdsqd  fmsqdms2qdg 2

M2dsqd [21] in the limit q ! 0. Using explicit expres-
sions for Cssd from Refs. [21] reproduces our result fo
RM . These references also contain information yieldi
RM , L2d in the ordered phase. The results forM can
easily be generalized: Atlp, all singular quantities are o
the formX , jrslpdjvMF , wherevMF is the mean-field ex-
ponent forX. Hence ourfourth conclusion: All the rela-
tive variances of all the measurable quantities are sim
related to each other,via RXyRx  v

2
MF . Specifically

this yieldsRE  Rx . Note that since the singular part i
E does not diverge, using the full energy in the denomin
tor of RE may lead to deviations. Indeed WD only looke
at sDEd2.

The fifth step in this discussioninvolves universality.
As stated, in case R,PsXd for L ø j is completely
determined by the values of the parameters at the rand
3702
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fixed point. Since this point is stable, it will “attract”
many random systems with various initial values of th
randomness, as well as various short range details (li
the lattice structure) [23]. Thus in this case our theor
predicts universal asymptotic values of all theRp,X ’s,
and thus a universalL-independent distribution ofx 
XyfXg, for 1 ø L ø j.

It is interesting to relate these results to the Harr
criterion. WD presented a heuristic argument in whic
they related the dependence offsDTcd2g on L to that
of RX . Define an L-dependent transition temperature
TcsLd, which fluctuates among samples. Assumin
that there exists a sharp phase transition, one wou
write x , sT 2 Tcd2g , and expand about the average
fxg in the form xsT , Ld ø fxsT , Ldg 1 x 0sTc, Ld 3

hTc 2 fTcsLdgj, wherex 0  ≠fxgy≠Tc at Tc  fTcsLdg.
For L ¿ j we havex 0yfxg  1ysT 2 Tcd , j1yn, and
thus Rx , sDTcd2j2yn . Comparing with Eq. (3) then
yields that sDTcd2 , wsln jdjd22ynyLd, and therefore
sDTcd2 , wyLd for P andsDTcd2 , wp

randomj2sayndrandom y
Ld for R. Although the former result agrees with the
basic assumption of the Harris criterion and with WD
the latter result is different: ForL , j (and also for
all L , j), the latter result implies the modified be-
havior sDTcd2 , L22ynrandom . This implies that in case
R the shift sfTcsLdg 2 fTcs`dgd, the typical deviation
dTc  hTc 2 fTcsLdgj, and sT 2 Tcd , j21yn all scale
in the same way, aselynrandom . Heuristically one might say
that the strong randomness mixes all these temperat
scales together, in contrast to the P case for which t
shift is larger thandTc. It would be interesting to test
this prediction numerically.

Similar analysis applies for other types of randomnes
like random anisotropies [22,24],DSisx̂i ? Sid2 (x̂i is a
random unit vector), and random fields [22,25],Sihi ? Si ,
with variancesy , D2, l , fh2

i g. Specifically Eq. (2)
still holds, with the additional dependence onysld and
lsld. We now need to follow the RG flow, and choose
lp. For m . 1, both of these perturbations destroy long
range order ford , 4, and the samples break into Imry-
Ma domains of sizejR [22,25]. jR becomes of order
1 when eitheryslpd, or lslpd becomes equal to 1. Thus
we stop iterations when the largest ofLsld21, jsld21,
ysld, or lsld reaches 1. At that point perturbation ex
pansions converge, and we can calculateR

s1d
X . For ex-

ample, considerRM . SincesNDMd2  SijfkSm
i l kSm

j lg ;
ksms0dsms0dl, we can calculate this perturbatively to find
sNGd2lyN or sNGd2yM2yN [22]. Using alsoMsld2 ,
2rsldyusld, we end up withRM , yslpdyNslpd andRM ,
lslpduslpdyNslpd. These expressions generalize Eq. (3
for these cases. When the initial values ofy and l are
very small, we haveLsld, jsld ø jRsld, and we stay in the
vicinity of the previously discussed pure or random fixe
points. Both perturbations are strongly relevant near bo
of these fixed points, andy andl increase as expslfynd,
with fy ø 0.37 [24] andfl ø g near both fixed points
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[25,26]. ThusRM , Lfyn strongly increases withL when
L ø j, jR, apparently breaking SA. (This is similar to
the initial increase inRX near the pure fixed point when
apure . 0, but much stronger.) This increase stops,
course, whenL or j become comparable tojR, when
RM , 1, and long range order is completely lost. Fo
m  1, the random field system actually has a phase tra
sition atd  3. In d  6 2 e, this transition is described
by a fixed point wherelslpduslpd  Osed [25]. Thus
even in that case one expectsRM to approach a universal
constant with no SA. In fact in this case the dive
gence ofsNDMd2yN is the same as that of the discon
nected susceptibility, i.e.,sT 2 Tcd2ḡ. Using ḡ  2g

and2b 1 g  sd 2 2 1 hdn [27], we recover the uni-
versal constant value ofRX even in three dimensions. It is
interesting to note that these systems are known to equ
brate very slowly, due to metastable states. It is tempti
to speculate that these difficulties may be related to the f
increase in the random fluctuations for small initial value
of y or l.

In summary: We analyzed SA near critical points i
random systems, and we confirmed strong SA forL ¿ j.
For L ø j there are two cases: One has weak SA wh
randomness is irrelevant, butno SA when randomness
is relevant. In the latter case the asymptotic distributio
function is universal and generically non-Gaussian. D
tributions of different measurable critical quantities ar
simply related to each other through their mean-field e
ponents. These results, which seem to apply for all t
known cases of strong randomness, are important for b
experimental and numerical investigations of the critic
properties of finite random systems. It would be partic
larly interesting to test these for the random Ising mod
in d  3 (e.g., along the critical line of the dilute case
and to understand the connections between the lack of
in many strongly random critical systems.
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