
VOLUME 77, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S 21 OCTOBER1996

hysics,
Low Energy Properties ofM-State Tunneling Systems in Metals: New Candidates
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We construct a generalized multiplicative renormalization group transformation to study the low
energy dynamics of a heavy particle tunneling amongM different positions and interacting with
Nf independent conduction electron channels. Using a1yNf expansion we show that thisM-level
system scales towards a fixed point equivalent to theNf channel SUsMd 3 SUsNf d Coqblin-Schrieffer
model. Solving numerically the scaling equations we find that a realisticM-level system scales close
to this fixed point and its Kondo temperature is in the experimentally observable range1 10 K.
[S0031-9007(96)01492-5]
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One of the simplest examples of non-Fermi-liqu
(NFL) systems is provided by the two-channel Kon
model [1–3], where the two conduction electron cha
nels overcompensate the spin (or some quasi-spin
an impurity and a new degenerate ground state app
with an intermediate coupling [1,2,4]. The FP corr
sponding to the ground state is characterized by non
residual entropy [3] and universal power low behav
in the impurity resistivity and the energy dependen
of the scattering rate (Rimp , T1y2, 1yt , v1y2) [2].
Several normal state properties of Ce orY -based heavy
fermion compounds like CeSn3 and YbCuAl can also be
explained surprisingly well in terms of the two-chann
Kondo effect [5].

Other extensively studied possible realizations of
two-channel Kondo model are provided by fast two-le
systems (TLS’s) in metals [6,7]. These TLS’s are form
by some heavy particles (HP’s) tunneling between t
neighboring sites and interacting strongly with the co
duction electrons. Recent experimental [8] and theor
cal [9,10] investigations confirm the conjecture that at l
temperatures these TLS’s can be properly described b
effective two-channel Kondo model, where the spatial m
tion of the HP is coupled to the angular momentum of
conduction electrons via an effective exchange coup
and the two degenerate channels correspond to the two
spin directions of the conduction electrons [8–10].

The TLS model sketched above is appropriate
describe tunneling centers in amorphous metals [
however, it breaks down in systems like the narr
gap semiconductor Pb12xGexTe or insulating K12xLi xCl
alloys [12,13] where the tunneling centers are formed
some substitutional impurities, and the HP is tunnel
between 3, 6, or 8 equivalent positions. Therefore
question arises in a natural way: What is the l
temperature behavior of anM-level system (MLS) which
strongly interacts with the conduction electrons?

To answer this question we consider a model previou
introduced to describe the effect of the excited states
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TLS [14]. In the following we assume that the temperatu
(or the relevant energy scale) is low enough and thus
motion of the HP is restricted to the lowest lyingM states
corresponding to theM spatial positions of the HP:

Hhp ­
MX

i,j­1

b1
i Dijbj , (1)

whereb1
i creates a HP at sitei and Dij is the tunneling

amplitude between positionsi and j. We assume tha
no external stress is present and that theM positions are
completely equivalent, thusDii ­ 0.

The most general two-particle interaction generated
the screened Coulomb interaction (or a pseudopoten
between the HP and the conduction electrons takes
form

Hint ­
X

i,j,n,m
e,e0

b1
i V ij

nmbja1
enfae0mf , (2)

wherea1
enf creates a conduction electron with energye,

orbital quantum numbern, and “flavor” index f ( f ­
1, . . . , Nf). The orbital quantum numbern can be thought
of as the angular momenta of the electrons while for a r
MLS the quantum numbersf ­ 1, 2 correspond to the
spin up and spin down conduction electrons andNf ­ 2.
For the sake of simplicity we also assume a const
density of states between the high and low energy cuto
D and 2D, %0, for all flavor numbers. Naturally, both
the couplingsV

ij
nm and the tunneling amplitudesDij are

connected by the symmetry properties of the MLS whi
will be exploited later on.

