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Unconventional Quasiparticle Lifetime in Graphite
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The influence of electron-electron scattering on quasiparticle lifetimes in graphite is calculated. In
the limit when the Fermi surface is reduced to isolated points in the Brillouin zone, the suppression of
screening leads to deviations from conventional Fermi liquid behavior. The inverse lifetime increases
linearly with energy, in agreement with recent experiments. Similar features should also be present in
narrow gap semiconductors and in carbon nanotubes. [S0031-9007(96)01496-2]

PACS numbers: 71.20.Tx, 73.50.Gr

Recent experiments [1] show that the inverse lifetimeventional fashion. Combining the band structure described
of quasiparticles in graphite increases linearly with energybove with the bare Coulomb interaction we obtain an ef-
over a broad energy range0.3—-4 eV. The authors of fective Hamiltonian, for a single plane of graphite:

Ref. [1] argue that this effect may be due to the unusual _
dispersion relation of plasmons in a 3D stack of conducting H = fivr [ d*r(F) (o0, + ioyd,)P(F)
planes, where the electrons are confined to move in two di-

i 2 Tr(2 > T (> >
mensions [2]. In the present work, we analyze an alterna- TR f dzrz\I’(rl)\P(rl)\I'(rz)\I’(rz)
tive explanation of the energy dependence of the lifetime, |71 — 7l
although also associated to the electron-electron interac- 1)

tion. The main new feature in our model is the imperfectwhere o, and o, are Pauli matrices, an® is a two
screening of the long range Coulomb interaction. Ina coneomponent spinor associated to the two bands which meet
ventional metal, the decay channels for quasiparticles argt the Fermi points. In a honeycomb carbon lattices
restricted, at low energies, by phase space limitations. A.4 eV. High energy screening processes are included in
straightforward perturbative calculation, for short range inthe effective dielectric constang,. We expect that (1)
teractions, gives that the inverse lifetime of a quasiparticlelescribes well the physics of a single layer of graphite for
with energye above the Fermi level scales @& Hence, energies<t.
the width of the resonance associated to the quasiparticle The Hamiltonian (1) defines a renormalizable theory [6]
is much less than its position. This fact justifies the use ofn the field theoretical sense [7—9]. Perturbation theory
an independent electron model for the low energy properteads to logarithmic dependences on the high energy cut-
ties of metals. off, which can be incorporated into new, renormalized,
Graphite is a semimetal. Band structure [3] calculationgarameters in a standard way. The existence of logarith-
show that electrons are confined to narrow holes near theic corrections can be inferred from the fact that the ac-
edges of the hexagonal Brillouin zone. The main featuresual coupling constant in (1)2/eo/ivg, is dimensionless.
around the Fermi level are well described by a simple A detailed analysis of the renormalization procedure
Huckel theory [4], which includes only the out of plame  used to deal with the 2D Hamiltonian (1) is given in
orbitals located at each carbon atom. Intraplane hoppinRef. [6]. That scheme can be generalized to a system of
is much larger than the interplane hybridization. If weweakly interacting planes. Interplane couplings can be of
neglect the coupling between planes, the Fermi surfacgvo types.
is reduced to two isolated points at the corners of the (i) Coulomb effects. They increase the number of dia-
2D Brillouin zone. The band dispersion is linear aroundgrams that need to be calculated, as an electron in a
these points,e;, = five|k|, where k is measured from given plane can be scattered by electron-hole pairs in other
the zone corners. In units of the hybridization betweerplanes. The low energy properties are, however, not af-
neighboringz orbitals,z, we find thativg = 3ra/2 where fected. The renormalization group (RG) scheme proceeds
a is the distance between carbon atoms. The density dfy integrating out slices in energy and momentum space.
states is zero at the Fermi level, within this approximationThe momentum transfer in interplane processes is bounded
The long wavelength properties can be approximated bipy the inverse of the interlayer distande,!. Thus, at suf-
means of an effective 2D Dirac equation [5], instead of theficiently low scales, the electron-electron scattering retains
more familiar effective mass approximation, used when thehe original dependence on the momentum transfer. The
bands are parabolic at low energies. finite corrections induced by interplane Coulomb interac-
Because of the vanishing density of states at the Ferntions can be included in a manner similar to the scheme
energy, the Coulomb interaction is not screened in a condsed in Ref. [2]. The details are given below.

