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Fluid Vesicles in Shear Flow
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The shape dynamics of fluid vesicles is governed by the coupling of the flow within the two-
dimensional membrane to the hydrodynamics of the surrounding bulk fluid. We present a numeric
scheme which is capable of solving this flow problem for arbitrarily shaped vesicles using the
Oseen tensor formalism. For the particular problem of simple shear flow, stationary shapes a
found for a large range of parameters. The dependence of the orientation of the vesicle and t
membrane velocity on shear rate and vesicle volume can be understood from a simplified mode
[S0031-9007(96)01470-6]
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Vesicles are closed lipid membranes suspended
aqueous solution. If the composition of this solutio
inside and outside the vesicle is identical, it affects t
equilibrium properties of the vesicle only by osmoticall
fixing the enclosed volume. Minimizing the bendin
energy of the membrane under the constraints of fix
enclosed volume and membrane area then yields
equilibrium vesicle shape at rest [1]. The dynamics
this shape, however, is governed by the coupling
the flow within the two-dimensional incompressible flui
membrane to the hydrodynamics of the bulk fluid. An
theory of vesicle dynamics is complicated by the fact th
the boundary conditions for the three-dimensional Navie
Stokes equations have to be evaluated at the ves
surface, which is moving with the fluid and whose sha
is not knowna priori.

Considerable practical interest in this problem aris
from a more complex system, the red blood cell. Th
deformation of erythrocytes in hydrodynamic flow field
is used as a measure of changes in the elastic prope
of pathologically modified cells [2,3]. The understandin
of the dynamics of a single cell is also a prerequisite f
the understanding of the rheology of blood. Since t
erythrocyte has a complicated structure consisting o
fluid lipid/protein bilayer and the spectrin network, theo
retical analysis has employed expansions for small flo
rate [4] or has focused on simpler model systems su
as shells with stretching elasticity and liquid drops wi
homogeneous surface tension [5–8]. The dynamics
fluid membranes with fixed area and bending rigidity h
only been studied in the quasiplanar [9], quasispheri
[10], and cylindrical [11] geometry without external flow
fields. Further analytical work includes the covaria
treatment of the membrane incompressibility [12] an
the dynamic renormalization of material parameters [1
in equilibrium. The problem for a closed vesicle wit
arbitrary shape and external flow is investigated in th
Letter for the first time.

For specifity, we investigate a linear shear flowy0
x srd ­

Ùgz with shear rateÙg, as sketched in Fig. 1(a), which
can be easily realized experimentally [2]. The stationa
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state of a vesicle in such a flow resulting from ou
computation is shown in Fig. 1(b). It is characterize
by both a finite inclination angleu between the longest
axis of inertia of the vesicle and the flow direction, and
“tanktreading” tangential motion of the membrane aroun
the vesicle with revolution frequencyv. Both u and
v are found to depend strongly on the reduced volum
y ­ Vys4pR3

0y3d of the vesicle, whereV is the enclosed
volume and the surface areaA determines the length scale

FIG. 1. Vesicle in shear flowy0
x ­ Ùgz. (a) Schematic draw-

ing of the undisturbed flow, inclination angleu, and coordinate
axesx, z, a, andc. The coordinate axis pointing into the pape
plane isy. (b) Stationary state obtained by numerical integr
tion for y ­ 0.9, Ùg ­ 1 s21, k ­ 10219 J, h ­ 1023 Jsym23,
andR0 ­ 10 mm. The velocities at the vertices are shown a
arrows with length proportional to velocity.
© 1996 The American Physical Society 3685
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Ay4p. The bending rigidity of the membrane
k sets the energy scale [14]. Together with the bu
viscosityh, these quantities define an intrinsic time sca
t ; hR3

0yk. Thus, the dimensionless shear ratex ;
Ùgt ­ ÙghR3

0 yk is the second parameter of the problem
Figures 2 and 3 show the inclination angleu and the mean
revolution frequencyv [15], respectively, as a function of
the reduced volumey for different values ofx.

We find numerically that, for any nonzero shear rat
small perturbations of the equilibrium shape do n
allow stationary flow with the appropriate boundar
conditions [16]. Thus, shear appears to be a singu
perturbation that drives the vesicle towards a stationa
nonequilibrium shape that can be distinctly different from
the corresponding equilibrium shape. Further increasi
the shear ratex only marginally affects shape and
orientation angleu. This behavior is remarkably different
from the behavior of both erythrocytes, which go throug
a transition from tumbling to tanktreading behavior wit
increasingÙg [2], and liquid drops, which deform to more
and more elongated shapes as a function ofÙg until they
break up [17].

