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The distributionsP(X) of singular thermodynamic quantities, on an ensembled-@fimensional
guenched random samples of linear sizeear a critical point, are analyzed using the renormalization
group. ForL much larger than the correlation lenggh we recover strong self-averaging (SA):
P(X) approaches a Gaussian with relative squared wiRlth~ (L/&)"¢. For L < ¢ we show
weak SA Ry decays with a small power af) or no SA [P(X) approaches a non-Gaussian, with
universalL-independent relative cumulants], when the randomness is irrelevant or relevant, respectively.
[S0031-9007(96)01491-3]
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Systems with frozen randomness have been studied faretizationM, the singular part of the enerdy, or that of
several decades [1]. A useful early result [2], now thethe specific heaf’), then the system is said to exhibit self-
so-called Harris criterion, applies to randomness in thaveraging (SA) ifRx(L) = (AX)?/[X]* — 0 asL — .
local transition temperaturE. (or in the local “exchange” Off criticality, whereL is much larger than the correlation
coupling constants). It shows that weak randomness doésngth &, the central limit theorem indicates “strong” SA,
not change the critical behavior near a second order phase., Ry ~ L~¢. SAis less obvious near the critical point,
transition ind dimensions if the specific heat exponentwhereL <« ¢. We say that there is no SA whe&ky has
apure Of the nonrandom (“pure”) system is negative, an L-independent finite value. This is known to happen,
or equivalently if the correlation length exponent,.  with universal finite cumulants, & < & with strongdis-
obeysv > 2/d. We denote this case by “P”; it applies, order, e.g., at the percolation threshold, for the mass of the
e.g., to the randonXY or Heisenberg spin models at spanning cluster [10] and the conductance of classical di-
d = 3. This criterion has been supported by subsequenute resistor networks [11], and at the mobility edge of
renormalization group (RG) analyses based ondhe  quantum mesoscopic systems, for the conductance [12].
4 — d expansion [3-5] and by a scaling analysis of aRecently Wiseman and Domany (WD) [13] investigated
perturbation expansion in the randomness [6]. It ha$A near criticality for weak randomness. Generalizing the
also been proven [7] to hold in the presence of stronddarris criterion, they presented a heuristic scaling theory
randomness subject to certain mild assumptions. Whewhich predicted that at criticalityRy ~ C ~ L2/*, for
apure > 0, the RG calculations [3—6] exhibit a flow from both P and R behavior. Since/» is small and nonposi-
the pure fixed point (which is then unstable) towards aive for both cases at the stable fixed point [7], this implies
new, stable, “random” fixed point. Although the stability “weak” SA. WD then tested these predictions numeri-
exponent of the lattekp..,aom, IS NOt equal to the value of cally on the bond-diluted Ashkin-Teller modelsdn= 2,
@random associated with it [8], the proof of Ref. [7] seems which have a variable (positive and negativg),.. and
to indicate thata angom < 0, Namely, viangom > 2/d, as  a R logarithmic specific heat, and found strong SA for
found by the RG [3,5]. The random behavior (denotedL > ¢, and consistency with their scaling predictions for
below by “R”) is known to describe, e.g., the randomL <« ¢ at P. Whena,,.. > 0, both their heuristic the-
Ising model aid = 3, as confirmed experimentally [9].  ory and numerics showed an increaseripn for small L,