0031-900796/77(17)/3589(4)$10.00 © 1996 The American Physical Society 3589



VOLUME 77, NUMBER 17 PHYSICAL REVIEW LETTERS 21 OTOBER 1996

(ii) Interplane electron hopping. This interaction is
responsible for the 3D features of the bands of graphite.
It leads to deviations from the linear dispersion relation,
used to define (1), at low energies. We expect that these
deviations will become significant at energies comparable
to the interplane hoppings0.27 eV [3]. In addition, the
density of states at the Fermi level becomes finite. Hence,
metallic screening takes place at length scales greater than
krt, wherekir = 4me?N(ep). Because of the smallness
of N(eg) [3], the associated energy scali@r kgt is much
smaller than the previous one.

These effects are not included in the model described in
(1). They influence the physics of the system at energies
below their typical scales, mentioned above. Hence, the
Hamiltonian (1) gives an effective description of graphite
in an energy range bound by a lower cutef0.2 eV,
and a higher cutoff, where the bands can no longer be k
approximated by a linear dispersion relation3—4 eV.

This range comprises the experimental values analyzed iiG. 1. Region in phase space available for electron-hole

Ref. [1]. excitations. The nature of the interbaeeh pairs is sketched
Quasipatrticle lifetimes are also influenced by phononén the diagram.

[10], and by low energy, out of plane plasmons [11]. i ) . o

The phonon bandwidth in graphite is0.20 eV, and electron-h_ole pairs can eX|st'o'nIy far > vFl'ql, while in

the out of plane plasmons have energie®.05ev. @& conventional electron gasitis the opposite.

Thus, for quasiparticle energiesd.2 eV, these processes The quasiparticle lifetime can_be obtained using stan-

should give a constant contribution, independent of thglard RG methods. In the following, we study the lowest

quasiparticle energy. order diagram, neglecting the scaling of the Fermi velocity

A remarkable feature of the perturbation analysis of2nd wave function renormalization. The lowest order per-
Hamiltonian (1) is that logarithmic divergences appeaturbative termis free of divergences (see below). Hence,
in the corrections to one particle properties, like thefollowing the preceding discussion, we do not expect quali-
self energy, but electron-hole propagators are finite [6]{ativé changes when going to higher order. Using (3), the
This reflects the fact that the divergences are due t§'verse of the quasiparticle lifetime can be written as
the singularity of the interaction, and not to density of Im S(w. k) = 2 ]dell + cod¢i_i)
states effects. The intra Brillouin zone edge electron-hole ’ 472 2
propagator at low energies and momenta is [6]

7 X 1M vgr(w — ek/,l; — l?), 4
Xolw,q) = — : (2)  whereg;_; is the angle between vectdisandk’, and we
32wy vEG? — w? are summing over the two spins.

Expression (4) can be interpreted as the probability
éor a quasiparticle with frequencw and momentum
k to decay into a real quasiparticle of energy and

where yo is purely real forvg|g|l > w, and purely
imaginary otherwise. Thus, electron-hole pairs can b
excited only if vg|g| < w. This region is shown in

Fig. 1. momentumk’. Kinematical constraints in the phase space
The screened Coulomb potential, including interplaneof final states imply thaim %(w,k) # 0 only if w =
scattering, can be written as [2] velk|. This restriction seems incompatible with the phase

space available for the creation of electron-hole pairs,

- 21 e? N .
Veer(w,q) = Wf shown in Fig. 1, suggesting that there are no channels for
€l _ quasiparticle decay in the model described by (1).
sinh(|g|d) We must, however, consider with care the limit
X \/[cosr(leld) N ZszsinHI*Id) (0,0 — 1 ’ limg,—¢, +0+ Im E(w,l;). The simplest situation, which
q €olql 1) x0l@.q (3) can be analyzed analytically, is the lowest order diagram

whered is the distance between planes. It is interesting®nOWn in Fig. 2. For this casém X(«, k) drops discon-
to note thatRe vy, has no poles at low energies, unlike tinuously to zero aw = vg|k|. The magnitude of the
the case of a stack of layers with quadratic dispersionStep IS 2

g . > 1 >
where a plasmon bandy, « |g|, was found [2]. We im  Im S(w. k) = ( e ) fvelfl.  (5)

ascribe this difference to the fact that, in the present case, o—e +0+ 48 €ohivg
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val of energies and momenta (see below), and expression
(5) is an upper bound to such an average.