The stationary state was found to be independent
initial conditions. In particular, fory & 0.75, oblate
discocytes are locally stable in the absence of an exter
flow field [18] but still transform to the same elongate
shape as prolate vesicles when suspended in shear fl
We have tested this behavior for ally $ 0.52, i.e., the
entire range where the equilibrium discocytes do not se
intersect.

Hydrodynamic calculations on typical length and tim
scales of membranes and vesicles are simplified by e
ploying the Stokes approximation which is valid in th
limit of small Reynolds number Re [19]. For a vesicle su
pended in a shear flow with typical velocityu ­ ÙgR0, this
number can be estimated by Re­ ruR0yh ­ r ÙgR2

0yh.

FIG. 2. Inclination angleu between thex axis and the longest
axis of inertia as a function of reduced volumey for different
reduced shear ratesx ­ 1 snd, 5 ssd, 10 sed, 50 s3d, 100
s1d. Numerical errors are smaller than the symbol sizes. T
continuous line follows from Eq. (8).
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Inserting the vesicle sizeR0 . 10 mm and the viscosity
h ­ 1023 Jsym3 and densityr ­ 103 kgym3 of water,
the limit of small Re corresponds toÙg ø 104 s21. Thus,
the hydrodynamic equations for the velocity fieldvsrd of
an incompressible Newtonian bulk fluid with external forc
densityksrd reduce to the instantaneous force balance

h=2v ­ =psrd 1 ksrd . (1)

The pressure fieldpsrd can be eliminated by using the
incompressibility condition= ? vsrd ­ 0. Because of the
linearity of (1),vsrd can be written as a superposition of
background flowv0srd and additional flowsv isrd arising
from the interactions of the fluid with the membrane.

We describe the membrane surface by a triangulat
with vertex positionsRa moving with the adjacent
bulk fluid due to non-slip boundary conditions and th
impermeability of the membrane for bulk flow. Force
on the membrane are computed on these vertices from
energy

GshRajd ­
X
a

2ksH2da 1
X
a

saAa (2)

of the discretized membrane. The energy has two co
tributions. First, the discretized squared mean curvat
sH2da [20] describes the bending energy [14,21,22] wi
bending rigidity k. Second, a locally varying isotropic
tensionsa which is conjugate to the areaAa of the neigh-
boring triangles around each vertex is needed to ens
local incompressibility of the membrane.

The forceKb at vertexRb then reads

Kb ; 2
≠GshRajd

≠Rb

­ 22k
X
a

≠sH2da

≠Rb
2

X
a

sa ≠Aa

≠Rb
, (3)

FIG. 3. Scaled revolution frequencyvtyx averaged over all
vertices as a function of reduced volumey for different reduced
shear ratesx (Symbols are as in Fig. 2). The continuous lin
is computed using the solution of (9). For volumesy , 0.7,
a full revolution in the stationary state could not be comput
due to constraints on computation time.
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and the force density is given byksrd ­
P

b dsr 2

RbdKb .
The disturbance flow due to the presence of the ves

can be computed using the Oseen tensorO describing
the flow field induced by a discrete point forceKb in
an infinite fluid medium. The total velocity at the verte
positionRa then reads

vsRad ­ v0sRad 1
X
b

OsRa , RbdKb . (4)

The matrix elements of the Oseen tensor are [23–25]

OijsRa , Rbd ­
1

8phd

µ
dij 1

didj

d2

∂
, (5)

with d ; Ra 2 Rb andd ; jdj. Here, the viscosity of
the fluidh is assumed to be equal for the fluids inside a
outside the vesicle [26].

After dealing with the energetics of the membrane
the force balance we have to treat the dynamics of
lipid membrane correctly. Two-dimensional incompres
ibility of the membrane leads to the condition that th
area around every vertex remains constant under the
namics, i.e.,0 ­ ≠tAa ­

P
b s≠Aay≠RbdvsRbd. Using

Eq. (4) for the velocities and Eq. (3) for the vertex force
this condition yields an inhomogeneous system of line
equations for the local tensionssa . After the tensions
are thus determined, moving the vertices byDtvsrad with
a short time stepDt respects the Stokes equations and
boundary conditions and thus gives a correct integrat
scheme for the hydrodynamic problem which automa
cally conserves the volume of the enclosed fluid. Fluid
of the membrane is ensured by bond flips attempted
regular intervals [27].

