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Schrddinger’s Equation as a Model Approach to Short Time-Scale Quantum Kinetics
in a Semiconductor
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We present a new approach to quantum kinetics based on a Schrddinger's equation formalism.
As an example we apply this method to a coupled electron-LO phonon system in a semiconductor.
We demonstrate that it is possible to compute the full many-body wave function of the electron-
phonon system for short times. The time-dependent electron probability distribution, extracted from
the many-body wave function, illustrates the non-Markovian nature of the early time kinetics. The
retarded onset of dissipation and kinetic energy overshoots are explained through virtual, nonresonant
transitions. [S0031-9007(96)01484-6]

PACS numbers: 72.10.Bg, 72.10.Di, 72.15.Lh, 72.90.+y

It is well known in high field transport theory for semi- obtained from the two kinetic theories mentioned. Sev-
conductor microstructures [1—3] and for optically excitederal model systems have been recently proposed, i.e., the
semiconductors using ultrashort laser pulses [4—6] that kielectron interaction with static disorder using the coherent
netic theories beyond the semiclassical Boltzmann kinetpotential approximation [15], and the electron-LO phonon
ics are needed. In the Boltzmann picture, collisions arénteraction based on the Jaynes-Cummings model [16]
treated as being pointlike in space and time and individuand the Tomonaga-Luttinger model [17]. In this paper,
ally conserve energy, while in the two cases mentionedve present a new approach to quantum kinetics based on
above the carriers behave, at least to some extent, liklhle Schrodinger equation in which we develop a method
guantum mechanical waves [7]. Appropriate quantum kito solve directly for the full many-body wave function for
netic equations have been derived using reduced densigarly times.
matrices [4,8,9] and the Keldysh nonequilibrium Green's As an example we apply this theory to the short-time
functions [5,6,10,11]. However, to obtain a closed set okinetics of carrier relaxation due to LO phonon emission.
kinetic equations for the one-particle expectation valueswWe consider the model system of a single quasi-1D con-
additional approximations are required. In the case ofluction electron coupled to the complete spectrum of LO
the reduced density matrices, one has to break the hiephonon modes in an ideal semiconductor quantum wire.
archy of equations of motion and retain only the couplingThe wire cross sectiorf{ X ¢,) lies in thex, y plane and
to the next order correlation in some phenomenologicathe wire length along the coordinate. Considering only
(Markovian) manner [9]. In the case of nonequilibrium intrasubband transitions we can take the full many-body
Green'’s functions, one has to choose an approximation fovave function to be separable in the spatial coordinates,
the self-energy and further use the generalized Kadanoft¥ (7)) = b(x,y) |g(z, 1)), whereb(x, y) is the lowest sub-
Baym anzatz to reduce the two-timed, kinetic nonequilib-band transversal eigenfunction of the wire [18]. We are
rium Green’s function to the one-timed density matricesthen left with an effective 1D problem where the coupled
This anzatz requires a further assumption concerning thelectron-LO phonon system is represented by the longitu-
spectral nonequilibrium Green’s functions [3,6]. dinal wave function/g(z, 7)), where theket denotes the

The above approaches are well tested in the long timphonon state at time given that the electron is at posi-
limit and in near equilibrium situations, both yielding tion z. In an interacting systenyg(z, ¢)) is not separable
Boltzmann-like kinetic equations. Quantum kinetic equa-in the electron and phonon coordinates and it contalhs
tions derived using these approaches have also been sube correlations (phase relations) between the electron and
cessfully applied to ultrashort time kinetics [4,8,9,12].phonons. The many-body wave functidg(z, 7)), is time
Unfortunately, the physical implications of the specific evolved within the effective mass approximation accord-
approximations for ultrashort time scales (especially ining to Schrédinger’s equation,
the case of nonequilibrium Green'’s functions) are not al- ole) A A A A
ways well understood, and there are ongoing discussions ifi —>= = H;,|g) = (H. + Hpn + H,—,)lg), (1)
to clarify this point [13,14]. Therefore, it is useful to have Aa’ .
other independent formalisms, well suited for early timewhereH, andH,;, are the respective noninteracting elec-
kinetics, which serve as models for comparing predictiongron and phonon Hamiltonian operators afig-, is the
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effective 1D Frohlich electron-phonon interaction Hamil- occupancy ofl in both thefth andmth LO phonon modes,
tonian operator for the rectangular wire [19], all given, re-e.g.,

spectively, by |0) = 1000 - -0) (vacuum state

. r? 92
H,(z) = Tom 922 (2 [1)¢ =10---}---0)  Ist order
A ¥ 12)¢m =10---p--- L ---0) 'm > ¢ 2nd order
Hpp = ho ;(“qeaqv +1/2), ®3) 2% = 10--- % ---0) € =m 2nd order
and To avoid duplicate counting and to ensure distinct second-