It is usually not easy to test these ideas in a completeland a very slow (possibly logarithmic) variation &f
convincing way. Experimental and numerical investiga-for largerL, which could be consistent with eitheo SA
tions are usually hampered by difficulties, having to door weak SA. As WD emphasize, when the system does
with fluctuations in and extrapolation of data from finite not exhibit SA, numerical studies of the asymptotic ran-
samples. In a random hypercubic sample of linear didom critical behavior will be quite difficult: Even if one
mensionL and volumeN = L9, any observable singular fixes the temperature to be the correct transition tempera-
propertyX has different values for different realizations of -ture for L — o, [T.(e0)], letting L become larger does
the randomness and is thus a stochastic variable describadt lead to improved statisticsHowever, the theoretical
by a probability distribution functio?(X,L). We may basis for these results remained unclear. Particularly, the
characterizeP by the averagéX] and variancdAX)?> =  status ofP(X) for R, and its implications concerning the
[X?] — [X]?, where[] indicates an average over all issue of SA, has not been conclusively studied, in spite of
realizations of the randomness. Xf corresponds to a the fact that it has a crucial bearing on experimental and
macroscopic variable (e.g., the susceptibiljtythe mag- numerical studies.
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In the present Letter we use RG techniques to study thedike ¢. For example,M* = (3;8Y)/N = (a*(0))/N,
questions for several types of quenched local randomnessith the rescale factofe . These factors will appear
We first show thatP(X) is invariant under the RG flow, in the same way inAX)> and in[X]?, and will drop
which means that it can be calculated at any stage of theut in the ratioRy. Thus we expect Eq. (2) to hold
flow. We then evaluate the cumulants ®fX) perturba- for all the singular quantities. The same arguments also
tively after eliminating the critical fluctuations and use in- apply to higher relative cumulants of the forRy, x =
formation on the RG flow to prove strong SA far> ¢ [X7]./[X]?; these also involve the same prefactors in the
for both P and R, and weak SA fdr < ¢ in P. For numerator and denominator, and are therefore invariant
L < ¢inR, we show (in contrast to WD) th&(X) flows  under the RG, i.e., they can be calculated at any staje
towards a universal scale-independent non-Gaussian ditie RG flow.
tribution, characterized by the random fixed point. We now continue the RG iterations until eith&l*) =

Consider first a random ferromagnetic spin model:l (when L > £), or L(I*) = Le™ =1 (when L <
H = —2Z<,‘j> JijSi - Sj, whereS; is anm-component  £). In the former caseR,(I*) = R, (L/&,1,w(l7),...).
unit vector,(ij) indicates summation over pairs of nearestSince &£(I*) = 1, there are no critical fluctuations left,
neighbors on @-dimensional hypercubic lattice, and eachand therefore we can use the central limit theorem and
Ji; is an independent random variable, with averdge  find thatR, (I*) = R\"/N(1*) = R{)(¢/L)?, whereR{"

[J;;] and variance(AJ)? = [(J — J;;)?]. Introducing  denotes the variance gf for a single renormalized spin
Fourier transforms vi&, = N~ '3, o (q), the RG is  [of size £(I*) = 1]. At this point,[x(I*)] = 1/r(I*) =1
conveniently done on a Ginzburg-Landau-Wilson versior{r appears in Eq. (1)], andAy (1) = w(l*). Thus

of the free energy [3-6], R = w(l*). In the latter caseR,(I*) measures the
relative variance ofy for a single renormalized spin of
—F=02N) "D (r + )o@ - o(—q) size L(I*) = 1, and we have already identified this as
q R = w(I*) [16]. Both cases can be combined into our
+uN" Y o) o(@)e(@) - o(-3},q;)  Second main result,
@ Ry = w(l)/N(I") = w(l* = Inx) (x/L),  (3)