Following similar lines as in Ref. [15] one can intro
duce the HP propagatorG ijsvd and the HP-conduction
electron vertex functionGijsvd in the usual way. How-
ever, calculating these functions in a perturbative way
turns out that they do not satisfy the usual multiplic
tive renormalization group (RG) equations. Therefo
we consider the following generalized RG transformati
© 1996 The American Physical Society 3609
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Gsv, y0, D0, D0d ­ A Gsv, y, D, Dd A1,

Gsv, y0, D0, D0d ­ fA1g21Gsv, y, D, Dd A21, (3)

where the matrix notations%0V
ij
mn ! y, G

ij
mn ! G, and

Dij ! D have been introduced,D0 stands for the scaled
bandwidth, andA is anM 3 M matrix acting in the HP
indices. Note thatA ­ Asy0, D0, D0yDd is independent
from the dynamical variablev. While for finite DyD0

the matrix A has a rather complicated structure for a
infinitesimal change ofD it can be chosen to be Hermitia
and Eq. (3) can be cast in the form of a scaling equat
for the dimensionless couplingsyij .

In the following we assume that the relevant ener
variable isv, i.e., v ¿ jDijj, T . In this case the inverse
n
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HP propagator and the vertex functions can be expres
in the next to leading logarithmic order [7] as

sG21dij ­ v dij 2 Dij

1 Nf ln
D
v

sdij v trhyklylkj 2 trhyikDklyljjd

%0Gij ­ yij 2 ln
D
v

sfyik , ykjg 2 Nftrhyikyljjykld, (4)

where f , g denotes the commutator, the trace opera
trh· · ·j is acting in the electronic indices, and a summ
tion must be carried out over repeated indices. Plugg
Eq. (4) into (3) one can easily generate the scaling eq
tions in a self-consistent way:
dDij

dx
­ 2

1
2

NfftrhyikykljDlj 1 Diktrhyklyljj 2 2trhyikDklyljjg

dyij

dx
­ 2 fyik , ykjg 1

1
2

Nfs2trhyikyljjykl 2 trhyikykljylj 2 yiktrhyklyljjd , (5)
t-

gs,
nt

etry
where the scaling variablex ­ lnsD0yDd has been intro-
duced. Since the scaling equations are rather complica
apart from some special cases they can be solved only
merically. However, to exploit the symmetry properties
the MLS it is useful first to introduce some site represen
tion in the orbital indices of the conduction electrons. Th
can be achieved most simply by taking some linear com
nations of the most strongly scattered angular moment
channels and hybridizing them by using group theoretic
methods. Working only with electron states directed
the impurity positions theyij ’s becomeM4-dimensional
tensors. However, the number of independent couplin
is largely reduced by symmetry.

A typical scaling of the norm of the dimensionless co
plings, u ­

P
kyijk, is shown in Fig. 1 (dashed line)

The initial couplings have been estimated by using sim
lar methods as in Refs. [7,14]. Similarly to the mult
channel Kondo problem both the infinite and the we
coupling FP’s are unstable and the system scales to an
termediate strong coupling FP [1,2,4]. The Kondo ener
can be identified as the crossover energy from the we
to strong coupling regimes:TK ­ D0 e2xc , xc being the
crossover value of the scaling parameter. For realistic i
tial parameters we find that this Kondo temperature c
easily be found in the experimentally observable regi
TK , 1 10 K.

In order to determine the properties of the MLS in th
regimeT , v ø TK one has to identify the FP the MLS
scales to [16]. In the following we shall show that a ML
scales to a FP, which—up to some potential scatter
part—has the same structure as the SUsMd 3 SUsNf d
Coqblin-Scrieffer model [17]. To prove this we firs
ted
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remark that the operatorsdij
P

k ykk
nm anddmn

P
p y

ij
pp are

invariant under scaling. Thereforeyij can be written as
y

ij
mn ­ ỹ

ij
mn 1 M

ij
mn, where the matrixM is a constant of

motion depending on the initial parameters and
P

i ỹii
nm ­P

n ỹ
ij
nn ­ 0. Then one can easily show that the righ

hand side of Eq. (5) disappears provided

ỹ
ij
0 ­

1
Nf

µ
Oij 0
0 0

∂
, (6)

FIG. 1. Scaling of the norm of the dimensionless couplin
u ­

P
kyijk (dashed line), and of the algebra coefficie

a (continuous line) for a six-state system withNf ­ 2.
The initial couplings have been chosen to bey