This procedure turns out to be stable in the sense
(i) an initially smooth surface remains smooth during tim
evolution, and (ii) the distribution of triangle sizes an
angles remains approximately constant in the station
state. As a test, we relax surfaces atv0 ­ 0 and arrive
at the known axisymmetric equilibrium shapes [1] with a
error of 0.2% for the energy and1.5% for the (uniform)
tension using a discretization withN ­ 337 vertices.
Area and volume remain constant with an error belo
0.1% for the longest runs.

The numerical results for shape, orientation, and me
brane velocity in the stationary state may be understo
using a simplified model. The numerical data show
approximate mirror symmetry of the induced tensions

with respect to the plane defined by the axis denoted ba
in Fig. 1(a) and they axis. The axis perpendicular to thi
symmetry plane is denoted byc. We now assume tha
this symmetry holds exactly. The velocity field can b
written as a superposition of the undisturbed shear fl
v0 and the flowv i induced by all forces on the mem
brane. The latter flow must have the mirror symme
of the inducing forces. In a stationary state, the sum
these two contributions has to be tangential to the me
brane surface. We evaluate this condition for the cont
of the vesicle in thex-z plane aty ­ 0. With s denoting
icle
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the arclength of this contour, the contour is described
a vectorsssassd, 0, cssdddd with the local tangential velocity
bssd. We obtain four equations,

6bssd
dassd

ds
­ yi

a 1 Ùg cosufassd sinu 6 cssd cosug ,

(6)

bssd
dcssd

ds
­ 6yi

c 2 Ùg sinufassd sinu 6 cssd cosug ,

(7)
where the different signs apply to the upper and
the reflected point on the lower part of the vesicl
respectively.

We can now eliminate the unknown quantityv i from
(6) and (7) and obtain differential equations fordassdyds
anddcssdyds. These equations describe an ellipse

a2ssd
r2 cos2 u

1
c2ssd

r2 sin2 u
­ 1 . (8)

If one now assumes axisymmetry of the entireshape,
the length scaler and the angleu are uniquely determined
by the constraints on area and volume of the vesic
The shear rateÙg scales the velocitybssd and does
not influence the shape or orientation. We obtain t
differential equation [28]

dbssd
ds

­ 6
Ùgassdcssd sin2 u cos2 uscos2 u 2 sin2 ud

a2ssd sin4 u 1 c2ssd cos4 u

(9)
for the velocity along the contour by form-
ing the derivative of the geometrical conditio
fdassdydsg2 1 fdcssdydsg2 ­ 1 with respect to s.
This equation can be solved numerically, giving th
revolution frequencyv ; 2py

H
bssd21ds.

In the spherical limity ø 1, Eq. (8) givesu ø py4
andr ø R0. Equation (9) simplifies tobssd ­ ÙgR0y2 ­
const, which is equivalent tov ­ Ùgy2 ­ xy2t. Thus,
all limit values for a spherical vesicle are identical t
the results for a rigid sphere or a fluid drop with infinit
surface tension in shear flow [19].

As Figs. 2 and 3 show, our simplified model yield
good quantitative agreement with the results of t
hydrodynamic integration. The results for different she
rate x collapse as expected. The spherical limity ø 1
cannot be reached numerically, as the tension in
membrane diverges when exterior forces are applied
a sphere. For reduced volumesy & 0.8, the symmetry
assumptions in our simplified model are less justified.

The results of the numerical integration contain in
formation about the distribution of velocity and tensio
within the membrane not available from the simplifie
model. The revolution frequencyv measures only the
mean velocity. The local variations of membrane velo
ity show two remarkable features: (i) The velocity varie
along the contour in a way that velocities are small
towards the poles of the vesicle. This behavior can
3687
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FIG. 4. Revolution frequencyv as a function of lateral
coordinatey for reduced volumesy ­ 0.7, 0.8, 0.9, 0.975 for
x ­ 10, t ­ 10 s. The y independence ofv for large y
implies that adjacent membrane segments are again c
together after a full revolution.

understood qualitatively by formulating (6) and (7) for
contour rotated out of thex-z plane. (ii) Figure 4 shows
the laterals yd variation in the revolution frequenciesv
evaluated for individual vertices. Even though we ha
included neither an explicit shear rigidity nor shear vi
cosity, we find numerically effective shear in the mem
brane only for large deviations from an elliptical shape
smally.