The behavior ofIm 3(w,k) as w — €, including
the RPA and interplane interactions, can be calculated
numerically, and it is shown in Fig. 3, using expression
(4), with d = 3.35 A and the parameters given above.

The kinematical constraints discussed earlier arise from
the requirement of momentum conservation. In the pres-
L _ ence of disorder, quasiparticles have a finite spread in mo-

menta. Because of the sharp riselof 3 away from the

line w = ¢, this spread leads also to a finite quasiparticle

FIG. 2. Lowest order contribution to the quasiparticle life- ™ o o >
time. lifetime. This is shown in Fig. 4, wherbm (¢, |k| —
Ak) is plotted, with Ak = 0.002 A~'. (Ak)~"' corre-

sponds, roughly, to the mean distance between scattering

The inverse Iifetime, defined in this way, increases |in-Center51 in our casé,~ 500 A Other inelastic Scattering
early with the energy of the quasiparticles. The real parthannels, such as phonons, will also contribute to give a
of the self-energy shows a logarithmic dependence on thgpread in momentum and energy to the quasiparticles [10].
high energy cutoff needed to define the model (1), leading The lifetimes shown in Fig. 4 are consistent with the
to non-Fermi liquid behavior [6]. The existence of a fi- experimental observations [1]. The explanation that we
nite lifetime, despite the kinematical constraints describegropose here also implies non-Fermi liquid behavior in
earlier, can be traced back to the divergence of the densibther properties of graphite, such as the conductivity or
of electron-hole pairs in the forward direction,= vglk|,  the susceptibility. Note, however, that we expect our

which compensates exactly the reduction in the numbemodel to break down at low energies,0.2 eV.
It was argued that low energy plasmons can be re-

of states in which the quasiparticle can decaywas ;.
sponsible for the unconventional quasiparticle lifetimes in

Setting fivg =3/2ta, wherer=2.6 eV, a=14 A, and
€0 =2.4 [12], we find that the constant of proportionality graphite [1]. A layered 2D electron gas has plasmons

between the inverse lifetime and the quasiparticle energgibove a certain threshold which depends linearly on mo-
is0.049in eV ! fs~!. This value compares well to the ex- mentum,w,1 = vpilgl [2]. These collective excitations

perimental one).029 eV~ ' fs~! [1]. Note thatthe inverse give rise to a new decay channel for quasiparticles with
velocity v, = fik/m > vp;. In most cases, decay into

lifetime should be an average bf 3 over a finite inter-
low energy plasmons cannot take place near the Fermi
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FIG. 3. Imaginary part of the self-energy as the function
of frequency for various momenta: Solid ling,= 0.1 A~!, FIG. 4. Inverse quasiparticle lifetime, as defined in the text,
dashed linek = 0.2 A~', broken linek = 0.4 A1, as a function of the energy of the quasiparticle.
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level, because,; > vg. It is proposed in Ref. [1] that, by the 3D Dirac equation [13]. In these materials, a
in graphite,v, < vg. The value ofvg/v, scales as description similar to the one used here should be valid
[N(ep)e?d]™ /2, whered is the interlayer distance and down to the lowest energies. Hence, the model in (1), and
N(er) is the density of states at the Fermi energy. Henceextensions of it, are capable of describing realistic systems
the fact thatv,; < vr can be traced back to the low den- which deviate from non-Fermi liquid behavior beyond one
sity of states at the Fermi level in graphite. Moreover,dimension.
in a 2D free electron model, the density of states is inde- Note added—After this manuscript was submitted for
pendent of energy, so that the entire conduction band dfublication, a comment and a reply on the experiments
graphite is assumed to have the same density of states. rported in [1] were published [15]. We agree with
we assume that the plasmon peaks lie within éhlscon-  the main issue raised in the Comment (a layered Fermi
tinuum, they will acquire a finite linewidth, which goes liquid shows a conventional quasiparticle lifetime). The
as the density oe-h pairs at low energiesy w. Thus, reply affirms that the band structure in graphite differs
the plasmons cease to be well defined excitations, and tragnificantly from that of a Fermi liquid, and suggests an
expressions from [2] should be replaced by more comalternative dispersion relation. We agree with the first
plex, nonanalytical, formulae. The model that we usestatement, but we find that a more realistic band structure
on the other hand, describes correctly the semimetallits the one used in this Letter.
character of graphite, and the increase in the density of
states away from the Fermi level. Electron-hole excita-
tions arise, mostly, from interband transitions. As we sum
the RPA diagrams, plasmonlike excitations are included[!] S- Yu, J. Cao, C.C. Miller, D. A. Mantell, R.J.D. Miller,
in (3). Thus, we think that our model provides a more __ and Y. Gao, Phys. Rev. Lel6, 483 (1996).
adequate description of decay processes in graphite. 2] 57 q%";g;akl'ggé Eliasson, and J.J. Quinn, Phys. Rev. B
The results depicted in Fig. 4 have been obtained by ’ ( )

