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a decay through a deformed potential barrier produces significant mixing of angular momenta w
mapped from the nuclear interior to the outside. Using experimental branching ratios and e
semiclassical or coupled-channels transmission matrices, we have found that there is a set of in
amplitudes which is essentially constant for all even-even actinide nuclei. These same amplitudes
give good results for the known anisotropica-particle emission of the favored decays of odd nuclei in
the same mass region. [S0031-9007(96)00550-9]
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The phenomenon of “tunneling in the presence of an
vironment” is of considerable interest in many branches
physics and chemistry [1], for example, in the tunneling
Cooper pairs through a Josephson junction [2]. In the
main of nuclear physics, the study of the subbarrier fus
of heavy nuclei has made significant contributions to t
problem over recent years in that the experimental dis
bution of fusion barriers has been shown to be intimat
related to the environment consisting of the target and p
jectile excited states [3]. In this problem the incident wa
is known and all the transmitted flux ends up in the sin
fusion channel. The phenomenon ofa decay is potentially
more difficult, since the incident wave (a-particle wave
function in the nuclear interior) is unknown but potentia
much more rewarding since (a) for even-even nuclei
transmitted flux may end up in different daughter sta
for which the individual fluxes, i.e., branching ratios, c
be measured and (b) since for odd nuclei, the presenc
different angular momenta in each daughter state may
to a measurable anisotropy in thea emission.

Thea decay of deformed nuclei may be divided into tw
distinct parts: the formation of ana particle in the nuclear
interior, followed by its penetration through thea daughter
deformed Coulomb barrier. There are various approac
to the formation problem. One of these assumes a
formed a particle (or at least a spatially correlated fou
nucleon cluster with the appropriate quantum numbe
which moves in the deformed field of the daughter nucle
[4,5]. Fröman [6] assumes a constanta particle probabil-
ity on the deformed nuclear surface. Manget al. [7] and,
more recently, Delion, Insolia, and Liotta [8] have co
sidered the deformed single-particle (Nilsson) states in
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vicinity of the Fermi surface and taken the overlap of t
correlated neutron and proton BCS wave functions with
a particle at the nuclear surface.

Whatever the formation mechanism, the decay proce
by penetration through the Coulomb barrier. If this barr
is assumed to be spherical, there will be no mixing
orbital angular momentum states during the tunnel
and, for an even-even nucleus, the observed branch
ratios to different rotational states of the daughter (I ­
01, 21, 41, . . .) will be determined by theL admixture
in the nuclear interior, modified by the transmissio
factors for the different centrifugal barriers evaluated
slightly differenta-particle energies due to the excitatio
energiese

p
I of the daughter. If one takes account

the deformation of the barrier, there will be addition
mixing during the tunneling [6,9]. Such effects hav
been considered in the fusion of heavy nuclei [10] a
more recently confirmed experimentally [11,12]. In th
Letter, we take known branching ratios and calculate
mixing in the barrier to obtain the internal amplitude
near the nuclear surface. No model of internal dynam
(a preformation or distribution) is required, and indee
one does not know what preformation factors have to
fitted unless the barrier penetration problem is first solv
We then systematically survey the internal amplitudes
the even-even actinidea emitters for various choices o
relative phases. A surprising result that emerges fr
our analysis is that the relative internal amplitudes m
possibly be constant over a wide range of actinide nuc
and this in itself gives a very strong indication of the typ
of nuclear model for the preformation factor which mig
be the most appropriate.
© 1996 The American Physical Society
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In
The fine structure of thea particle energy spectrum
determines the branching ratios to states of known s
I in the daughter. Since, for an even-even nucleus,
orbital angular momentum of thea particle must beL ­ I,
we shall set up our problem in terms of these outgo
L waves. In the intrinsic frame of the axially symmetr
deformed daughter, one may write an asymptotic outgo
wave in the form

coutside ­
X
L

CL O outside
L skL, rd

­
X
L

CL fGLskL, rd 1 iFLskL, rdgYL0sr̂dxL0 ,

(1)

whereFL and GL are the regular and irregular Coulom
wave functions. TheO outside

L represent outgoinga par-
ticles with orbital angular momentumL coupled to total
angular momentum zero with a statexL0 of the daughter
of spinI ­ L. The wave numberskL differ due to the dif-
ferentep

I . With such an outgoing wave, one can perfo
a coupled-channels calculation to obtain the wave func
on the other side of the barrier. This must have both
coming and outgoing components

cinside ­
X
L

fAL O inside
L skL, rd 1 BL I inside

L skL, rdg .

(2)

The corresponding currents are shown schematicall
Fig. 1.