In the stationary state, the membrane tensionsa is
constant only forv0 ­ 0. In a shear flow, we find that
the largest values of the (negative) tension are in t
middle of the vesicle, i.e., the vesicle responds to bei
pulled apart by the shear flow. For large shear ratesx ¿

1, bending rigidity is irrelevant, and the mean tensio
N21

P
a sa increases linearly withx, thus dominating

the elastic energy of the membrane.
In conclusion, we have developed a stable numeri

scheme for calculating the time evolution of vesicles wi
arbitrary shape suspended in arbitrary flow fields. In t
case of simple shear flow, we find an inclination angleu

independent of shear rate and a revolution frequencyv

linearly proportional to shear rate. Our approach brea
down for shear rates smaller thanx ø kBTyk . 0.04,
where typical velocities of rotational diffusionkBTyhR2

0
are comparable to the velocity of the shear flow. In th
regime, one should incorporate thermal fluctuations.

We thank T. M. Fischer for helpful discussions. M. K
and W. W. thank K. Kehr from IFF, Forschungszentru
Jülich for hospitality. U. S. benefited from interactio
with S. Langer and M. Wortis on a related problem.

[1] U. Seifert and R. Lipowsky, inStructure and Dynamics
of Membranes,edited by R. Lipowsky and E. Sackmann
(Elsevier Science, Amsterdam, 1994).

[2] T. M. Fischer, M. Stöhr-Liesen, and H. Schmid
Schönbein, Science24, 894 (1978).
3688
ose

e
-
-

at

he
g

n

al
h
e

ks

is

.

[3] W. Groner, N. Mohandas, and M. Bessis, Clin. Chem.26,
1435 (1980).

[4] M. A. Peterson, Phys. Rev. A45, 4116 (1992).
[5] S. R. Keller and R. Skalak, J. Fluid Mech.120, 27 (1982).
[6] D. Barthès-Biesel, Physica (Amsterdam)172A, 103

(1991).
[7] W. S. J. Uijttewaal, E. J. Nijhof, and R. M. Heethaar, Phy

Fluids A 5, 819 (1993).
[8] C. Pozrikidis, J. Fluid Mech.297, 123 (1995).
[9] F. Brochard and J. F. Lennon, J. Phys. (France)36, 1035

(1975).
[10] S. T. Milner and S. A. Safran, Phys. Rev. A36, 4371

(1987).
[11] P. Nelson, T. Powers, and U. Seifert, Phys. Rev. Lett.74,

3384 (1995).
[12] G. Foltin, Phys. Rev. E49, 5243 (1994).
[13] W. Cai and T. C. Lubensky, Phys. Rev. E52, 4251 (1995).
[14] We employ the simplest possible curvature model f

the membrane bending energy, neglecting spontane
curvature of the membrane as well as effects of bilay
elasticity [1]. These would introduce additional lengt
scales.

[15] Numerically, we determine the mean tanktreading tim
tt ­ 2pyv as twice the time between two successiv
sign changes of the coordinatez for a single vertex, and
average over all vertices in order to obtainv.

[16] The smallestx for which we could obtain numerically
stable data isx ­ 0.1, cf. M. Kraus, Ph.D. thesis,
Universität Potsdam, 1996 (unpublished).

[17] J. M. Rallison, Annu. Rev. Fluid Mech.16, 45 (1984).
[18] M. Kraus, U. Seifert, and R. Lipowsky, Europhys. Let

32, 431 (1995).
[19] T. G. M. van de Ven,Colloidal Hydrodynamics(Academic

Press, London, 1989).
[20] Squared mean curvature is discretized by calculat

the mean curvature on the edges of the triangulat
and subsequently summing up and squaring on adjac
vertices.

[21] P. B. Canham, J. Theor. Biol.26, 61 (1970).
[22] W. Helfrich, Z. Naturforsch.28C, 693 (1973).
[23] C. Pozrikidis,Boundary Integral and Singularity Methods

for Linearized Viscous Flow(Cambridge University Press
Cambridge, England, 1992).

[24] M. Doi and S. F. Edwards,The Theory of Polymer
Dynamics(Clarendon Press, Oxford, 1986).

[25] The Oseen tensor diverges ford °! 0. The self-
interaction term OfsRa , Rad can be regularized by
integrating over the adjacent triangles ofRa , cf. Ref. [7].
As this integration procedure is employed only fo
this special case and not for the interaction betwe
arbitrary vertices, we have to introduce a weightin
factor ca for the self-interaction which is chosen to
ensure constancy of the vesicle volume. Usually, we fi
maxa j1 2 caj , 0.05.

[26] Different viscosities inside and outside the vesicle me
brane lead to an integral equation inv for every time step,
cf. Ref. [23].

[27] D. M. Kroll and G. Gompper, Science255, 968 (1992),
and references therein.

[28] Positive sign applies toac , 0, and negative sign to
ac . 0.


