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Scaling Laws for Fracture of Heterogeneous Materials and Rock
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Using computer simulation we show that, near the global failure point, the cumulative elastic energy
released during fracturing of heterogeneous solids follows a power law withlog-periodic corrections
to the leading term. This is consistent with a recently proposed scaling law that relates the dynamics
of the precursors of large earthquakes to their occurrence time, thus providing a rational basis for it in
terms of rupture of the rock. It is also consistent with the scaling of acoustic emissions that precede
fracture of composite materials, with the time to failure, and may thus provide a basis for predicting
fracture of materials. [S0031-9007(96)01440-8]

PACS numbers: 91.30.Px, 62.20.Mk, 64.60.Ak
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Two important phenomena in natural rock masses a
earthquakes, and the nucleation and propagation of fr
tures. Most rock masses contain complex and inte
connected fracture networks, the presence of which
crucial to the economics of oil recovery processes fro
underground reservoirs, generation of vapor from geoth
mal reservoirs for use in power plants, and the develo
ment of groundwater resources, as the fractures prov
high permeability paths for fluid flow in natural reservoirs
Because of its obvious significance, characterization
fractured rock is an active research field [1]. Earthquake
on the other hand, are the result of a series of comp
phenomena involving the interaction between stress co
centration, the structure of the fracture and fault netwo
of rock, and local pore fluid pressures. Study of the d
namics of earthquake faults is also a very active area
research. However, a clear picture of how earthquak
develop has not emerged yet. For example, although
know that the vast majority of earthquake hypocenters a
distributed on the regional fracture and fault network
the nature of the dynamics of earthquakes and the prec
relation between rupture and fracture of rock and this d
namics, which are the most important problems, have
mained largely unsolved.

It has been proposed [2–4] that large earthquakes
similar to critical phenomena in that before they occu
long-range correlations develop at many scales that le
to a cascade of events (earthquakes) at increasingly lar
scales. The development of such long-range correlatio
between the events that precede a great earthquake
been documented [5]. If this picture of the developme
of a large earthquake is correct, then one may guess
its precursors may follow power laws which are characte
istics of critical phenomena. This guess has already be
exploited for predicting large earthquakes. In particular,
has been suggested [6,7] that any measureestd of seismic
release at timet, close to the time of a large earthquakete,
should obey a power lawestd  A 1 Bste 2 tdm, where
0031-9007y96y77(17)y3689(4)$10.00
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A andB are constants, andm is a critical exponent. More-
over, using arguments from the renormalization grou
theory of critical phenomena, Sornette and Sammis [
suggested that there are significant correction-to-scali
terms to this power law, and that these corrections arelog
periodic,so that one has the following scaling law:

estd  A 1 Bste 2 tdm

3

(
1 1 C cos

"
2p

logste 2 td
log D

1 E

#)
, (1)

where C, D, and E are also constants. Such correctio
terms arise if the critical exponents are complex numbe
In Eq. (1)t is made dimensionless with some suitable var
able or time scale. In practice, one fits the data by Eq. (
to estimate the various parameters and, in particular,te. It
was shown [7] that Eq. (1) can provide accurate predi
tions for the timete at which some large earthquakes hav
already occurred. For example, Eq. (1) predicts that th
Loma Prieta earthquake in northern California, which ha
a magnitude of 6.7–7.1, should occur in1989.9 6 0.8; the
earthquake actually occurred on 17 October, 1989. D
spite its potential as a predictive tool, the origin of Eq. (1
and its relation with nucleation and propagation of frac
tures in the rock remain unclear. If this relation can b
clarified, it can lead to a much deeper understanding
the long-standing problem of the dynamics of large eart
quakes. As a by-product, one may potentially have an a
curate tool for predicting large earthquakes.

If large earthquakes do represent a critical phenomeno
then only may be led to the idea that the criticality
is caused by failure in the Earth’s crust which can b
thought of as a scaling-up process in which failure a
one scale is part of damage accumulation and creati
of fractures at a larger scale. Hence, Eq. (1) should al
be observed for any measure that characterizes nuclea
and propagation of fractures in heterogeneous rock. T
purpose of this Letter is to show that this is indeed th
© 1996 The American Physical Society 3689
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case, and that, near the macroscopic failure point,
cumulative elastic energy released during formation
fractures in heterogeneous rock follows an equation sim
to (1). Thus, one can explain the origin of Eq. (1) bas
on the relation between the dynamics of large earthqua
and that of the development of rupture and fracture
heterogeneous rock, and might ultimately have an accu
means of estimating when a large earthquake may oc
However, we argue that our results are more general
may be applicable to a broad class of phenomena, ran
from earthquakes and rock fracture, the main focus
this Letter, to fracture of heterogeneous materials and
critical properties of spin systems (see below).