11
11 ­ 0.8,

y
11
22 ­ 0.2, y

11
66 ­ 0.1, y

11
12 ­ 0.05, y

11
16 ­ 0.03, y

12
21 ­ y

12
12 ­

0.0005, y
12
11 ­ 0.005, y

16
11 ­ 0.003, y

16
61 ­ y

16
16 ­ 0.0005. The

other nonzero couplings have been generated by symm
transformations.
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where theOij ’s are unitary equivalent to the generators
the SUsMd Lie algebra

fOij , Oklg ­ dilOkj 2 dkjOil , (7)

with O
ij
nm , di

md
j
n 2

1
M dijdnm. Similarly to the TLS

problem beside the one in Eq. (6), Eq. (5) has an in
nite number of FP’s associated with different reducib
and irreducible representations of the SUsMd Lie alge-
bra (7). Our numerical simulations show, however, th
all the FP’s which correspond to a representation d
ferent from the defining one (7) are unstable. In Fig
we show the scaling of the “algebra coefficient”a ­P

i,j,k,l kN2
f fỹijỹklg 2 Nfdilỹkj 1 Nfdkjỹilk, which mea-

sures in a natural way how well the fixed point (6)
approached by thẽy’s. For T , TK (i.e., for x . xc)
the coefficienta scales to zero. Thusbelow the Kondo
temperature an MLS scales to the SUsMd 3 SUsNfd
t
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Coqblin-Schrieffer model, which is a non-Fermi-liquid
modeland has a different scaling behavior than the tw
channel Kondo model [2,18]. (For a six-state system, e.
we expect anv1y4 behavior of the scattering rate.)

To show that FP (6) is stable and to analyze its opera
content we write the deviations of the couplings from the
FP value in a form

dyij ­

µ
rij tij

stjid1 lij

∂
, (8)

and linearize the scaling equations with respect todyij.
The couplings% ij , tij , and mij are M 3 M, M 3 `,
and ` 3 ` matrices, respectively. Like the TLS cas
the linearized equations for% ij, tij , and mij decouple
completely,

dmil

dx
­

1
Nf

°
dijmkk 2 Mmil

¢
, (9)
dril

dx
­ 2

1
Nf

°
fOik , % klg 1 f% ik , Oklg

¢
1

1
2Nf

h2dil%kk 1 2Ojktrh% ijOkl 1 Oij% klj

2 2n% il 2 Oijtrh% jkOkl 1 Ojk% klj 2 trh% ijOjk 1 Oij% jkjOklj , (10)
t

ed
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d
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dtil

dx
­ 2

1
Nf

sOiktkl 2 Okltikd 1
1

Nf
sdiltkk 2 Mtild ,

(11)

and they can be solved exactly due to the simple struc
of the Oij ’s. These linearized equations have an infin
number of zero modes; a finite number of them cor
spond to potential scattering while the others can be id
tified with the generators of the unitary transformatio
connecting the different possibleM-dimensional sub-
spaces where the SUsMd Lie algebra is realized. Thes
0-modes can be shown, of course, to leave the Lie alge
(7) unaffected. All the other modes can be shown to
irrelevant, thus the FP (6) is stable.

The low energy properties of the MLS are determin
by the operator content of the FP which is much richer a
quite different from that of the simple Coqblin-Schrieffe
model. A thorough analysis of Eq. (11) shows that f
M $ 3 the leading irrelevant operators can be written a

Ol ,
µ

0 Cij

sCjid1 0

∂
, (12)

where theCij ’s satisfy
P

lsCkl
mn 2 Cml

kn d ­ 0. These op-
erators scale like,Tll with ll ­ sM 2 1dyNf , and
they describe scattering between channels which are
taken into account in the usual Coqblin-Schrieffer mod
While they dominate the thermodynamical quantities li
the specific heat, e.g., which scales ascimp , T2ll they
do not contribute to the resistivity, which scales lik
,T lsl with lsl ­ MyNf , and is determined by sublead
ure
te
e-
en-
s
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be
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r

or
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ing operators of the form

Osl ,
µ

Qij 0
0 Sij

∂
, (13)

where the matricesQij andSij satisfy
P

Qii ­
P

Sii ­
0 and Q

ij
mn ­ Q

ij
nm. Note that the operators (12) do no

exist in the TLS case (M ­ 2), and therefore the low
energy properties of a TLS can be completely describ
by the two-channel Kondo model [10].

