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Order-Parameter Distribution Function of Finite O(n) Symmetric Systems
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We present analytic and numerical studies of the order-parameter distribution function near the critical
point of O(n) symmetric three-dimensional (3D) systems in a finite geometry. The distribution function
is calculated within thep* field theory for a 3D cube with periodic boundary conditions by means of a
new approach that appropriately deals with the Goldstone modes liglowcood agreement is found
with new Monte Carlo data for the distribution function of the magnetization of th&(BOn = 2) and
Heisenbergn = 3) models.  [S0031-9007(96)01500-1]

PACS numbers: 75.40.Mg, 05.70.Jk, 64.60.Ak

The interest in analytic and numerical studies of finite-where ¢(x) =L~ ¢Y, ¢re™ is an n-component field
size effects on phase transitions has remained on ia a finite cube of volumeV = L¢ with periodic
highly stimulating level over the last years. Perhaps thdoundary conditions. The summatioh, runs over
most fundamental quantity in the statistical descriptiondiscretek vectors with components; =2 m;/L,m; =
of these effects is the probability distributiad(®) of 0, *1,*2,...,j=1,2,...,d inthe rangdk;| = A. Pio-
the spatial average of the order parameter [1 =  neering work on finite-size calculations within this model
V! [dixo(x) or® = N"?Y, ¢;, wherep(x) ande;  has been performed previously [3,4] where it was pro-
represent the local fluctuating order-parameter variable iposed to decompose(x) as ¢(x) = ® + o(x) and to
a continuum or discrete description withandN? being  treat the inhomogeneous modeé) = LY ., pre*™
the finite volume or number of lattice sites, respectively perturbatively while the lowest mod& was treated
This distribution function can be studied analytically andexactly. The order-parameter distribution function
numerically both for Ising-like systems as well as for P(®) = P(d,t, L) is defined by functional integration
O(n) symmetric systems (such @Y and Heisenberg over o as P(®,t,L) = Z ' [Doexp(—H), where
models) whered is ann component vector. The latter Z = [d"® [ Do exp(—H). Phenomenological [8] and
systems are of particular interest beld because of renormalization-group arguments [9] imply tha¢®) has
the massless spin-wave (Goldstone) modes governing thike asymptotic (largé, small|z[) scaling form
long-distance properties. P(®,1,L) = L"B/Vf(OLP/Y 1L17), )

While detailed numerical studies ab(®) have been

carried out for the three-dimensional (3D) Ising modelWhere: = (7' —T.)/T. is the reduced temperature ad

[1,2], no numerical results are available (to the best oft"d ¥ are the bulk critical exponents of the order pa-
rameter and the correlation length. While it is straight-

our knowledge) foi0 (n) symmetric 3D systems with >

1. This corresponds to the situation on the theoreticaforward to employ the approach of Ref. [3] to calculate
side where no predictions are available for the criticalN® Scaling functiory at 7. [5] and abover, fundamen-
behavior of P(®) in finite 3D systems with an- tal dlfflcultl_es have been shown [7] to arise .bel.(wa'or
component order parameter with> 1. This lack of 7> 1. Unlike the case =1 belowT [6], no dlsgrlbut|on
theoretical knowledge is related to the notorious difficultyfunction P(®) could be determined within the® model
in treating the Goldstone modes near criticality. In fact,/0r # > 1 because of (spurious) Goldstone singularities
so far the existing field-theoretic approaches to finite-size/]: On a qualitative level, one possible SOIu_t'On_ of this
effects within thee* model [3—7] are not appropriate to Problem may be a low-temperature expansion2ift e

satisfactorily deal with the Goldstone problems related tglimensions within the nonlinear model [3]. On a quan-
P(®) for T < T.. The goal of this Letter is to fill in titative level it seems doubtful, however, Whether_q low-
this gap. We shall calculat®(®) for generaln above order d — 2 expansion can be extrapolated sufficiently

and belowT, on the basis of a novel finite-size approachwe” to d = 3 to obtain reliable results for finite-size scal-
and shall compare the resulting finite-size scaling functiodd functions in three dimensions. A successful treatment
with new Monte Carlo (MC) data of the 3XY and of Goldstone boson related finite-size effectsidor 1 has

