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Unconventional Quasiparticle Lifetime in Graphite
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The influence of electron-electron scattering on quasiparticle lifetimes in graphite is calculated. In
the limit when the Fermi surface is reduced to isolated points in the Brillouin zone, the suppression of
screening leads to deviations from conventional Fermi liquid behavior. The inverse lifetime increases
linearly with energy, in agreement with recent experiments. Similar features should also be present in
narrow gap semiconductors and in carbon nanotubes. [S0031-9007(96)01496-2]

PACS numbers: 71.20.Tx, 73.50.Gr
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Recent experiments [1] show that the inverse lifetim
of quasiparticles in graphite increases linearly with ener
over a broad energy range,0.3 4 eV. The authors of
Ref. [1] argue that this effect may be due to the unusu
dispersion relation of plasmons in a 3D stack of conductin
planes, where the electrons are confined to move in two
mensions [2]. In the present work, we analyze an altern
tive explanation of the energy dependence of the lifetim
although also associated to the electron-electron inter
tion. The main new feature in our model is the imperfe
screening of the long range Coulomb interaction. In a co
ventional metal, the decay channels for quasiparticles a
restricted, at low energies, by phase space limitations.
straightforward perturbative calculation, for short range in
teractions, gives that the inverse lifetime of a quasipartic
with energye above the Fermi level scales ase2. Hence,
the width of the resonance associated to the quasiparti
is much less than its position. This fact justifies the use
an independent electron model for the low energy prope
ties of metals.

Graphite is a semimetal. Band structure [3] calculation
show that electrons are confined to narrow holes near
edges of the hexagonal Brillouin zone. The main featur
around the Fermi level are well described by a simp
Hückel theory [4], which includes only the out of planep

orbitals located at each carbon atom. Intraplane hoppi
is much larger than the interplane hybridization. If w
neglect the coupling between planes, the Fermi surfa
is reduced to two isolated points at the corners of th
2D Brillouin zone. The band dispersion is linear aroun
these points,ek  h̄yF j $kj, where k is measured from
the zone corners. In units of the hybridization betwee
neighboringp orbitals,t, we find thath̄yF  3tay2 where
a is the distance between carbon atoms. The density
states is zero at the Fermi level, within this approximatio
The long wavelength properties can be approximated
means of an effective 2D Dirac equation [5], instead of th
more familiar effective mass approximation, used when t
bands are parabolic at low energies.

Because of the vanishing density of states at the Fer
energy, the Coulomb interaction is not screened in a co
0031-9007y96y77(17)y3589(4)$10.00
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ventional fashion. Combining the band structure describ
above with the bare Coulomb interaction we obtain an e
fective Hamiltonian, for a single plane of graphite:

H  h̄yF

Z
d2rC̄s$rd sisx≠x 1 isy≠ydCs$rd

1
e2

2e0

Z
d2r1

Z
d2r2

C̄s$r1dCs $r1dC̄s$r2dCs$r2d
j$r1 2 $r2j

(1)

where sx and sy are Pauli matrices, andC is a two
component spinor associated to the two bands which m
at the Fermi points. In a honeycomb carbon lattice,t ø
2.4 eV. High energy screening processes are included
the effective dielectric constant,e0. We expect that (1)
describes well the physics of a single layer of graphite f
energies#t.

The Hamiltonian (1) defines a renormalizable theory [
in the field theoretical sense [7–9]. Perturbation theo
leads to logarithmic dependences on the high energy c
off, which can be incorporated into new, renormalize
parameters in a standard way. The existence of logar
mic corrections can be inferred from the fact that the a
tual coupling constant in (1),e2ye0h̄yF , is dimensionless.

A detailed analysis of the renormalization procedu
used to deal with the 2D Hamiltonian (1) is given in
Ref. [6]. That scheme can be generalized to a system
weakly interacting planes. Interplane couplings can be
two types.

(i) Coulomb effects. They increase the number of di
grams that need to be calculated, as an electron in
given plane can be scattered by electron-hole pairs in ot
planes. The low energy properties are, however, not
fected. The renormalization group (RG) scheme procee
by integrating out slices in energy and momentum spa
The momentum transfer in interplane processes is boun
by the inverse of the interlayer distance,d21. Thus, at suf-
ficiently low scales, the electron-electron scattering reta
the original dependence on the momentum transfer. T
finite corrections induced by interplane Coulomb intera
tions can be included in a manner similar to the schem
used in Ref. [2]. The details are given below.
© 1996 The American Physical Society 3589
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(ii) Interplane electron hopping. This interaction i
responsible for the 3D features of the bands of graphi
It leads to deviations from the linear dispersion relatio
used to define (1), at low energies. We expect that the
deviations will become significant at energies comparab
to the interplane hopping,ø0.27 eV [3]. In addition, the
density of states at the Fermi level becomes finite. Hen
metallic screening takes place at length scales greater t
k21

FT , wherek2
FT  4pe2NseFd. Because of the smallness

of NseFd [3], the associated energy scale,h̄yFkFT is much
smaller than the previous one.