To establish this we employ our discrete model
fracture [8–10] for heterogeneous media. Consider
L 3 L triangular network with a periodic boundary con
dition in one direction, each site of which is characteriz
by the displacement vectorui  suix , uiyd, with nearest-
neighbor sites connected by springs, where each sp
represents a portion of rock at a small scale. We c
sider here the case of brittle fracture for which a line
approximation is valid up to a threshold (defined below
The displacementui is computed by minimizing the elas
tic energyE with respect toui , where

E 
a

2

X
kijl

fsui 2 ujd ? Rijg2gij

1
b

2

X
k jikl

sdujikd2gijgik . (2)

Herea andb are the central and bond-bending or ang
changing force constants, respectively,Rij is a unit vector
from site i to site j, gij is the elastic constant of the
spring betweeni and j, and k jikl indicates that the sum
is over all triplets in which the bondsj-i and i-k form
an angle whose vertex is ati. We introduce a threshold
value lc for the length of a spring, which is selecte
from a probability distribution. Two types of threshol
distributions were used. One was a power law,fslcd 
s1 2 gdl2g

c , with 0 , g , 1. Thus, forg . 0 one has a
narrow distribution of the thresholds, whereas forg . 1
one has a very broad and heterogeneous distribut
However, this distribution is completely random an
provides no correlations between various regions of
system. It has been shown [1,11,12] that in natural rock
large length scales there are long-rangeanticorrelations,
in the sense that a high value of a rock property (e.g.,
porosity or the elastic moduli) is followed by a low valu
and vice versa. To generate such correlations we u
a fractional Brownian motion (fBm)BH srd that has been
shown [1,11] to provide adequate representations of s
correlations in rock, although any other stochastic proc
that can generate such correlations can be used. Bri
the fBm is a stochastic process such thatkfBHsrd 2

BH sr0dg2l , jr 2 r0j
2H, wherer andr0 are two arbitrary

points in space, andH is the Hurst exponent. It has bee
shown [13] that fBm generates correlations whose ext
3690
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is infinite (i.e., as large as the linear size of the system
For 1y2 , H , 1 a fBm generates long-range positive
correlations, whereas for0 , H , 1y2 one has negative
or anticorrelations. In our simulations we usedH  0.1
and 0.9, where the smaller value is about what has be
found for rock [12].

We initiate the failure process by applying a fixed
external strain to the network in a given direction (in shea
or tension), calculatingui ’s, and breaking all the springs
whose lengths have exceeded their critical thresholdlc,
where each broken spring represents a microcrack. W
then increase the external strain gradually and recalcul
ui ’s for the new configuration of the network, select th
next springs to break, and so on. At each stage we a
calculate the cumulative elastic energyDE that is released
by fracturing of the system, i.e., the total energyE0 of the
system when no fracture has been created minus the ela
energy of the system in its current state. The simulatio
continues until a sample-spanning fracture network
formed. We used an80 3 80 network withbya  0.05,
which is a typical value for heterogeneous solids, an
variedg in order to study its effect on the behavior of the
system. We also made several realizations of the syste
and studied its behavior in individual realizations, as we
as its average over all the realizations (see below).

Let us discuss first the results with the random distr
bution of the thresholds. Ifg . 0, then the system is
more or less homogeneous. Under this condition, once
crack nucleates in the rock, stress enhancement at its
is larger than at any other point of the medium, and ther
fore the next microcrack almost surely develops at its ti
Hence, in such a system the microcracks are all connec
and clustered together with almost no dead-end branch
and one does not see large fluctuations in, e.g., the
leased elastic energy which is typical of the precursors
large earthquakes. On the other hand, ifg . 1, fracture
of the system is catastrophic in the sense that, with a ve
small increase in the external strain a very large numb
of fractures are created and the system reaches its fi
state very quickly, and thus it is very difficult to detec
the fluctuations, unless one uses very large systems.
is only in the intermediate region where we see, withou
difficulty, clear fluctuations in the cumulative elastic en
ergy released during fracturing of the system. Figure
shows the results for a single realization andg  0.5,
where we present both our simulation results and their
to Eq. (1), with the timet replaced by the external strainS
which plays the same role ast in our model. The cumula-
tive energy has been normalized byE0, while S has been
normalized by its valueSc just before a sample-spanning
fracture network has been formed. The fits were obtain
using a Levenberg-Macquardt algorithm. As can be see
Eq. (1) provides an accurate fit to the data withm . 0.13,
whereas a simple power law without the log-periodic co
rections does not. Note that the last data point, which re
resents the global failure point, is not on the fitted curv
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FIG. 1. Variations of the cumulative elastic energyDE re-
leased during fracturing (normalized by the energyE0 of the
unfractured system) with the external strainS, normalized by
its valueSc just before the global failure, for a single realiza
tion of a random system. The dashed curve shows the fit of
data (circles) by a simple power law, whereas the solid cur
shows the fit with log-periodic corrections with the power law

but to the left of it (failure occurs early). However, this i
a finite-size effect which will disappear if the size of th
network becomes very large.