Heisenberg models. Good agreement between the MEEEN given previously [10] within a large-volume expan-
data and the theoretical predictions is found. sion belowT,.. This approach, however_, does not |n(_:lude
Our analytic treatment is based on thé model with the crossover frqm the_ Golldstone dqmlnated behavior for
the standard Landau-Ginzburg-Wilson Hamiltonian T < T. to the critical finite-size behavior &= T. and for
T=T,. Herewe shall4determinB(<I>) both forT <T.
1 1 andT = T, within the ¢* model directly in three dimen-
H= fv d'xl3r00” + 3(Ve) +uwoe'l, (1) gops by a novel approach that includes part of the effect
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of the k # 0 modes in a nonperturbative way. Our ap-remains well behaved for large even forry < 0. In
proach is not restricted to the large-volume regime. Theonstructing H; we have been guided by the idea of
remarkably good agreement of the previalis-3 field  generalizing the nonperturbative treatment of the= 0
theory forn =1 [6] with high-precision MC data for the HamiltonianH,, Eq. (3), to finitek. We shall show that

finite 3D Ising model [11] encourages us to employ thethjs is achieved by definingl; = Zk[H + Hk ]Wlth

d = 3 approach for theo* model also in the present case. () d 5 5 5 5
Substituting the decompositionp = ® + o into ¢ = Lo+ KR lowl + (o + &) lond],
Eq. (1) yieldsH = Hy(®) + H'(®, o) where (9)

Ho(®) = L(5r0®* + upd?), ®3) @)

Hk = 3ugL ol + lonl*], (10)

/ d gl 2 2 2
— : + + . .
H(®, ) [V d*xzlrovor + rorogr + (Vo) whereH'" originates fromi#® for the special cased =

[/ ! — I — ! — I —
n 2 4 2, 4 —k, k" =k or k —.—k, k"= —k or 'k =k, k' =
(Vor)]+ 4u®oro” + upo}, (4) —k; the factor of 3 in Eq. (10) takes into account the

with the Ior;gitudinal and transverse parametess =  nymper of possibilities to combine the Fourier amplitudes
ro + 1Rug®*, ror = ro + 4uy®=. Here we have further of Eq. (8) in factors of the fornh(rLk|4 andlo'Tk|4-

decomposedr = o, + o7 into Iongitudingl and trans- We emphasize that, unlike ™, the last term ofH, is
;/er(spe parts trt‘.at Iare Pt?;_az”e‘_' argdfergen_lc_jrl](_:ula.r It((j) t'?he V€& single sum that will not contribute to bulk quantities
or ®, respectively, wi —op T oor. TNISYIRIGSINE 0 cause of the prefactdr 3¢ of H\”. This implies that

distribution function in the form the coupling of the last term df; is uoL ~>? rather than

P(®) = (z¢") " exp[-H(®)], () . Itis only the first term off, that yields the usual one-
H (D) = Hy(P) + T'(D) — I'(0), (6) loopbulk contribution to the free energy. Nevertheless, for

finite L andry < 0, Hk plays the role of a regulator that

(@) = - In[ Do Dorexp—H'), (7)  is crucial in order to ensure the positivity of the small-

part of H, in the regionry;, + k> < 0 andror + k* < 0.

In the following we shall neglect,. As far as bulk
contributions are concerned this corresponds to a one-loop
approximation. Then we obtain

with Z*" = [d"® ¢ "™ In Eq. (6) the constant'(0)
has been subtracted for convenience. This permits one to
let A — o0 in the renormalized theory without generating
additiveultraviolet divergencies off°ff(®).

