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We present analytic and numerical studies of the order-parameter distribution function near the c
point of Osnd symmetric three-dimensional (3D) systems in a finite geometry. The distribution func
is calculated within thew4 field theory for a 3D cube with periodic boundary conditions by means o
new approach that appropriately deals with the Goldstone modes belowTc. Good agreement is found
with new Monte Carlo data for the distribution function of the magnetization of the 3DXY sn ­ 2d and
Heisenbergsn ­ 3d models. [S0031-9007(96)01500-1]

PACS numbers: 75.40.Mg, 05.70.Jk, 64.60.Ak
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The interest in analytic and numerical studies of finit
size effects on phase transitions has remained o
highly stimulating level over the last years. Perhaps
most fundamental quantity in the statistical descripti
of these effects is the probability distributionPsFd of
the spatial averageF of the order parameter [1],F ­
V 21

R
ddx wsxd or F ­ N2d

P
i wi , wherewsxd and wi

represent the local fluctuating order-parameter variable
a continuum or discrete description withV andNd being
the finite volume or number of lattice sites, respective
This distribution function can be studied analytically an
numerically both for Ising-like systems as well as f
Osnd symmetric systems (such asXY and Heisenberg
models) whereF is an n component vector. The latte
systems are of particular interest belowTc because of
the massless spin-wave (Goldstone) modes governing
long-distance properties.

While detailed numerical studies onPsFd have been
carried out for the three-dimensional (3D) Ising mod
[1,2], no numerical results are available (to the best
our knowledge) forOsnd symmetric 3D systems withn .

1. This corresponds to the situation on the theoreti
side where no predictions are available for the critic
behavior of PsFd in finite 3D systems with ann-
component order parameter withn . 1. This lack of
theoretical knowledge is related to the notorious difficu
in treating the Goldstone modes near criticality. In fa
so far the existing field-theoretic approaches to finite-s
effects within thew4 model [3–7] are not appropriate t
satisfactorily deal with the Goldstone problems related
PsFd for T & Tc. The goal of this Letter is to fill in
this gap. We shall calculatePsFd for generaln above
and belowTc on the basis of a novel finite-size approa
and shall compare the resulting finite-size scaling funct
with new Monte Carlo (MC) data of the 3DXY and
Heisenberg models. Good agreement between the
data and the theoretical predictions is found.

Our analytic treatment is based on thew4 model with
the standard Landau-Ginzburg-Wilson Hamiltonian

H ­
Z

V
ddxf 1

2 r0w2 1
1
2 s,wd2 1 u0w4g , (1)
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where wsxd ­ L2d
P

k wkeikx is an n-component field
in a finite cube of volumeV ­ Ld with periodic
boundary conditions. The summation

P
k runs over

discretek vectors with componentskj ­ 2pmjyL, mj ­
0, 61, 62, . . . , j ­ 1, 2, . . . , d in the rangejkj j # L. Pio-
neering work on finite-size calculations within this mod
has been performed previously [3,4] where it was pr
posed to decomposewsxd as wsxd ­ F 1 ssxd and to
treat the inhomogeneous modesssxd ­ L2d

P
kfi0 wkeikx

perturbatively while the lowest modeF was treated
exactly. The order-parameter distribution functio
PsFd ; PsF, t, Ld is defined by functional integration
over s as PsF, t, Ld ­ Z21

R
Ds exps2Hd, where

Z ­
R

dnF
R

Ds exps2Hd. Phenomenological [8] and
renormalization-group arguments [9] imply thatPsFd has
the asymptotic (largeL, small jtj) scaling form

