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We construct a generalized multiplicative renormalization group transformation to study the low
energy dynamics of a heavy particle tunneling amavgdifferent positions and interacting with
N, independent conduction electron channels. Usint/&l; expansion we show that thisl-level
system scales towards a fixed point equivalent toNhechannel SUM) X SU(N,) Coqgblin-Schrieffer
model. Solving numerically the scaling equations we find that a realiétievel system scales close
to this fixed point and its Kondo temperature is in the experimentally observable fangeK.
[S0031-9007(96)01492-5]
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One of the simplest examples of non-Fermi-liquid TLS [14]. In the following we assume that the temperature
(NFL) systems is provided by the two-channel Kondo(or the relevant energy scale) is low enough and thus the
model [1-3], where the two conduction electron chan-motion of the HP is restricted to the lowest lying states
nels overcompensate the spin (or some quasi-spin) aforresponding to th&/ spatial positions of the HP:
an impurity and a new degenerate ground state appears u
with an intermediate coupling [1,2,4]. The FP corre- _ FAdijp

. : : Hup = D b AUb;, (1)
sponding to the ground state is characterized by nonzero
residual entropy [3] and universal power low behavior
in the impurity resistivity and the energy dependencewhereb;” creates a HP at siteand A is the tunneling
of the scattering rateRim, ~ T2, 1/7 ~ ') [2].  amplitude between positionsand j. We assume that
Several normal state properties of Celoibased heavy no external stress is present and that Mgositions are
fermion compounds like CeSrand YbCuAl can also be completely equivalent, thus’ = 0.
explained surprisingly well in terms of the two-channel The most general two-particle interaction generated by
Kondo effect [5]. the screened Coulomb interaction (or a pseudopotential)

Other extensively studied possible realizations of thehetween the HP and the conduction electrons takes the
two-channel Kondo model are provided by fast two-levelform
systems (TLS’s) in metals [6,7]. These TLS’s are formed 5
by some heavy particles (HP’s) tunneling between two Hiy = Z b Vil bjal, caecmy (2)
neighboring sites and interacting strongly with the con- e
duction electrons. Recent experimental [8] and theoreti-
cal [9,10] investigations confirm the conjecture that at lowwherea,,, creates a conduction electron with enelkgy
temperatures these TLS’s can be properly described by &@fbital quantum numben, and “flavor” index f (f =
effective two-channel Kondo model, where the spatial mo-. . .., Ny). The orbital quantum numbercan be thought
tion of the HP is coupled to the angular momentum of theof as the angular momenta of the electrons while for a real
conduction electrons via an effective exchange couplingILS the quantum numberg = 1,2 correspond to the
and the two degenerate channels correspond to the two regf?in up and spin down conduction electrons and= 2.
spin directions of the conduction electrons [8—10]. For the sake of simplicity we also assume a constant

The TLS model sketched above is appropriate tolensity of states between the high and low energy cutoffs
describe tunneling centers in amorphous metals [11}P and —D, @, for all flavor numbers. Naturally, both
however, it breaks down in systems like the narrowthe couplingsVa and the tunneling amplitudes’’ are
gap semiconductor b, Ge, Te or insulating K_,Li,Cl  connected by the symmetry properties of the MLS which
alloys [12,13] where the tunneling centers are formed byill be exploited later on.
some substitutional impurities, and the HP is tunneling Following similar lines as in Ref. [15] one can intro-
between 3, 6, or 8 equivalent positions. Therefore theluce the HP propagatd§”(w) and the HP-conduction
question arises in a natural way: What is the lowelectron vertex functiod/(w) in the usual way. How-
temperature behavior of avi-level system (MLS) which ever, calculating these functions in a perturbative way it
strongly interacts with the conduction electrons? turns out that they do not satisfy the usual multiplica-

To answer this question we consider a model previouslyive renormalization group (RG) equations. Therefore
introduced to describe the effect of the excited states in ae consider the following generalized RG transformation