At this point we have to remark that since the FP co
plings ỹij scale like1yNf the obtained scaling exponent
can be considered as the first order estimates in a1yNf

expansion, and they become exact in theNf °! ` limit
[10,19] (lsl ­ MyNf is, e.g., the1yNf -expanded version
of the exact exponent̃lsl ­ MysNf 1 Md for Nf . M
[2,18]). However, the1yNf expansion breaks down for
Nf , M, and while for a physical MLS withNf ­ 2 we
expect similarly to other models [7,10] that thefixed point
structure remains the same; it remains an open questi
whether the new leading irrelevant operators (12) survi
in that physical limit or not.

In order to decide whether or not the non-Fermi-liqui
properties can be recovered in reality, it is importa
to study the scaling of the splittingDij . As soon as
the temperature (frequency) becomes smaller than
renormalized splittingjDijsT , vdj the dynamics of the
MLS is frozen out and the Kondo effect described abo
is stopped. Therefore in order to observe a non-Ferm
liquid behavior characteristic to the FP (6) we nee
jDijsTKdj ø TK . The scaling of the splitting paramete
D12 is shown in Fig. 2 (for the definition ofD12, see
3611
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the inset in Fig. 2). As one can see, for realistic mod
parametersD12sTK dyD12sD0d is as small as,1023, and
therefore, even for very large splittingsD12 , 100 K the
splitting is strongly reduced and sinceD12sTK d ø TK the
MLS can get easily in the vicinity of the two-channe
Coqblin-Schrieffer FP.

As recently pointed out by Moustakas and Fisher fo
TLS’s [20] multielectron scattering becomes also releva
in the neighborhood of the two-channel Kondo fixe
point. This process is also relevant in the present mod
in the vicinity of the NFL fixed point, however, similarly
to the TLS case [21] it has a small initial amplitude
and being irrelevant in the weak coupling region thi
amplitude is even more significantly reduced durin
the first part of the scaling,TK , D , D0. Therefore,
in the neighborhood of the FP (6) it is always the
splittingDij discussed above which provides the domina
mechanism to drive the system away the NFL FP and t
multielectron processes play a less important role.

Concerning the experimental realizations there exi
already some experiments on noncommutative eight-st
systems in Pb12xGexTe alloys where the tunneling centers
are formed by the relatively small Ge11 ions [12]. While
in this material a Kondo crossover has indeed bee
observed no non-Fermi-liquid behavior has been detecte
However, in the experiments the inter-impurity interactio
was quite strong which leads to the nonvanishing of th
diagonal partDii of the tunneling matrix. Since, similarly
to TLS’s, the differencesDii 2 Djj are renormalized
much less then the off-diagonal matrix elements [7], the
can lead to the freezing out of some impurity state
corresponding to transitions from the SUsMd to SUsM 0d
models with M 0 , M, finally, most probably, reaching
the trivial M 0 ­ 1 model. Furthermore, in this material
there is a strong spin-orbit scattering, which leads to
strong cross scattering between the spin up and spin do
electron channels and drives the system to theNf ­ 1
Fermi-liquid FP instead of theNf ­ 2 non-Fermi-liquid
model. Thus for this material even if the inter-impurity
interactions were small we would expect a Fermi liqui
behavior. Therefore it would be very interesting from th

FIG. 2. Scaling of the dimensionless hopping amplitud
D12yD0 for the same six-state system as in Fig. 1. Inse
Numbering of the sites of the six-state system.
3612
el

l

r
nt
d
el

,
s
g

nt
he

st
ate

n
d.

n
e

y
s

a
wn

d
e

e
t:

experimental side to find some similar alloys withsmall
spin-orbit interaction,where the spin symmetry would
guarantee the non-Fermi-liquid properties. To observe t
non-Fermi liquid FP one could apply a pressure on th
sample, which is an appropriate tool for tuningTK into
the region1 10 K [12].
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