The main problem is to develop a perturbation approach _ f _ @ _ 5@
to calculatel'(®), Eq. (7). Thus the basic question arises r(e) In ]g)d'f“‘d(m‘ eXp—H — Hi).
how to split H'(®,0) = H, + H, into an unperturbed (11)

part H; and a perturbation paftf,. The Gaussian parts
of H', Eq. (4), are obviously problematic fory < 0
and cannot be used ad; because bothyy; and ror

We see that the particular choice of the fourth-order term
in H; is crucial for the tractability of the non-Gaussian

; ; functional integral which is split up intouncoupled
m madb> m
become negative for smalb®.  This problem has been integrations for eactkk = 27m/L. This permits one

solved perturbatively for = 1 [6] by replacing®? — @) ,
M2 in the longitudinal Gaussian part &f, whereM?2 = to treat H,  nonperturbativelyand leads to the (bare)

Zo ! [d"dD2e~Ho with Zy = [d"®e o, This is not effective Hamiltonian

applicable, however, to the transverse part. Although the . Zi[yom(ror)]

. : u HE (D) = HOCD)——ZI Z1L0m 7oL/
transverse parametégr = ro + 4uoMj remains positive L\ Zilyom(ro)]
for ro = 0 as long adL is finite, it becomes a dangerous Zi[yom (ror)]
parameter in the bulk limit whergy vanishes forry = - —( -1 Z In ( Zl miOF ) (12)
0 since M? approaches the mean-field valuero/4uq. m#0 1byom (ro)]

This would cause (spurious) Goldstone singularities in a
conventional perturbation approach [7].
A simple but important observation is the fact that > 1, 4

the distribution functione ' determiningI’(®) is well Zilyl = ]0 ds s exp(—zys” — 57). (14)
behaved for larges not only for ry = 0 but also for
ro < 0 owing to the positivity of the last ternif® =
[d% uyo* in Eq. (4). ConsiderH® in terms of the
Fourier amplitudes;, = o = o + o With o = 0,

Yom(r) = QLY /3up) *(rL? + 47’m?),  (13)

This Hamiltonian is the analytic basis of this Letter. Itis
applicable forry = 0 andry < 0, for arbitraryL, and is
free of Goldstone singularities in the bulk limit as required
on general grounds [12] faP(n) invariant quantities.

H® = o173 TN (T Ot rr—) . 8 So far we have not yet dealt with the critical

0 k%//( ko) (Cwro—i-p-p) ®) (ro— roc) behavior of P(d). For this purpose we

The basic idea of our new approach is to include aurn to renormalized field theoryA — ) employing
tractable part of this positive term irff; such thate dimensional regularization and minimal subtraction at
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fixedd <4[13]. The renormalized quantities are as usual

©R =Z;1/2¢, u= ,u,_sAdZu_lZiuo, andr = Z Y(ry —
roc) = at where ro. is the (bulk) critical value ofry.
Using the notationP(®) = P(ro — roc, uo, L, P) for

the bare distribution function Eg. (5) we introduce the

renormalized distribution functioR(r, u, u, L, Og) by

(15)

By integrating the renormalization-group equation for

Pr = Z!2P(Z,r, u°Z,Z A7 u, L, Z))*Dp) .

0(3)Y? = @mu")'25G) + 2RO, (23)
§(%) = @mu’) " 20Ey 2V, (24)
9(y) = f§ ds s" ! exp(—%ysz — 5% (25)

[ ds sn—1 exﬁ—%ysz — 54’

The sums,, -, in Eq. (17) can be evaluated by using the
prescriptions of dimensional regularization [15] and by
computing their finite contributions in three dimensions
numerically [14]. Our result for the universal function

it is then straightforward to derive the finite-size scalingf(z, x) requires no adjustment of parameters (other than

form Eq. (2). Most important is the fact théte new

fourth-order termsH,E“) in H, do not cause new ultraviolet
(A — =) divergencies beyond one-loop ordas can be
shown by studying the largk;i.e., largem, contributions
to Eq. (12). Thus it suffices to renormaliz&™ by the
standardZ factors in one-loop order althougff'™ contains
arbitrary large powers ob? anduy/L?*. The details of
the (multiplicative) renormalization a7t will be given

the bulk amplitudesA,; and &;). Since f(z,x) depends
only on |z| (rather than on the vectar) and because
of d"z = g(n)d(|z|") with g(n) = 27"/ [nT(n/2)]"",
we have plotted f,(z,x) = g(n)f(z,x) vs [z|* in
Fig. 1 for n =2 and 3. The corresponding values
of 0*(n) and u*(n) are [13] Q* = 0.939,0.937 and
u* = 0.0362,0.0328; for the bulk critical exponents we
take B = 0.344,0.365 andv = 0.671,0.705, respectively

elsewhere [14]. The resulting scaling function defined in[16—19].