+ (2N Z or(a)o (@) - o(=ar = @), (1) it x = o/ = min{L, £}. All that now remains is to
ek use explicit expressions for the dependencevobn I.
where r « T — [T.] (the proportionality coefficient These have been known for more than 20 years [3—5]: In
involves trivial scale factors [6]) while 6, = case Pw scales as [6v(l) = wexfl(e/v)pue], hence
N713,e757(q) represents the local fluctuation in w(Inx) = wx!®/*kw=. This implies weak SA fol. < ¢,
T., with variancew = [(8r)2] & (AJ)? o« (AT.)?. The R, = wL'®/")u=, and strong SAR, = wé?/¥m= /L4 ~
RG iterations now involve integration over largg (7 — [T.D)7%/LY for L > ¢. In case R,w(l) first
rescaling lengths by factors™/ and spins by factors increases and then approaches the random fixed point,
¢ =exfd(d + 2 — 5)i/2] [14], so that the renormalized With a finite fixed point valuewdom and withw(l) —
F maintains its form as above [6,15]. Wrandom * XA I(#/P)random], Where drungom < 0. In
We now use the susceptibilityy to demonstrate d =4 — e dimensions, wywdom = O(e) for m > 1,
our results. For each random realization, in the disoror O(e'/?) for the Ising casen = 1 [4,17,18]. For R,
dered phasey = <2i,jS;LS;‘L>/N = (o*(q = 0)o*(q = this maintains strong SA wheh > ¢, now with R, =
0))/N, where () denotes a thermal average with the Wrandom(§/L)?. However, whenL « ¢ this yields
randomF, andS* is any component o§. After [ itera- @ complete asymptotic absence of ,SWith R, =
tions, the above rescaling of“(0) and of N(I) = Ne ¥ Wyangom + O(L!#/Pwam) contradicting WD’s conjecture
yield y = {2e 4 y(l) = ¢ ™!y (1), where y(I) is to  that Ry ~ L@/*}=wn_ Note that Eq. (3) also applies
be calculated with the random renormalizédl). From when w(l) ~ [~7, in which caseR, ~ (Inx)"7. For
this we conclude that bothy?] and[x]> are multiplied example, the R behavior for the random Ising model in
under renormalization by the same prefaatg#~7"/, and d = 4 and for the random dipolar Ising model ih= 3
therefore these prefactors drop out from ratios likg. ~ has w(Inx) ~ (Inx)~'/? [18]. Such a decay probably
Hence ouifirst main result, also yields logarithmic behavior i = 2 [13,19].
— -1 g -1 _ The heuristic argument which led to Eqg. (3) can be
Ry(L.&w,...) = RX(Le ge ’W(l)""> = Ry0), replaced by an explicit perturbative expansionrgf(i*),

() which should be analytic and converge sincé*aall the
without any rescale prefactorsThe dots represent all critical fluctuations are removed. Sindg, = 0 when
the other parameters, including, e.g(/). In fact, every w = 0, the leading term in this expansion is linear in
macroscopic singular physical quantixy (like M or the  w(/*). Keeping track of factors ofV in the various
singular part inE) can also be expressed as some operatdfourier transforms, a simple calculation yieldsy =
in Fourier space, withy = 0, which has a rescale factor 8#(0)(NG)*/N> + [87(0)*(NG)*/N> + 0(8#(0)3), with
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G '=r+ 4% Using also [(67(0))*)] = Nw and fixed point. Since this point is stable, it will “attract”
[x(I")] = G(I*) = 1 [16], we recover Eq. (3) to leading many random systems with various initial values of the
order inw. Exactly the same results, as well as a moreandomness, as well as various short range details (like
direct proof of Eq. (2), are found from the replica versionthe lattice structure) [23]. Thus in this case our theory
of this calculation [5], wherd x?]. is replaced by an predicts universal asymptotic values of all theR, x’s,
annealed replica average of the fom(a)y(B)) with  and thus a universal-independent distribution af =
different replicas, i.e.q¢ # B. X/[X], forl < L < ¢£.

It is straightforward to extend these results to higher cu- It is interesting to relate these results to the Harris
mulants. Ignoring higher cumulants of the initial distribu- criterion. WD presented a heuristic argument in which
tion of 6r [20], R, is found diagrammatically from the they related the dependence [@AT.)?] on L to that
connected parf(é y)?].. For example, using the above of Ry. Define anL-dependent transition temperature
expansion ofd y to second order i$# yields (to leading T7.(L), which fluctuates among samples. Assuming
orden)[x?]. = 6N "' [NG][Nw]* = 6N~2G"w?, which  that there exists a sharp phase transition, one would
reduces at* to 6w(1*)>/N(1*)>. The result for general write y ~ (T — T.)””?, and expand about the average
p > 1 may be written as [x] in the form x(T,L) = [x(T,L)] + x'(T.,L) X

— 12P 3 (] NP1 = p1op-3gp-l {T. = [T.(L)]}, wherey' = d[x]/oT. at T. = [Tc(L)].