A N . A order states, it is required that = €. It follows that

H, ,(z) = SZQ—[aq(,e““Z - a;e”qﬂ], 4 fpr a syst_em_ofN ph_onon modes, there ar¥y dis-

¢ 2t tinct combinations of first-order number statég,, and

whereN is the number of phonon modes$,is the effec- N(N + 1)/2 distinct combinations of second-order num-
tive 1D coupling constant, an@, = [¢> + (7/€,)* +  ber states|2),,.
(ﬂ/ey)Z]l/Z, In Egs. (2)—(4),n is the electron effective The complete coupled electron-phonon solution,
mass, and:] (a,,) denote the creation and (annihilation) [g(z. 1)), is obtained by inserting back in the electron
operators for the LO phonons. The phonons are assumé&gordinate,
to be dispersionless with a fixed energymé. We define N '
g¢ as the phonon wave number of tégh phonon mode lg(z,0)) = alz,1)]|0) + Z,Bé(z,l‘)e_lwt|1>€
corresponding to the coordinate along the wire. We as- 4
sume an uncorrelated initial state for the electron-phonon
system which implies weak coupling. At= 0, the elec-

tron is given by a Gaussian wave packet alongth speci- o o ] )
fied wave numbek,. The lattice at = 0 is taken as the Where all the electronic information is contained in and

vacuum state for the LO phonons_ extracted from the COEfﬁCient&, B€, and Yem- The
A solution to Eq. (1) is obtained using a Schrodingerfinal set of coupled kinetic equations fet(z, 7)., B¢(z. 1),

representation in which the time harmonic dependence fd@nd y¢x(z, 1) are obtained by applying the Hamiltonian

both the lattice mode vibrations and electron wave packedPerators defined by Egs. (2)-(4) as well d4z) on

are contained ing(z, t)). We constructg(z, )} by first |g(z, )y and then projecting onto each unique number state

considering the time evolution of the phonon states alone, 5, 1 |: 2 o2 } Se—iot X piqcz B, (®
Lalg) _ ot Tomoazz |C T iR ©
i B = a0 ) "o ot e

The solution for the phonon wave functidg(s)), accord- 98¢ _ 1 |: R 92 }ﬁe

N
+ Z 7€1n(z,t)€712wt|2>€m + o, (7)
€, m=¢(

ar ik

ing to Eq. (5) can be written as a linear superposition over 9t ih
the orthonormal basis of LO phonon number states, Seil@t=q:2) Seiwt

N ‘ e a + y
(1)) = a() 10y + > Be()e 1) ihQ l
{

PLI - N N eldmz
N ‘ X \/27€e+<zyme+27€m)— ,
+ Z ')/{fm(t)eilzwllz%m + .., (6) Q€ mie‘ m’i( Qm
€, m=¢( (9)
where [0) represents the lattice vacuum stak), and
[2)¢,, represent, respectively, first- and second-order num- o
ber states, and the coefficients 8¢, andyy,, are the cor-  9Yem _ 1 _ﬁ_2 8_2 _ 2 Sei@r=ac?) s
responding weighting factors for each lattice state at time ar ih| 2m 972 Y inQy (0 tm
t. In Eq. (6) the energies are counted from the lattice zero Seiot [ piacz o~ in? _
point energy for convenience. - |: Bm + ,8€:|6€m + o
For the purpose of explicitly illustrating the ordering of ! QO O (10)

the phonon mode occupancies in the various number states,
we let |1), represent the distinct first-order number statewhere 8y, is the Kronecker delta function and we define
with an occupancy of in the £th LO phonon mode. All &, = 1 (for £ # m) as the “anti” Kronecker delta func-
the possible second-order number statey,,, span the tion.