Eq. (2) has the structure

exd—F(z,x)]
[drzexd—F(z,x)]’

with z = ®LA/", x = L'/, and

flz,x) = (16)

Z{ym[FL (2, )]}

o (es2 et L
Fax)=c®2 @z = 5 2 InZ e m e

m+#0
s Zibalre )
TR I v v TR

Here £=Q%t(L/&)"” and 2=(2Q0")B(®/Ay) X

(L/&o)B/” are convenient dimensionless scaling variable

normalized to the asymptotic amplitudds, and &, of
the bulk order paramete¥ ;. = Ay|t|? below T. and
of the bulk correlation lengtly = &y~ " aboveT,.. The
well-known bulk parameterQ*(n) [13] will be given

below. In three dimensions we obtain
ym(F(2, %) = [6mu*E®)]V?[7(2, £)E(3)” + 4m’m’],
(18)
FL(2,%) = 20R)V + (3/2)8(3) 2P ER, (19)
Fr(2,8) = 20R)7Y + (1/2)8x)2F722, (20)

S

In order to test these predictions of our theory we
have performed MC simulations fo©(n) symmetric
spin models which are believed to belong to the same
universality class as th@(n) symmetrico* model. There
have been successful comparisons of MC simulations
for the 3D XY [20] and Heisenberg models [21] with
the results of Ref. [10]. They did not include, however,
the distribution functionP(®). Specifically, P(P) of
the ¢* model corresponds to the distribution function
P(M) of the magnetizatiortM = N3 ;s; of the XY
(n = 2) and Heisenbergn = 3) models on a cubidv?
lattice. Their (nearest-neighbor) Hamiltonian redfls=
—K>s; - sj, 1K > 0, wheres; is an n-component unit
vector on the lattice sité. Like f(z,x), P(M) depends
only on M = [M]|, and the probabilitydW to find M in
the elementd”M can be written agW = P(M)d"M =
P(M)d(M™) with P = g(n)P. We have obtained the
distribution

-1
P = Ef Dse T8N si]" — MM, (26)

with Z = [Dse # by generating spin configurations
according to the distributior using Wolff's cluster
algorithm [22] and making histograms with the values
for M". With L,Ay, and &, taken in units of the lattice

which are the dimensionless renormalized counterpartgonstant,? is related to the scaling function in Eq. (16)

of Yom, ror — roc, and ror — ro., respectively. The
coefficientsc, (%) andcy (%) read ford = 3

(%) =(64mu™) 1203 CFTV/L + 4(n + 2)u'],
(21)
ca(®) =256 u™) (R TE[1 + 4(n + 8)u*], (22)

where u*(n) is the known [13] fixed point value of the
renormalized coupling.. The auxiliary scaling function
£(%) of the flow parameter is determined by

asP(M,t,L) = L"B/g(n)f(z, x).

Figure 1 shows that the MC data for various lattice
sizes are in good agreement with the theoretical predic-
tions both at7. and belowT,.. (Similar agreement is
found aboveT..) The different steepness g¢f at T.
nearz = 0 for n = 2 andn = 3 is well described by the
theory. The qualitative difference between the increasing
(n = 2) and decreasing:(= 3) maximum belowr, is an
unexpected: dependence of the order-parameter distribu-
tion function.
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0.8 ' ' P(®) of the 3D Ising model above and beloW. [2]
is found [14]. It turns out that the leading term of an
expansion of our present theory aroubd= M3 coincides
with the previous version of the= 1 theory [6,11].
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