An important question is whether such a behavior w
disappear if we average the behavior of the system o
many realizations. Figure 2 presents the same type of d
as those in Fig. 1, except that now the results represent
average of several realizations of the system. As can
seen, the oscillatory fluctuations do not die out when t
behavior of the system is averaged over many realizatio
For this case we findm . 0.1 which, as expected, is
close to what we find for a single realization. Sinc
the fracturing process is nonlinear, we do not expect,
theoretical grounds [H. Saleur (private communications
that the oscillations disappear after the averaging.

FIG. 2. The same as in Fig. 1, but averaged over seve
realizations of the system.
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We now discuss the results with a correlated dist
bution of the thresholds, which we believe is more re
evant to heterogeneous rock at large length scales.
H . 1y2, then the springs with low thresholds are clu
tered together. Since the first microcrack appears in
weak region of the system, the positive correlations cau
the crack to grow in the same region, and as a result
behavior of the system is essentially similar to the ra
dom case withg . 0, and indeed this is what we find
with H  0.9. However, with H , 1y2, which is the
range relevant to heterogeneous rock [12], we have
ticorrelations, so that high and low values of the thres
olds are next to each other. As a result, crack grow
continues in a weak region until a much stronger r
gion is encountered in its neighborhood. When th
happens, crack growth stops and another crack nuc
ates in another weak region. The growth of the ne
crack also stops when it encounters another strong
gion, and so on. This then gives rise to large fluct
ations in the cumulative elastic energy released dur
fracturing, and indeed Fig. 3 which presents the resu
with H  0.1 confirms this. As in Figs. 1 and 2, Eq. (1
provides an accurate fit to our data withm . 0.4, close
to what Sornette and Sammis [7] found in their anal
sis of Loma Prieta earthquake data,m . 0.34 6 0.08.
We do not expect the value ofm for this case to be the
same as that of the random distribution, since long-ran
correlations change the value of a critical exponent fro
its value for a random system.

The existence of such corrections to the scaling of t
released elastic energy may be explained as follows. T
rock first develops isolated microcracks which are nucle
ted in the weak regions. As the applied strain increas
more weak regions develop cracks, while the stronger
gions remain relatively intact. After some time the micro
cracks join and a fractal fracture pattern emerges [8–1
which explains the existence of the power law in Eq. (1
At the same time, because the weaker regions have

FIG. 3. The same as in Fig. 1, but for a correlated system
3691
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ready failed, for a range of the applied strain no majo
crack is formed, and the released elastic energy var
little until a value of the strainS is reached at which a
number of cracks can form, and therefore the released
ergy increases sharply. This is repeated in cycles th
are, similar to the earthquake data [6,7], of increasing
smaller sizes in the applied strain (time interval in th
earthquake data), but larger in the released energy, si
as more fractures are formed one nears the critical reg
in which more and more cracks are created with an i
creasingly smaller change in the applied strain, until th
sample-spanning fracture network is formed and glob
failure occurs. Thus, we may view seismicity in a regio
as a sequence of fracturing cycles, where each cycle r
resents a progressive cooperative stress buildup and cr
nucleation that culminate in some sort of a critical point—
the formation of the sample-spanning fracture network—
which is characterized by global failure in the form of a
large earthquake. Saleur, Sammis, and Sornette [14] h
suggested that the existence ofdiscrete scaleinvariance is
essential for having log-periodic corrections. Our resul
indicate that the interplay between the heterogeneities
rock and the stress field generatesdynamicallysuch a dis-
crete scale invariance, and does not have to be presen
the rock structure itself.

We now discuss the evidence that our results are mo
general, and may be applicable to a broader class of p
nomena than fracture of rock and earthquakes. In a rec
fracture experiment with carbon fiber-reinforced resin [15
the rate of acoustic emissions, which preceded the mac
scopic fracture, was found to follow an equation simila
to (1). Thus, our results may also have a practical im
plication for predicting fracture of heterogeneous mater
als, an outstanding unsolved problem: one fits the rate
acoustic emissions, a measurable quantity, to an equa
similar to (1) to predict the timete at which the material
will fail. In Ref. [4] a time-dependenthierarchicalmodel
of earthquakes was considered, the solution of which ind
cated the existence of log-periodic corrections. Howeve
in our model there is no built-in hierarchical structure
Finally, log-periodic corrections have been shown to b
important in the critical properties of spin systems, if the
are defined on a hierarchical lattice [16]. Our results in
dicate again that log-periodic corrections are a much mo
general phenomenon than previously thought.
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