€ X m matrix which for¢ = m, |2)¢, represents the lattice =~ The set of Egs. (8)—(10) has complete time reversal
state with an occupancy @ in the ¢th LO phonon mode symmetry. In contrast to Boltzmann kinetics, where all
and for€ # m, |2)¢, represents the lattice state with an phase coherence is destroyed after one single scattering
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event, the phase coherence herenaver lost but in- Gaussian centered at= z, with spreadAz; and initial
stead distributed over a large number of phonon modesvave numbek;.
Therefore, the presented quantum kinetic model bridges In the following numerical studies, the energy and wave
between the Boltzmann picture and the quantum kinetioctumber have been scaled, respectively, By,= hiw =
model based on the Jaynes-Cummings model [16], wher#s.2 meV anda, = i/+/2mE, = 3.975 nm. In Fig. 1
the phase can only oscillate between a two-level atom anthe average electron wave numbgy and kinetic energy
a single phonon mode. (ex) = (K*k?/2m) are shown as a function of time for
From the set of Egs. (8)—(10) we observe thatat 0, initial energy E; = 0.1 eV. The initial Gaussian spread
only the coefficienir is nonzero and at small finite times was chosen to be\k;a, = 0.2. The non-Markovian
Be ~ «t and ye, ~ (kt)?, where k = (S/hQe)l4—0  behavior of the kinetics can be seen clearly in both sets
is the maximum coupling strength. The next higherof curves from the following features. In Fig. 1(a) the
coefficients, i.e., for the three phonon state, are oflissipative behavior of the electron wave number clearly
order O[(kt)*]. This reflects the fact that in Eq. (4) deviates from the well known semiclassical (exponential)
the electron is coupled to one phonon at a time. Indecay, illustrated by the dashed line. In fact, for the
higher order phonon processes the electron must emiirst few femtoseconds there is virtually no dissipation,
or absorb one phonon first, before it can emit or absorlthe electron “appears” to propagate freely along the wire
the next one. In contrast to the Boltzmann picture,undisturbed by the lattice. Only until times,~ 1/
the emission or absorption of the first phonon is not(inverse phonon frequency), does the electron begin to
necessarily complete, i.e., the intermediate electron statéeel” the lattice and dissipate through phonon emission.
can be virtual. Nevertheless, coupling to higher orderAnother feature is illustrated in Fig. 1(b) where in the first
number states is retarded by a time- 1/«x. In the few femtoseconds, the electron exhibits a slight increase
case considered here, this retardation time is 400 fs. ih energy before dissipation begins. This seemingly
follows that for small coupling strengths and small timesunphysical behavior can be understood from the electron
the trajectory of the full many-body system is confined toprobability distribution, shown in Fig. 2 for times =
the subspace @, 1, and2 phonon number states. We can 0, 20,50, and 100 fs. The curve far = 20 fs illustrates
make use of this fact by replacing the full Hamiltonian a large, nearly structureless spread, in the final electron
in Eq. (1) by its projection onto the subspace ®@fl, state and only until later times does a reshaping begin
and 2 phonon number state$/,,, — PH,,.P, where P to appear at the positions of the first phonon replicas
is the projection operator defined B®0) = |0), P|1)¢ =  centered aka, = *=1.33 (the second phonon replicas at
)¢, P12Y¢m = 12)¢m, and Pln) = 0 for n = 3. In this  ka, = *0.83 are barely noticeable). This large spread
subspace the problem is exactly solvable. We note thah the distribution is a direct consequence of the time-
this projection onto a finite number of degrees of freedonenergy uncertainty. Classically, the final electron state,
leads to a closed system where the kinetics can neves,—,, is determined by selection rules governed by
truly be dissipative. On very short times, however, thethe energy conserving relatiofe, — €, — fiw| = 0.
kinetics of this closed system are indistinguishable fromHowever, for small finite times, an energy uncertainty
true dissipative kinetics with infinite degrees of freedom. Ae exists, allowing virtual transitions to the final state
Equations (8)—(10) are solved to obtain the wavefor times At = i/Ae governed by the relatione, —
function |[g(z,7)) of the coupled electron-phonon €., — hiw| = Ae. These virtual transitions produce an
system and hence the total probability density

p(z,1)=|g(z,0)){g(z,t)]l. The electronic probability 1.7 2.9 —
density is then formed by taking a partial trace over the - Quantum ——
lattice coordinates, Semicl. ----- 1
= )
pe(z,t) = Tr[p(z,1)] g5t S 27
= la@ 0> + D 1Bez. 1) E 5
¢ g 3
N 213t 825
+ D vz 0P 1) £ A
€, m={ L . L
We illustrate the short-time kinetics by numerical inte- @ ®) :
gration of the projected Egs. (8)—(10). For the GaAs ™70 20 30 40 50 20 10 20 30 40 350
wire we used material parametens € 0.067m,, v = Time (fs) Time (fs)

36.2 meV, and(, = ¢, =60 A). The constraint of the ini- FIG. 1. (a) The average electron wave numb@h, and

tial lattice vacuum state gives riseo(z, 0) = ym(z,0) = (b) the kinetic energye,) as a function of time for initial elec-