- [3] A. Zunger, Phys. Rev. B7, 626 (1978).
combining a many loop propagator, the RPA bubble mod- [4] E. Hiickel, Z. Phys83, 632 (1933).

ified by interplane effects, with a zero loop description of (51 ;. Gonzalez, F. Guinea, and M. A. H. Vozmediano, Phys.
the quasiparticles. We neglect the renormalization of the' ~ Rev. Lett. 69, 172 (1992); J. Gonzélez, F. Guinea, and
quasiparticle pole, calculated in [6]. As we scale towards M. A.H. Vozmediano, Nucl. Phys8406, 771 (1993).

low energies, the quasiparticle pole loses spectral strength[6] J. Gonzalez, F. Guinea, and M. A.H. Vozmediano, Mod.
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pendent on this renormalization. Unlike in 1D conductors, [7] R. Shankar, Rev. Mod. Phy66, 129 (1994). _
the Hamiltonian (1) flows towards a free fixed point [6], [8] J: Polchinski, in Proceedings of the 1992 TASI in
which makes plausible the use of unrenormalized quasipar- E'€mentary Particle Physicsedited by J. Harvey and

. . . L J. Polchinski (World Scientific, Singapore, 1992).

ticle propagators in the calculation of the lifetimes. Note,

. . [9] J. Gonzalez, M.A. Marh-Delgado, G. Sierra, and
however, that the bare coupling constartt/eo/ivg, is of M.A.H. Vozmediano, Quantum Electron Liquids and
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states factors;-(27) 2. 1995).

The main physical basis for the unconventional depenf10] F. Guinea, J. Phys. €4, 3345 (1981).
dence of the quasiparticle lifetimes in energy, and thg11l] R.C. Tatar and S. Rabii, Phys. Rev. 25, 4126 (1982);
deviation from Fermi liquid theory, lies in the absence E.J. Jensen, R.E. Palmer, W. Allison, and J.F. Annett,
of metallic screening. As mentioned before, this picture ~ Phys. Rev. Lett66, 492 (1991); P. Leitenberger and R. E.
does not hold for energies sufficiently close to the Fermi __ Palmer, Phys. Rev. Lett6, 1952 (1996).
energy,e — er ~ 0.2 eV, where we expect conventional [121 E-A. Taft and H.R. Phillipp, Phys. Revl3g A197
Fermi liquid behavior to be restored. Note, however, (1965).

. . 13] See, for instance, M. Balkanski, Flementary Excitations
that the model in (1) describes correctly the low energJ ] in Solids, Molecules and Atomsdited by J.¥r. Devreese,

physics of a single graphite sheet, or single sheet carbon 5 g Kunz, and T. C. Collins (Plenum, New York, 1974).

nanotubes [14]. . ___ [14] s. ljima, Nature (London}54, 56 (1991).
We expect that other semimetals may exhibit S|m|Iar[15] L. Zheng and S. Das Sarma, Phys. Rev. L&f&. 1410
behavior. In particular, it is well known that the band (1996); S. Yu, J. Cao, C.C. Miller, D. A. Mantell, R.J.D.

structure of zero gap semiconductors can be approximated Miller, and Y. Gao,ibid. 77, 1411 (1996).

3592