PsF, t, Ld ­ LnbynfsFLbyn , tL1ynd , (2)

wheret ­ sT 2 TcdyTc is the reduced temperature andb

and n are the bulk critical exponents of the order pa
rameter and the correlation length. While it is straigh
forward to employ the approach of Ref. [3] to calcula
the scaling functionf at Tc [5] and aboveTc, fundamen-
tal difficulties have been shown [7] to arise belowTc for
n . 1. Unlike the casen ­ 1 belowTc [6], no distribution
function PsFd could be determined within thew4 model
for n . 1 because of (spurious) Goldstone singulariti
[7]. On a qualitative level, one possible solution of th
problem may be a low-temperature expansion in2 1 ´

dimensions within the nonlinears model [3]. On a quan-
titative level it seems doubtful, however, whether a low
order d 2 2 expansion can be extrapolated sufficient
well to d ­ 3 to obtain reliable results for finite-size sca
ing functions in three dimensions. A successful treatme
of Goldstone boson related finite-size effects forn . 1 has
been given previously [10] within a large-volume expa
sion belowTc. This approach, however, does not includ
the crossover from the Goldstone dominated behavior
T , Tc to the critical finite-size behavior atT ­ Tc and for
T * Tc. Here we shall determinePsFd both for T , Tc

andT $ Tc within the w4 model directly in three dimen-
sions by a novel approach that includes part of the eff
© 1996 The American Physical Society 3641
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of the k fi 0 modes in a nonperturbative way. Our a
proach is not restricted to the large-volume regime. T
remarkably good agreement of the previousd ­ 3 field
theory forn ­ 1 [6] with high-precision MC data for the
finite 3D Ising model [11] encourages us to employ t
d ­ 3 approach for thew4 model also in the present case

Substituting the decompositionw ­ F 1 s into
Eq. (1) yieldsH ­ H0sFd 1 H 0sF, sd where

H0sFd ­ Lds 1
2 r0F2 1 u0F4d , (3)

H 0sF, sd ­
Z

V
ddxh 1

2 fr0Ls2
L 1 r0T s2

0T 1 s=sLd2

1 s=sT d2g 1 4u0FsLs2 1 u0s4j , (4)
with the longitudinal and transverse parametersr0L ­
r0 1 12u0F2, r0T ­ r0 1 4u0F2. Here we have further
decomposeds ­ sL 1 sT into longitudinal and trans-
verse parts that are parallel and perpendicular to the v
tor F, respectively, withs2 ­ s

2
L 1 s

2
T . This yields the

distribution function in the form
PsFd ­ sZeffd21 exp f2HeffsFdg , (5)

HeffsFd ­ H0sFd 1 GsFd 2 Gs0d , (6)

GsFd ­ 2 ln
Z

DsLDsT exps2H 0d , (7)

with Zeff ­
R

dnF e2Heff
. In Eq. (6) the constantGs0d

has been subtracted for convenience. This permits on
let L ! ` in the renormalized theory without generatin
additiveultraviolet divergencies ofHeffsFd.

The main problem is to develop a perturbation approa
to calculateGsFd, Eq. (7). Thus the basic question aris
how to split H 0sF, sd ­ H1 1 H2 into an unperturbed
part H1 and a perturbation partH2. The Gaussian parts
of H 0, Eq. (4), are obviously problematic forr0 , 0
and cannot be used asH1 because bothr0L and r0T

become negative for smallF2. This problem has been
solved perturbatively forn ­ 1 [6] by replacingF2 !

M2
0 in the longitudinal Gaussian part ofH1 whereM2

0 ­
Z21

0

R
dnFF2e2H0 with Z0 ­

R
dnFe2H0 . This is not

applicable, however, to the transverse part. Although
transverse parameterr̃0T ­ r0 1 4u0M2

0 remains positive
for r0 # 0 as long asL is finite, it becomes a dangerou
parameter in the bulk limit wherẽr0T vanishes forr0 #

0 since M2
0 approaches the mean-field value2r0y4u0.

This would cause (spurious) Goldstone singularities in
conventional perturbation approach [7].

