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Fluid Vesicles in Shear Flow
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The shape dynamics of fluid vesicles is governed by the coupling of the flow within the two-
dimensional membrane to the hydrodynamics of the surrounding bulk fluid. We present a numerical
scheme which is capable of solving this flow problem for arbitrarily shaped vesicles using the
Oseen tensor formalism. For the particular problem of simple shear flow, stationary shapes are
found for a large range of parameters. The dependence of the orientation of the vesicle and the
membrane velocity on shear rate and vesicle volume can be understood from a simplified model.
[S0031-9007(96)01470-6]

PACS numbers: 87.45.—k, 47.55.Dz, 68.10.—m

Vesicles are closed lipid membranes suspended istate of a vesicle in such a flow resulting from our
agueous solution. If the composition of this solutioncomputation is shown in Fig. 1(b). It is characterized
inside and outside the vesicle is identical, it affects theby both a finite inclination angl® between the longest
equilibrium properties of the vesicle only by osmotically axis of inertia of the vesicle and the flow direction, and a
fixing the enclosed volume. Minimizing the bending “tanktreading” tangential motion of the membrane around
energy of the membrane under the constraints of fixedhe vesicle with revolution frequency. Both 6 and
enclosed volume and membrane area then vyields the are found to depend strongly on the reduced volume
equilibrium vesicle shape at rest [1]. The dynamics ofv = V /(47 R3/3) of the vesicle, wher& is the enclosed
this shape, however, is governed by the coupling o¥olume and the surface ardadetermines the length scale
the flow within the two-dimensional incompressible fluid
membrane to the hydrodynamics of the bulk fluid. Any (a)
theory of vesicle dynamics is complicated by the fact that
the boundary conditions for the three-dimensional Navier-
Stokes equations have to be evaluated at the vesicle
surface, which is moving with the fluid and whose shape
is not knowna priori.

Considerable practical interest in this problem arises
from a more complex system, the red blood cell. The
deformation of erythrocytes in hydrodynamic flow fields :
is used as a measure of changes in the elastic properties
of pathologically modified cells [2,3]. The understanding
of the dynamics of a single cell is also a prerequisite for
the understanding of the rheology of blood. Since the (b)
erythrocyte has a complicated structure consisting of a
fluid lipid/protein bilayer and the spectrin network, theo-
retical analysis has employed expansions for small flow
rate [4] or has focused on simpler model systems such
as shells with stretching elasticity and liquid drops with
homogeneous surface tension [5-8]. The dynamics of :
fluid membranes with fixed area and bending rigidity has  * i§
only been studied in the quasiplanar [9], quasispherical
[10], and cylindrical [11] geometry without external flow .-
fields. Further analytical work includes the covariant s
treatment of the membrane incompressibility [12] and
the dynamic renormalization of material parameters [13]
in equilibrium. The problem for a closed vesicle with FIG. 1. Vesicle in shear flow? = yz. (a) Schematic draw-
arbitrary shape and external flow is investigated in thigng of the undisturbed flow, inclination angés and coordinate

Letter for the first time axesx, z, a, andc. The coordinate axis pointing into the paper
£ ifit L tivate ali h fl _ plane isy. (b) Stationary state obtained by numerical integra-
or specifity, we investigate a linear shear flofr) = {ion'for 5 — 0.9, y=1s1,k=10"J,1 =103 Jgm3,

yz with shear ratey, as sketched in Fig. 1(a), which andRr, = 10 um.” The velocities at the vertices are shown as
can be easily realized experimentally [2]. The stationaryarrows with length proportional to velocity.
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Ry = +/JA/47. The bending rigidity of the membrane Inserting the vesicle siz&, = 10 um and the viscosity
k sets the energy scale [14]. Together with the bulkn = 1073 Jsm? and densityp = 10° kg/m* of water,
viscosity 5, these quantities define an intrinsic time scalethe limit of small Re corresponds tp < 10* s™!. Thus,