ij=1
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(T =0): HP propagator and the vertex functions can be expressed
in the next to leading logarithmic order [7] as
G(w,v',A",D") = A G(w,v,A,D) A",
I'w,v,A",D") =[A"] 'T(w,v,A,D) A", (3) (G ) = o 87 — AV
where the matrix notationgoVin — v, Iim — I, and D . . .
Al — A have been introduced)’ stands for the scaled + Nyln— (8" w w{vv™*} — v AV
bandwidth, andd is anM X M matrix acting in the HP . = D . i o
indices. Note thatA = A(v’,A’,D'/D) is independent QoI = v” —In ;([v’k,vk’] — Nytrfo™® v M), (4)
from the dynamical variables. While for finite D/D’
the matrix A has a rather complicated structure for an
infinitesimal change ab it can be chosen to be Hermitian where[ , ] denotes the commutator, the trace operator
and Eq. (3) can be cast in the form of a scaling equationr{- - -} is acting in the electronic indices, and a summa-
for the dimensionless couplings’. tion must be carried out over repeated indices. Plugging
In the following we assume that the relevant energyEq. (4) into (3) one can easily generate the scaling equa-
variable isw, i.e.,w > |AY|, T. In this case the inverse tions in a self-consistent way:

dAl 1 , . . . : .
o~ > f[tr{v’kvkl}Al-’ + AR {o* ) — 2tr{v ARy
X
dv" ik kj 1 ik 1y, ki ik kv, 1) kg kI 1j
i [v™, vY] + ENf(Ztr{v vV — tr{v™ v Y — v {v v}, (5)

where the scaling variable = In(Dy/D) has been intro- remark that the operato&’ 3, viy, and 8,., >, vy are
duced. Since the scaling equations are rather complicatédvariant under scaling. Thereforg’/ can be written as
apart from some special cases they can be solved only ny7;, = @i, + M, where the matrixV is a constant of

merically. However, to exploit the symmetry properties Ofmotio_n depending on the initial parameters 3nd5’, =
the MLS it is useful first to introduce some site representazn 54, = 0. Then one can easily show that the right-

tionin the qrbital indices_ of the cond_uction elec_trons. This_hand side of Eq. (5) disappears provided
can be achieved most simply by taking some linear combi-
nations of the most strongly scattered angular momentum ij 1 (oY 0
channels and hybridizing them by using group theoretical vo = N_f< 0 0)’
methods. Working only with electron states directed to '
the impurity positions thes’/’s becomeM*-dimensional
tensors. However, the number of independent couplings
is largely reduced by symmetry.

A typical scaling of the norm of the dimensionless cou-
plings, u = Y |lv¥||, is shown in Fig. 1 (dashed line).
The initial couplings have been estimated by using simi-
lar methods as in Refs. [7,14]. Similarly to the multi-
channel Kondo problem both the infinite and the weak
coupling FP’s are unstable and the system scales to an in- 3
termediate strong coupling FP [1,2,4]. The Kondo energy
can be identified as the crossover energy from the weak
to strong coupling regimesx = Dy e *, x. being the
crossover value of the scaling parameter. For realistic ini-
tial parameters we find that this Kondo temperature can
easily be found in the experimentally observable region
Tx ~ 1-10 K. FIG. 1. Scaling of the norm of the dimensionless couplings,

In order to determine the properties of the MLS in thex = 2. llv”Il (dashed line), and of the algebra coefficient
regimeT, w < Tx one has to identify the FP the MLS & (continuous line) for a six-state system W't’qu =2
scales to [16]. In the following we shall show that a MLS TE‘F_'Q)'“;" (f?lf’lbn?s have Otzgen l‘fhfsg& to l?éi =938,
scales to a FP, which—up to some potential scatteriné}.zéoas, o2 Ujoz)oé, ’1}1111612:_0.0'03” Uléllef’:_vlfg . 16?(‘)085}”%;
part—has the same structure as the(BWX SU(Nf)  other nonzero couplings have been generated by symmetry
Coqblin-Scrieffer model [17]. To prove this we first transformations.

(6)

u

s

800 5.00 10.00 15.00 20.
x = In ( Dy/D )
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where theO'/’s are unitary equivalent to the generators of Cogblin-Schrieffer model, which is a non-Fermi-liquid

the SUM) Lie algebra modeland has a different scaling behavior than the two-
i A .y K il channel Kondo model [2,18]. (For a six-state system, e.g.,
[0Y,0%] = é&"0" — &V0", (7)  we expect ano /4 behavior of the scattering rate.)