A simple but important observation is the fact th
the distribution functione2H 0

determiningGsFd is well
behaved for larges not only for r0 $ 0 but also for
r0 , 0 owing to the positivity of the last termHs4d ­R

ddx u0s4 in Eq. (4). ConsiderHs4d in terms of the
Fourier amplitudeswk ; sk ­ sLk 1 sTk with s0 ; 0,

Hs4d ­ u0L23d
X

kk0k00

ssksk0d ssk00s2k2k02k00 d . (8)

The basic idea of our new approach is to include
tractable part of this positive term inH1 such thate2H1
3642
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remains well behaved for larges even for r0 , 0. In
constructingH1 we have been guided by the idea o
generalizing the nonperturbative treatment of thek ­ 0
HamiltonianH0, Eq. (3), to finitek. We shall show that
this is achieved by definingH1 ­

P
kfHs2d

k 1 H
s4d
k g with

H
s2d
k ­

1
2 L2dfsr0L 1 k2d jsLkj2 1 sr0T 1 k2d jsTkj2g ,

(9)

H
s4d
k ­ 3u0L23dfjsLk j4 1 jsTkj4g , (10)

whereH
s4d
k originates fromHs4d for the special casesk0 ­

2k, k00 ­ k or k0 ­ 2k, k00 ­ 2k or k0 ­ k, k00 ­
2k; the factor of 3 in Eq. (10) takes into account th
number of possibilities to combine the Fourier amplitude
of Eq. (8) in factors of the formjsLkj4 andjsTkj4.

We emphasize that, unlikeHs4d, the last term ofH1 is
a single sum that will not contribute to bulk quantities
because of the prefactorL23d of H

s4d
k . This implies that

the coupling of the last term ofH1 is u0L22d rather than
u0. It is only the first term ofH1 that yields the usual one-
loop bulk contribution to the free energy. Nevertheless, f
finite L andr0 , 0, H

s4d
k plays the role of a regulator that

is crucial in order to ensure the positivity of the small-k
part ofH1 in the regionr0L 1 k2 , 0 andr0T 1 k2 , 0.

In the following we shall neglectH2. As far as bulk
contributions are concerned this corresponds to a one-lo
approximation. Then we obtain

GsFd ­ 2 ln
Z Y

kfi0

dsLkdsTk exps2H
s2d
k 2 H

s4d
k d .

(11)

We see that the particular choice of the fourth-order ter
in H1 is crucial for the tractability of the non-Gaussia
functional integral which is split up intouncoupled
integrations for eachk ­ 2pmyL. This permits one
to treat H

s4d
k nonperturbativelyand leads to the (bare)

effective Hamiltonian

HeffsFd ­ H0sFd 2
1
2

X
mfi0

ln

√
Z1fy0msr0Ldg
Z1fy0msr0dg

!

2
1
2

sn 2 1d
X

mfi0

ln

√
Z1fy0msr0T dg
Z1fy0msr0dg

!
, (12)

y0msrd ­ s2Ld24y3u0d1y2srL2 1 4p2m2d , (13)

Z1fyg ­
Z `

0
ds s exps2 1

2 ys2 2 s4d . (14)

This Hamiltonian is the analytic basis of this Letter. It i
applicable forr0 $ 0 andr0 , 0, for arbitraryL, and is
free of Goldstone singularities in the bulk limit as require
on general grounds [12] forOsnd invariant quantities.

So far we have not yet dealt with the critica
sr0 ! r0cd behavior of PsFd. For this purpose we
turn to renormalized field theorysL ! `d employing
dimensional regularization and minimal subtraction



VOLUME 77, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S 21 OCTOBER1996

e

e
y
s

an

e

e

ns

r,

n

s

)

e
ic-

ng

u-
fixed d , 4 [13]. The renormalized quantities are as usu
wR ­ Z21y2

w w, u ­ m2´AdZ21
u Z2

wu0, and r ­ Z21
r sr0 2

r0cd ­ at where r0c is the (bulk) critical value ofr0.
Using the notationPsFd ; Psr0 2 r0c, u0, L, Fd for
the bare distribution function Eq. (5) we introduce th
renormalized distribution functionPRsr , u, m, L, FRd by