The above problem may be solved numerically
obtain the outside coefficientsCL in terms of those inside
AL. One may thus define a transmission matrixM

CL ­
X
L0

ML L0 AL0 . (3)

Since we wish to undertake a systematic study ofa

emitters in the actinide region, we shall first obta
the transmission matrix using the semiclassical met
outlined below. We thus express the outer amplitu
cL (lower case indicates WKB solutions) in terms of t
amplitudesaL in the nuclear interior by

cL ­
X
L0

KLL0aL0

­
X
L0

kYL0j expf2ILscosudg jYL00laL0 , (4)

whereI takes the usual WKB form

ILscosud ­
Z r2

r1scosud

∑
2m

h̄2 fVLsr , cosud 2 Eag
∏ 1

2

dr

(5)

(see Fig. 1). The potentialVLsr , cosud comprises the
Coulomb field due to the deformed charge distribut
of the daughter, a deformed Woods-Saxon potential
a centrifugal term. We consider bothb2 and b4 terms
in the deformation. The angular integrals were evalua
using the technique of Kermode and Rowley [13]. T
matrix KLL0 is the analog ofMLL0 in the coupled-
channels formalism.
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FIG. 1. Schematic diagram of the potentialV and the incom-
ing and outgoing currents. The classical turning pointsr1 and
r2, and the energy of thea particle Ea are used in the semi-
classical calculation of the transmission matrix; see Eq. (5).

The above approach is essentially an exact calcula
of the semiclassical transmission coefficients introduc
by Fröman [6] and used, for example, in Ref. [8]. Inde
the earlier expressions of Fröman may be obtained fr
Eq. (4) by ignoring the hexadecapole deformation, tak
the nuclear potential to be au dependent sharp cutoff, an
by making a first-order expansion inb2. Approximations
similar to these have also been employed in a coupl
channels formalism [14,15].

The magnitudes of the coefficientscL are proportional
to the square roots of the branching ratios for the angu
momentaL. They may be taken to be real and ca
in principle, be either positive or negative. Their reali
follows from the requirement that the imaginary part
the wave function at the nuclear surface should be sm
[4]. In this Letter, we restrict our calculations tohLj ­
h0, 2, 4j since few nuclei have measured branches to
61 state. (We have, however, considered the inclus
of 61 and81 states and have found that our conclusio
are essentially unaffected.) We consider four possibilit
for the relative signs of thehcLj, i.e.,h1 1 1j, h1 1 2j,
h1 2 1j, andh1 2 2j. For all the decays we conside
the Sommerfeld parameters are large and the Coulo
phases then ensure that for the caseh1 1 1j the spherical
harmonics in Eq. (1) are in phase along the symme
axis. Thus if one considered the amplitudes in Eq.
to add coherently, the outgoing flux would be axial.
37



VOLUME 77, NUMBER 1 P H Y S I C A L R E V I E W L E T T E R S 1 JULY 1996

n
pi
e
ov
ic

t
rs
f

er

e
f
o
le

lt

hl
n
es
ith

is

if

les

—
red

try

e

the
ry

y
le,

to
ecta-
or-
en
or-
and
li-
ay
ere

pin

lei
e I),

than

ere
o-
ns

tes.
i in

ith
the
han

hat
the even-even system, of course, the currents are
added coherently and the outgoing flux is always isotro
for eachL, after integrating over all orientations of th
daughter. However, we shall see below that the ab
consideration is important for odd-even systems wh
may be polarized to yield anisotropica decay. For each
of the above phase combinations, we have determined
amplitudesaL from Eq. (4) using deformation paramete
from Möller et al. [16]. Figure 2 shows the four sets o
aL (normalized to unity) for actinide nuclei with daught
mass (atomic number)220 # Ad # 248 (88 # Zd # 96).

To test the accuracy of the WKB approximation, w
have performed exact coupled-channels calculations
three of the above nuclei. The results were in go
agreement with those shown in this figure. For examp
for 238U with the phase choicehcLj ­ h1 2 2j, the cou-
pled channels givehaLj ­ h0.84, 20.54, 0.08j compared
with the semiclassical valueshaLj ­ h0.83, 20.55, 0.10j.
The importance of theL mixing under the bar-
rier is demonstrated by the corresponding resu
haLj ­ h0.70, 20.68, 20.19j for thesphericalcase.

Since the deformation of the daughter varies smoot
with Ad , one might expect that just one set of the solutio
shown in Fig. 2 corresponds to the physical amplitud
One particularly interesting solution is that obtained w
the combinationh1 2 2j [Fig. 2(d)] since the coefficients
aL are practically nucleus independent even thoughb2

varies from around 0.10 to 0.24 and thea particle energies
vary from around 4 to 7 MeV over this mass region. It
also the only one to yield amplitudes withja0j . ja2j .

ja4j for all nuclei (see the discussion below).
We note, however, that for the constant solutiona2

is always negative. At first sight, this implies that

FIG. 2. The amplitudesaL for even-even actinide nuclei with
the four choices of external phase indicated. The circ
squares, and triangles representL ­ 0, L ­ 2, and L ­ 4,
respectively.
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the same solution prevailed for odd-even nuclei, thena

emission takes place mainly in the equatorial plane
a result which would not be consistent with measu
anisotropies. Consider, however, the favoreda decay of
an aligned nucleus withK ­ M ­ Jp ­ Jd , whereK is
the spin projection of the nucleus along the symme
axis, M the projection of the parent spinJp along the
space-fixedz axis, andJd the daughter spin. For this cas
the angular distribution of the emitteda particles may be
written (see, for example, [6,13])