T = nR3/k. Thus, the dimensionless shear rate=  the hydrodynamic equations for the velocity fieltk) of
yT = 5’TIR3/K is the second parameter of the problem.anincompressible Newtonian bulk fluid with external force
Figures 2 and 3 show the inclination anglend the mean densityk(r) reduce to the instantaneous force balance
revolution frequencyw [15], respectively, as a function of 20 _

the reduced volume for different values ofy. nVy = Vp(r) + k(). (1)

We find numerically that, for any nonzero shear rate,The pressure fielgh(r) can be eliminated by using the
small perturbations of the equilibrium shape do notincompressibility conditiolV - v(r) = 0. Because of the
allow stationary flow with the appropriate boundary linearity of (1),v(r) can be written as a superposition of a
conditions [16]. Thus, shear appears to be a singulapackground flow’(r) and additional flowsvi(r) arising
perturbation that drives the vesicle towards a stationarfrom the interactions of the fluid with the membrane.
nonequilibrium shape that can be distinctly different from We describe the membrane surface by a triangulation
the corresponding equilibrium shape. Further increasingvith vertex positionsR* moving with the adjacent
the shear ratey only marginally affects shape and bulk fluid due to non-slip boundary conditions and the
orientation anglé. This behavior is remarkably different impermeability of the membrane for bulk flow. Forces
from the behavior of both erythrocytes, which go throughon the membrane are computed on these vertices from the
a transition from tumbling to tanktreading behavior with energy
increasingy [2], and liquid drops, which deform to more
and more elongated shapes as a functiory afntil they G{R*}) = sz(H2)“ + Z %A% 2
break up [17]. a @

The stationary state was found to be independent of the discretized membrane. The energy has two con-
initial conditions. In particular, forv < 0.75, oblate tributions. First, the discretized squared mean curvature
discocytes are locally stable in the absence of an externg2)* [20] describes the bending energy [14,21,22] with
flow field [18] but still transform to the same elongated bending r|g|d|ty k. Second, a |oca||y Varying isotropic
shape as prolate vesicles when suspended in shear flownsions* which is conjugate to the aregt of the neigh-

We have tested this behavior for all= 0.52, i.e., the  poring triangles around each vertex is needed to ensure
entire range where the equilibrium discocytes do not selftocal incompressibility of the membrane.

intersect. . _ _ . The forceK? at vertexR”? then reads
Hydrodynamic calculations on typical length and time 3G (R®
scales of membranes and vesicles are simplified by em- K8 = — 9G({R"})
ploying the Stokes approximation which is valid in the IRF
limit of small Reynolds number Re [19]. For a vesicle sus- d(H?)™ o 0AY
pended in a shear flow with typical velocity= y Ry, this = _2"2 9RB Z‘T IRB’ (3)
number can be estimated by RepuRy/n = pyRi/ 7. “
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FIG. 3. Scaled revolution frequeneyr/y averaged over all
FIG. 2. Inclination angle between ther axis and the longest vertices as a function of reduced voluméor different reduced
axis of inertia as a function of reduced volumefor different  shear rategy (Symbols are as in Fig. 2). The continuous line
reduced shear rateg = 1 (A), 5 (O), 10 (©), 50 (X), 100 is computed using the solution of (9). For volumes< 0.7,
(+). Numerical errors are smaller than the symbol sizes. The full revolution in the stationary state could not be computed
continuous line follows from Eq. (8). due to constraints on computation time.
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and the force density is given bk(r) = ZB 6(r —  the arclength of this contour, the contour is described by
RPAKE. a vector(a(s), 0, c(s)) with the local tangential velocity
The disturbance flow due to the presence of the vesicl@(s). We obtain four equations,

can be computed using the Oseen tenBodescribing da(s) ‘

the flow field induced by a discrete point ford&? in *+B(s) e v, + ycosfla(s)sing = c(s)cosh],

an infinite fluid medium. The total velocity at the vertex s

positionR* then reads (6)
v(RY) = v'(R?) + go(Ra’RB)K'B- 4) ,B(s)d;—(ss) = +v! — ysinbla(s)sing + c(s)cosh],

The matrix elements of the Oseen tensor are [23-25] )
Oij(R“,Rﬁ) = #(5” + dfff>, (5) Wwhere the different signs apply to the upper and to