To show that FP (6) is stable and to analyze its operator
content we write the deviations of the couplings from their
FP value in a form

with Osim ~ 8,64 — 778 8,,,. Similarly to the TLS
problem beS|de the one in Eq. (6), Eq. (5) has an infi-
nite number of FP’s associated with different reducible
and irreducible representations of the (81) Lie alge- Syl — < pY t"-"'_>
bra (7). Our numerical simulations show, however, that (/" Al
all the FP’s which correspond to a representation dif-

ferent from the defining one (7) are unstable. In Fig. 1and linearize the scaling equations with respecbtd'.
we show the scaling of the “algebra coefficien#”=  The couplingse®, ¢/, and u/ are M X M, M X o,
2kl ||Nf[v”v”] Ny 85k + N 8% 5|, which mea- and % X « matrices, respectively. Like the TLS case
sures in a natural way how well the fixed point (6) isthe linearized equations fop/, ¢/, and u'/ decouple
approached by thé&'s. For T < Tk (i.e., for x > x.)  completely,
the coefficienta scales to zero. Thubelow the Kondo

(8)

il 1 . .
temperature an MLS scales to the @0 X SU(Ny) ddL = N—((S”,u"" - Mu'y, (9)
A » ;
|
dp' 1 . A 1 A A . N
p - _ _([Olk,ekl] + [Q’k,Okl]) + _{Zéllgkk + 20]ktr{0110kl + Ot]le}
dx Ny 2Ny
— 200" — 0'e{*OM + 07 oM} — i 0% + 0o}, (10)
I
. ing operators of the form
dr' 1 ik ki kl ik U sir il ij
= —— (0" — 0"1™) + —(8"1" — M1 ov 0
i N, (0 0"'1') Nf( ), 0, ~< A Sif> (13)

(11)

and they can be solved exactly due to the simple structur, 8
of the 0"’s. These linearized equations have an infinite
number of zero modes; a finite number of them corre-
spond to potential scattering while the others can be |derb
tified with the generators of the unitary transformations
connecting the different possiblg/-dimensional sub-
spaces where the SM) Lie algebra is realized. These
0-modes can be shown, of course, to leave the Lie algeb
(7) unaffected. All the other modes can be shown to b
irrelevant, thus the FP (6) is stable.

The low energy properties of the MLS are determine
by the operator content of the FP which is much richer an
quite different from that of the simple Coqgblin-Schrieffer
model. A thorough analysis of Eq. (11) shows that for
M = 3 the leading irrelevant operators can be written as

here the matr|ce§2” andS¥ satisfyd Qi = Y §i =

Qnn = Qrnm. Note that the operators (12) do not
eX|st in the TLS caseM = 2), and therefore the low
energy properties of a TLS can be completely described
y the two-channel Kondo model [10].

At this point we have to remark that since the FP cou-
plings o/ scale likel /N the obtained scaling exponents
g@n be considered as the first order estimates N,

xpansion, and they become exact in Me— < limit

10,19] (A\,; = M /Ny is, e.g., thel /N,-expanded version

f the exact exponem, = M/(N; + M) for Ny > M
(%18]). However, thel /N, expansion breaks down for
< M, and while for a physical MLS witv, = 2 we
expect similarly to other models [7,10] that thxeed point
structureremains the same; it remains an open question
whether the new leading irrelevant operators (12) survive
0 ~< 0 Cif> (12) in that physical limit or not.
! cH*t o0 ) In order to decide whether or not the non-Fermi-liquid
properties can be recovered in reality, it is important

where theCi/’s satisfy > ,(C¥ — C!!) = 0. These op- to study the scaling of the spliting’/. As soon as
erators scale like~T* with A, = (M — 1)/Ny, and the temperature (frequency) becomes smaller than the
they describe scattering between channels which are noeénormalized splitting|A” (T, w)| the dynamics of the
taken into account in the usual Coqgblin-Schrieffer modelMLS is frozen out and the Kondo effect described above
While they dominate the thermodynamical quantities likeis stopped. Therefore in order to observe a non-Fermi-
the specific heat, e.g., which scalesas, ~ 7>" they liquid behavior characteristic to the FP (6) we need
do not contribute to the resistivity, which scales like |A¥(Tx)| < Tx. The scaling of the splitting parameter
~T* with Ay; = M/Ny, and is determined by sublead- A'? is shown in Fig. 2 (for the definition ofA!?, see
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the inset in Fig. 2). As one can see, for realistic modekxperimental side to find some similar alloys wihall
parametersA'2(Tx)/A'2(Dy) is as small as~1073, and  spin-orbit interaction,where the spin symmetry would
therefore, even for very large splittings> ~ 100 K the  guarantee the non-Fermi-liquid properties. To observe the
splitting is strongly reduced and sindd?(Tx) < Tx the  non-Fermi liquid FP one could apply a pressure on the
MLS can get easily in the vicinity of the two-channel sample, which is an appropriate tool for tuniffg into
Coqblin-Schrieffer FP. the regionl -10 K [12].
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