W sud ~
X
m

Ç X
L

kJd L M 2 m mjJp Ml

3 kJp L K 0jJd Kl cL YLmsu, 0d
Ç2

, (6)

where the Clebsch-Gordan coefficients arise out of
transformation from the body-fixed to the laborato
frame. We define the anisotropy byW s0dyW s 1

2 pd. Equa-
tion (6) describes the favored decayKp ­ Kd ­ K an-
gular distribution only. A contribution from the deca
Kp ­ K ! Kd ­ 2K is suppressed (see, for examp
p. 50 of [6] or pp. 272 and 273 of [9]).

A simple model for the odd-even nucleus would be
assume that it consists of an even-even core plus a sp
tor nucleon. Indeed, Fröman [6] employed the above f
mula usingcL extracted from the neighboring even-ev
branching ratios, which implicitly uses the same transf
mation (4) as for the even-even case. Delion, Insolia,
Liotta [8] have also used Eq. (4) but derive their amp
tudesaL from a BCS calculation. The expression (4) m
not, however, be appropriate for odd-even systems, wh
the a-particle energy is determined by the daughter s
Jd rather than by the orbital angular momentumL. We
have applied Eq. (4) to the four odd-even actinide nuc
for which anisotropies have been measured (see Tabl
using the amplitudesaL from Fig. 2. We find that Eq. (4)
cannot predict anisotropies both greater than and less
one for these nuclei, for any of the four sets ofaL. This
is because the sign ofc2yc0 is either positive [anisotropy
.1, i.e., Figs. 2(a) and 2(b)] or negative [anisotropy,1,
i.e., Figs. 2(c) and 2(d)].

If the energies of the excited states of the daughter w
high, then barrier penetration would filter out the comp
nents of the wave function corresponding to configuratio
other than its ground state. In that case we obtain

cL ø
X
L0

KLL0kJp L0 K 0jJd Kl2aL0 . (7)

We note that Bohr and Mottelson [9] suggest a similarJd-
decoupled equation for the leading order transition ra
Equation (7) has also been applied to the four nucle
Table I, using the internal amplitudes of Fig. 2(d).

The values of the predicted anisotropies agree well w
the experimental data. In particular, we emphasize
prediction of anisotropies both less than and greater t
1; i.e., it is possible to have morea particles emitted along
the symmetry axis than equatorially, despite the fact t
a2 , 0. The reason is that the external amplitudec2 may
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n
TABLE I. Anisotropies [Ws0dyW s 1

2
pd], for the favored decay of four odd-eve

nuclei. Deformation parameters correspond to the daughter nucleus.

Parent Jp b2 b4 Theory h1 2 2j Experiment Ref.

221Fr 5

2
0.039a 0.028 0.77 0.37(2) [17]

227Pa 5

2
0.147a 0.110 2.66 3.55(28) [17]

241Am 5

2
0.215 0.102 4.26 .2.7 [18]

253Esb 7

2
0.235 0.040 3.70 .3.8 [19]

aMöller et al. give a nonzero value forb3.
bIncludesL ­ 6.
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become positive, since the Clebsch-Gordan coefficient
Eq. (7) attenuate the effect of the internal amplitudea2.
We note that this effect is not possible if we use the am
tudes from Fig. 2(a) or 2(b). The solutions of Poggenb
et al. and of Delionet al. give anisotropies always great
than one. However, the excited states of the daughte
at relatively low excitation energies and, in the pres
model, their coupling to the ground state is not sufficien
attenuated by barrier penetration for the reversal of s
betweena2 andc2 to take place. The success of Eq. (
could, however, suggest some other dynamical elem
through which thea-particle orbital angular momenta a
mixed in exactly the same way as for even-even nuclei,
the coupling to different daughter states is absent.

We have shown that it is possible to describe all kno
branching ratios of even-even actinide nuclei with ana-
particle wave function near the nuclear surface which
practically nucleus independent. This model has a cer
aesthetic appeal in itself and, with the assumption that
sameL-mixing matrixKLL0 is present in the favored deca
of an odd system, is capable of reproducing the kno
anisotropies in this mass region. This, of course, begs
question as to what physical model could generate s
constant amplitudes. The best candidate would ap
to be the notion that thea-particle amplitudes should
be projected from the pair-correlated neutron and pro
Nilsson-model states. In this mass region, the level den
is high and the pair forces lead to a rather diffuse Fe
surface. One might then expect that the correlated grou
state wave function should vary rather slowly with t
Fermi energy, or in other words with the nucleon numb
of the system. Since pairing mainly takes place throu
the two-body angular momentumJ ­ 0, this model would
also be expected to give amplitudes with the prope
ja0j . ja2j . ja4j, as found in Fig. 2(d).
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