87nd d the reflected point on the lower part of the vesicle,

with d = R* — R# andd = |d|. Here, the viscosity of respectively.

the fluid n is assumed to be equal for the fluids inside and We can now eliminate the unknown quantity from

outside the vesicle [26]. (6) and (7) and obtain differential equations tar(s)/ds
After dealing with the energetics of the membrane inanddc(s)/ds. These equations describe an ellipse

the force balance we have to treat the dynamics of the 2 2

" ; ) ) a“(s) c(s)

lipid membrane correctly. Two-dimensional incompress- 5 Sy (8)

ibility of the membrane leads to the condition that the ricogg  risin 6

area around every vertex remains constant under the dy- If one now assumes axisymmetry of the ensteape

namics, i.e.0 = 9,A®* = ZB (0A%/oRP)v(RP). Using the length scale and the anglé are uniquely determined

Eq. (4) for the velocities and Eq. (3) for the vertex forces,by the constraints on area and volume of the vesicle.

this condition yields an inhomogeneous system of lineafhe shear ratey scales the velocity3(s) and does

equations for the local tensions®. After the tensions not influence the shape or orientation. We obtain the

are thus determined, moving the vertices (r) with  differential equation [28]

a short time stg@t respects the Stokes equatio_ns and all dB(s) ya(s)c(s) sir? 6 cog 0(cog 6 — sir? 0)

boundary conditions and thus gives a correct integration == a2(s)sit 0 + c2(s)cos

scheme for the hydrodynamic problem which automati-

cally conserves the volume of the enclosed fluid. Fluidity 9)
of the membrane is ensured by bond flips attempted &br the velocity along the contour by form-
regular intervals [27]. ing the derivative of the geometrical condition

This procedure turns out to be stable in the sense thatla(s)/ds]> + [dc(s)/ds]> =1 with respect to s.
(i) an initially smooth surface remains smooth during timeThis equation can be solved numerically, giving the
evolution, and (i) the distribution of triangle sizes and revolution frequencys = 27/ ¢ B(s) " 'ds.
angles remains approximately constant in the stationary In the spherical limitv = 1, Eq. (8) givesf = = /4
state. As a test, we relax surfacesvdt= 0 and arrive andr = R,. Equation (9) simplifies t@(s) = yR,/2 =
at the known axisymmetric equilibrium shapes [1] with anconst, which is equivalent ta = v/2 = x/27. Thus,
error of 0.2% for the energy and.5% for the (uniform) all limit values for a spherical vesicle are identical to
tension using a discretization witlv = 337 vertices. the results for a rigid sphere or a fluid drop with infinite
Area and volume remain constant with an error belowsurface tension in shear flow [19].
0.1% for the longest runs. As Figs. 2 and 3 show, our simplified model yields

The numerical results for shape, orientation, and memgood quantitative agreement with the results of the
brane velocity in the stationary state may be understootlydrodynamic integration. The results for different shear
using a simplified model. The numerical data show arrate y collapse as expected. The spherical limit= 1
approximate mirror symmetry of the induced tensien cannot be reached numerically, as the tension in the
with respect to the plane defined by the axis denoted by membrane diverges when exterior forces are applied to
in Fig. 1(a) and the axis. The axis perpendicular to this a sphere. For reduced volumes= 0.8, the symmetry
symmetry plane is denoted hy We now assume that assumptions in our simplified model are less justified.
this symmetry holds exactly. The velocity field can be The results of the numerical integration contain in-
written as a superposition of the undisturbed shear floWormation about the distribution of velocity and tension
v? and the flowv’ induced by all forces on the mem- within the membrane not available from the simplified
brane. The latter flow must have the mirror symmetrymodel. The revolution frequencg® measures only the
of the inducing forces. In a stationary state, the sum ofmean velocity. The local variations of membrane veloc-
these two contributions has to be tangential to the memity show two remarkable features: (i) The velocity varies
brane surface. We evaluate this condition for the contoualong the contour in a way that velocities are smaller
of the vesicle in the:-z plane aty = 0. With s denoting towards the poles of the vesicle. This behavior can be
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