R_”’X pi2 [W(l, )/NU _)] p!.2 Ry - @ For L > ¢ we havey'/[x] = 1/(T — T.) ~ ¢7, and
This leads to ourthlr_d main conclusion: For strong 4, R, ~ (AT.)2¢%”. Comparing with Eq. (3) then
or weak SA, R, vanishes as a power of, and the yields that (AT,)? ~ w(ln¢)é4-2/7 /L4, and therefore
distribution of y /[ x] goes to a Gaussian with a width (AT.)? ~ w/Ld for P and(AT,)? ~ Wi gom &~ (@/Vaniom |
8x ~ R)/% for L > 1, the pth c_umulant bep_omes ”?“Ch L4 for R. Although the former result agrees with the
smaller than(éx)”. However, in the Rff”t'cal régiMe  phasic assumption of the Harris criterion and with WD,
(L < ¢) we haveR,, = O((Wundom)”™") [20], @nd  ypo janer result is different: FOF ~ £ (and also for

these are all finite. Thus in this case the limiting ; — ¢y the latter result implies the modified be-
distribution function for y is L independent andot havior (AT,)> ~ L~2/*wen This implies that in case
. .

Gaussian. It is interesting to note in this connection thaly o shift ((7.(1)1 = [T the tvpical deviati
the distributions measured by WD daiot look Gaussian. s i {ST‘I _([[TC‘(( L))]]} a[né((o;)]l T )e ~y§)|_cl¢';1y aI(Ievsliall?en

Thus P(x) remains fixed under rescaling and does NOt., the same way, a&'/mwn . Heuristically one might say

_become sharpe_r by going to larger This is ObV'OUS|.¥ that the strong randomness mixes all these temperature

important for simulations or measurements on criticalg.5jes together, in contrast to the P case for which the

random systems. " shift is larger thandT.. It would be interesting to test
We can now extend these results to other critical quang,q prediction numerically

tities sucn)as the magnetizatigd. The heuristic esti- Similar analysis applies for other types of randomness,
mate ofR,, then follows from the fact that dt' one has |ijke random anisotropies [22,24p3:(3; - S;)? (&: is a
roughly the mean-field relation/(I*)* = —r(I*)/u(l*)  random unit vector), and random fields [22,25]h; - S:,
[15] SO thatsM /M = 8r/2r, henceR'Y = w(i*)/4,i.e., with variancesy ~ D2, A ~ [h?]. Specifically Eq. (2)
Ry = R, /4. A diagrammatic calculation oRy (/") re-  still holds, with the additional dependence ofY) and
quires a shift ofS by M [21,22], and yields the same A(/). We now need to follow the RG flow, and choose
result. In fact,(AM)? is equal to the quenched random [*. Form > 1, both of these perturbations destroy long
part of the structure factoC®(q) = [m(q)m(—q)] —  range order foud < 4, and the samples break into Imry-
M?8(g) [21] in the limit ¢ — 0. Using explicit expres- Ma domains of sizef; [22,25]. &z becomes of order
sions forC® from Refs. [21] reproduces our result for 1 when eithery(1*), or A(I*) becomes equal to 1. Thus
Ry. These references also contain information yieldingve stop iterations when the largest bfl)~!, £(1)~!,
Ry ~ L% in the ordered phase. The results fdrcan  y(I), or A(I) reaches 1. At that point perturbation ex-
easily be generalized: At, all singular quantities are of pansions converge, and we can calculgle. For ex-
the formX ~ |r(1*)|“*, wherewyr is the mean-field ex- ample, consideRy,. Since(NAM)? = 3,[(S{) (/)] =
ponent forX. Hence ouffourth conclusion: All the rela- (o#(0)o*(0)), we can calculate this perturbatively to find
tive variances of all the measurable quantities are simplyNG)?>A/N or (NG)’yM?/N [22]. Using alsoM(I)> ~
related to each otheryia Rx/R, = wiur. Specifically —r(l)/u(l), we end up withRy, ~ y(I*)/N(I*) andRy ~
this yieldsRr = R,. Note that since the singular part in A(I*)u(l*)/N(I*). These expressions generalize Eq. (3)
E does not diverge, using the full energy in the denominafor these cases. When the initial valuesyofind A are
tor of Ry may lead to deviations. Indeed WD only looked very small, we havé.(l), £(I) << £x(1), and we stay in the
at(AE)>. vicinity of the previously discussed pure or random fixed
The fifth step in this discussiomvolves universality ~ points. Both perturbations are strongly relevant near both
As stated, in case RP(X) for L <« ¢ is completely of these fixed points, and and A increase as exps/v),
determined by the values of the parameters at the randomith ¢, =~ 0.37 [24] and ¢, = y near both fixed points
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