0 for all m and ¢ such that|g(z,0)) = @(z,0) [0) =  tron energyE; = 0.10 eV. The corresponding semiclassical
exp(—0.5[(z — zo)/Azi]* + ikiz} |0) is just the initial result is shown for comparison.
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0.25 . . : ; approach thus accounts falt the many-body correlations
= ' ' in the finite subspace. The early time kinetics were
S 02 | demonstrated through temporal studies of the average
«g’ electron wave number and kinetic energy. For early
g times, a retardation in the electron-phonon interaction
2 015} was explained through a buildup of correlation which
% is a direct consequence of the time-energy uncertainty.
£ 01t Because of its pure quantum mechanical nature, the
,;% presented wave function method gives a very intuitive
§ 0.05 1 approach to quantum kinetics_. _
3 We would like to give special thanks to
[ Dr. A.V. Kuznetsov for his continued encouragement
0 5 and interest in this work and for his much appreciated

comments towards this manuscript. We would also like
N S to thank Professor C. J. Stanton and Dr. K. El Sayed for
FIG. 2. The electron probability distributiom.(k,t) as a their support and guidance. This work was supported

function of wave numberk with E; = 0.1 eV at timest = .
0,20,50, and 100 fs. The arrows mark the center positions oiby Hughes Research Laboratory, Malibu, CA and the

the forward and backscattering first and second phonon replica®epartment of Energy, Office of Basic Energy Sciences,
The inset is a blowup of the first 20 fg € 0,5,10,15, and  Grant No. DE-FG05-91-ER45462.

20 fs) of p.(k, t) where the arrow marks the forward scattering

first phonon replica.

Wave number (1/a0)

essentially symmetrically broadened final electron state. 1P Li K. V. Soick 4 B. Velicky. Phvs. Rev. B4
A blowup of the electron distribution for times= 20 fs 1] 693:'%‘)?1\’;8%’5 -opicka, and . Velicky, Fhys. Rev. B4,
is shown in the inset of Fig. 2. For times< 1/w the [ ’

. 2] A.P. Jauho, inGranular Nanoelectronicsedited by D. K.
energy spread is so large that the electron has almos Ferry (Plenum, New York, 1991).

equal probability for gaining energy versus losing energy [3] H. Haug and C. Ell, Phys. Rev. B6, 2126 (1992).

(see inset forr = 5 fs). This wide symmetrical spread [4] R. Zimmermann, Phys. Status SolidiT59, 317 (1990).
leaves(k) unchanged but leads to an increaséey). As [5] A.V. Kuznetsov, Phys. Rev. B4, 8721 (1991).

time increases, however, the allowed transitions (centered6] H. Haug, Phys. Status Solidi B73 139 (1992).

around the first phonon replica &t, = 1.33) increase  [7] H. Haug, K. El Sayed, and L. Banyai, iQuantum
in amplitude while the forbidden transitions at higher ~ Transport in Ultrasmall Devicesedited by D.F. Ferry,
k values die out in an oscillatory manner. Thus for - SA-Zri?nrﬁngn?:rrnlr?sJBI_(Erlr?irr]g;nﬁ’;?evzl;gg;’ 1995).
timest ~ 1/w the distribution of final states is already S e : '

so narrow that the electron loses energy through eact®! J; Schilp, T. Kuhn, and G. Mahler, Phys. Rev5B, 5435

" AN (1994).
transition and an onset of dissipation can be seen. Th 0] A.V. Kuznetsov, Phys. Rev. B4, 13381 (1991).

kinetic energy overshoot can also be explained in terms qf 1] k. g| sayed, L. Banyai, and H. Haug, Phys. Rev58

a correlation buildup. At early times the electron is losing 1541 (1994).

potential energy through a deformation of the lattice,[12] L. Banyai, D.B. Tran Thoai, E. Reitsammer, H. Haug,

which leads to an increase in its kinetic energy. Similar D. Steinbacher, M.U. Wehner, M. Wegener, T.

behavior has been presented by Schill. [9] in which Marschner, and W. Stoltz, Phys. Rev. Le#5 2188

they derived quantum kinetic equations using reduced  (1995).

density matrices for single band electron dissipation in thé13] H. Schoeller, Ann. Phys. (N.Y329, 273 (1994).

presence of LO phonons in 3D bulk GaAs. (14] E-h '—'p?q"s"yég Se'eggﬂégi)}(awova' and J.W. Wilkins,
In conclusion, we have presented a new approac YS. REV. Bv3, \1I52).

to quantum kinetics based on a Schrddinger equatioBLS] A. Kalvova and B. Velicky, Z. Phys. 84, 273 (1994).

. . 6] R. Zimmermann and J. Wauer, J. Lumi0 & 61, 187
formalism. It was shown that for early times only a (1994)

small portion of the many-body Hilbert space is involved[17] V. Meden, C. Wahler, J. Fricke, and K. Schénhammer
in the evolution of the electron-LO phonon system. We Phys. Rev. B52, 5624 (1995).

demonstrated that by restricting the Hamiltonian to g18] This corresponds to replacing,—,(x, y, z) in [19] by its
finite subspace, the full many-body wave function can be  transversal averagé,-,(z), see Eq. (4).

obtained without any approximations. This wave function[19] M. A. Stroscio, Phys. Rev. B0, 6428 (1989).

3608