PR ­ Zny2
w PsZrr , m´ZuZ22

w A21
d u, L, Z1y2

w FRd . (15)

By integrating the renormalization-group equation forPR

it is then straightforward to derive the finite-size scalin
form Eq. (2). Most important is the fact thatthe new
fourth-order termsH

s4d
k in H1 do not cause new ultraviolet

sL ! `d divergencies beyond one-loop orderas can be
shown by studying the large-k, i.e., large-m, contributions
to Eq. (12). Thus it suffices to renormalizeHeff by the
standardZ factors in one-loop order althoughHeff contains
arbitrary large powers ofF2 andu0yLd24. The details of
the (multiplicative) renormalization ofHeff will be given
elsewhere [14]. The resulting scaling function defined
Eq. (2) has the structure

fsz, xd ­
expf2Fsz, xdgR

dnz expf2Fsz, xdg
, (16)

with z ­ FLbyn , x ­ tL1yn, and

Fsz, xd ­ c2sx̂dẑ2 1 c4sx̂dẑ4 2
1
2

X
mfi0

ln
Z1hymfr̃Lsẑ, x̂dgj
Z1hymsr̃Ls0, x̂dgj

2
1
2

sn 2 1d
X

mfi0

ln
Z1hymfr̃T sẑ, x̂dgj
Z1hymfr̃T s0, x̂dgj

. (17)

Here x̂ ­ QptsLyj0d1yn and ẑ ­ s2QpdbsFyAMd 3

sLyj0dbyn are convenient dimensionless scaling variabl
normalized to the asymptotic amplitudesAM and j0 of
the bulk order parameterMbulk ­ AM jtjb below Tc and
of the bulk correlation lengthj ­ j0t2n aboveTc. The
well-known bulk parameterQpsnd [13] will be given
below. In three dimensions we obtain

ymsr̃sẑ, x̂dd ­ f6pup,̃sx̂dg21y2fr̃sẑ, x̂d,̃sx̂d2 1 4p2m2g ,

(18)

r̃Lsẑ, x̂d ­ x̂,̃sx̂d21yn 1 s3y2d,̃sx̂d22bn ẑ2, (19)

r̃T sẑ, x̂d ­ x̂,̃sx̂d21yn 1 s1y2d,̃sx̂d22bn ẑ2, (20)

which are the dimensionless renormalized counterpa
of y0m, r0L 2 r0c, and r0T 2 r0c, respectively. The
coefficientsc2sx̂d andc4sx̂d read ford ­ 3

c2sx̂d ­s64pupd21x̂,̃sx̂d32s2b11dynf1 1 4sn 1 2dupg ,

(21)

c4sx̂d ­s256pupd21,̃sx̂d324bynf1 1 4sn 1 8dupg , (22)

where upsnd is the known [13] fixed point value of the
renormalized couplingu. The auxiliary scaling function
,̃sx̂d of the flow parameter is determined by
al

e

g

in

s

rts

,̃sx̂d3y2 ­ s4pupd1y2hỹsx̂d 1 12q2fỹsx̂dgj , (23)

ỹsx̂d ­ s4pupd21y2,̃sx̂d3y221yn x̂, (24)

q2syd ­

R`

0 ds sn11 exps2 1
2 ys2 2 s4dR`

0 ds sn21 exps2 1
2 ys2 2 s4d

. (25)

The sums
P

mfi0 in Eq. (17) can be evaluated by using th
prescriptions of dimensional regularization [15] and b
computing their finite contributions in three dimension
numerically [14]. Our result for the universal function
fsz, xd requires no adjustment of parameters (other th
the bulk amplitudesAM and j0). Sincefsz, xd depends
only on jzj (rather than on the vectorz) and because
of dnz ­ gsnddsjzjnd with gsnd ­ 2pny2fnGsny2dg21,
we have plotted fgsz, xd ­ gsndfsz, xd vs jzjn in
Fig. 1 for n ­ 2 and 3. The corresponding values
of Qpsnd and upsnd are [13] Qp ­ 0.939, 0.937 and
up ­ 0.0362, 0.0328; for the bulk critical exponents we
takeb ­ 0.344, 0.365 andn ­ 0.671, 0.705, respectively
[16–19].

In order to test these predictions of our theory w
have performed MC simulations forOsnd symmetric
spin models which are believed to belong to the sam
universality class as theOsnd symmetricw4 model. There
have been successful comparisons of MC simulatio
for the 3D XY [20] and Heisenberg models [21] with
the results of Ref. [10]. They did not include, howeve
the distribution functionPsFd. Specifically, PsFd of
the w4 model corresponds to the distribution functio
PsMd of the magnetizationM ­ N23

P
i si of the XY

sn ­ 2d and Heisenbergsn ­ 3d models on a cubicN3

lattice. Their (nearest-neighbor) Hamiltonian readsH ­
2K

P
si ? sj , 1K . 0, wheresi is an n-component unit

vector on the lattice sitei. Like fsz, xd, PsMd depends
only on M ­ jMj, and the probabilitydW to find M in
the elementdnM can be written asdW ­ PsMddnM ­
P̃sMddsMnd with P̃ ­ gsndP. We have obtained the
distribution

P̃ ­
1
Z

Z
Ds e2HdsjN23

X
i

sij
n 2 Mnd, (26)

with Z ­
R

Ds e2H by generating spin configurations
according to the distributione2H using Wolff’s cluster
algorithm [22] and making histograms with the value
for Mn. With L,AM , andj0 taken in units of the lattice
constant,P̃ is related to the scaling function in Eq. (16
asP̃sM, t, Ld ­ Lnbyngsndfsz, xd.

Figure 1 shows that the MC data for various lattic
sizes are in good agreement with the theoretical pred
tions both atTc and belowTc. (Similar agreement is
found aboveTc.) The different steepness off at Tc

nearz ­ 0 for n ­ 2 andn ­ 3 is well described by the
theory. The qualitative difference between the increasi
(n ­ 2) and decreasing (n ­ 3) maximum belowTc is an
unexpectedn dependence of the order-parameter distrib
tion function.
3643
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FIG. 1. Theoretical predictions (solid lines) and MC data fo
the scaling functionfg ­ gsndfsz, xd at Tc (x ­ 0) and below
Tc (x , 0): (a) for the XY model [j0 ­ 0.498 [17], AM ­
1.217, gs2d ­ p] and (b) for the Heisenberg model [j0 ­
0.484 [18], AM ­ 1.118, gs3d ­ 4py3], with z ­ FLbyn and
x ­ tL1yn, in units of the lattice constant. The normalizatio
is

R`

0 fgdsjzjnd ­ 1.

Having established the shape offsz, xd we are in the
position to determine the finite-size effects on vario
important thermodynamic quantities such as susceptibil
specific heat, and magnetization. A generalization
finite external ordering field [14], different geometries, an
boundary conditions will be studied in the future. Our ide
of a nonperturbative treatment of thek fi 0 modes may
also open up the possibility of entering the unexplored a
of finite-sizedynamicsof Osnd symmetric systems.

Our results can, of course, be applied also to the simp
casen ­ 1. Good agreement with recent MC data fo
3644
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PsFd of the 3D Ising model above and belowTc [2]
is found [14]. It turns out that the leading term of a
expansion of our present theory aroundF2 ­ M2

0 coincides
with the previous version of then ­ 1 theory [6,11].

Support by Sonderforschungsbereich 341 der Deu
chen Forschungsgemeinschaft is acknowledged.
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