These effects are not included in the model described
(1). They influence the physics of the system at energ
below their typical scales, mentioned above. Hence, t
Hamiltonian (1) gives an effective description of graphit
in an energy range bound by a lower cutoff,0.2 eV,
and a higher cutoff, where the bands can no longer
approximated by a linear dispersion relation,,3 4 eV.
This range comprises the experimental values analyzed
Ref. [1].

Quasiparticle lifetimes are also influenced by phono
[10], and by low energy, out of plane plasmons [11
The phonon bandwidth in graphite is,0.20 eV, and
the out of plane plasmons have energies,0.05 eV.
Thus, for quasiparticle energies.0.2 eV, these processes
should give a constant contribution, independent of t
quasiparticle energy.

A remarkable feature of the perturbation analysis
Hamiltonian (1) is that logarithmic divergences appe
in the corrections to one particle properties, like th
self energy, but electron-hole propagators are finite [6
This reflects the fact that the divergences are due
the singularity of the interaction, and not to density o
states effects. The intra Brillouin zone edge electron-ho
propagator at low energies and momenta is [6]

x0sv, $qd 
$q2

32p

q
y

2
F $q2 2 v2

, (2)

where x0 is purely real for yF j $qj . v, and purely
imaginary otherwise. Thus, electron-hole pairs can
excited only if yF j $qj , v. This region is shown in
Fig. 1.

The screened Coulomb potential, including interplan
scattering, can be written as [2]

yscrsv, $qd 
2pe2

e0j $qj

3
sinhsj $qjddq

fcoshsj $qjdd 1
2pe2

e0j $qj sinhsj $qjddx0sv, $qdg2 2 1
,

(3)

whered is the distance between planes. It is interestin
to note thatRe yscr has no poles at low energies, unlik
the case of a stack of layers with quadratic dispersio
where a plasmon band,vp ~ j $qj, was found [2]. We
ascribe this difference to the fact that, in the present ca
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FIG. 1. Region in phase space available for electron-ho
excitations. The nature of the interbande-h pairs is sketched
in the diagram.

electron-hole pairs can exist only forv . yF j $qj, while in
a conventional electron gas it is the opposite.

The quasiparticle lifetime can be obtained using sta
dard RG methods. In the following, we study the lowes
order diagram, neglecting the scaling of the Fermi veloci
and wave function renormalization. The lowest order pe
turbative term is free of divergences (see below). Henc
following the preceding discussion, we do not expect qua
tative changes when going to higher order. Using (3), th
inverse of the quasiparticle lifetime can be written as

Im Ssv, $kd 
2

4p2

Z
d2k0 1 1 cossf$k2$k0 d

2

3 Im yscr sv 2 ek0 , $k 2 $k0d , (4)

wheref$k2$k0 is the angle between vectors$k and $k0, and we
are summing over the two spins.

Expression (4) can be interpreted as the probabili
for a quasiparticle with frequencyv and momentum
$k to decay into a real quasiparticle of energyek0 and
momentum$k0. Kinematical constraints in the phase spac
of final states imply thatIm Ssv, $kd fi 0 only if v #

yF j $kj. This restriction seems incompatible with the phas
space available for the creation of electron-hole pair
shown in Fig. 1, suggesting that there are no channels
quasiparticle decay in the model described by (1).

We must, however, consider with care the limi
limv!ek 101 Im Ssv, $kd. The simplest situation, which
can be analyzed analytically, is the lowest order diagra
shown in Fig. 2. For this case,Im Ssv, $kd drops discon-
tinuously to zero atv  yF j $kj. The magnitude of the
step is

lim
v!ek 101

Im Ssv, $kd 
1

48

√
e2

e0h̄yF

!2

h̄yF j $kj . (5)
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FIG. 2. Lowest order contribution to the quasiparticle li
time.

The inverse lifetime, defined in this way, increases
early with the energy of the quasiparticles. The real p
of the self-energy shows a logarithmic dependence on
high energy cutoff needed to define the model (1), lead
to non-Fermi liquid behavior [6]. The existence of a
nite lifetime, despite the kinematical constraints descri
earlier, can be traced back to the divergence of the de
of electron-hole pairs in the forward direction,v  yF j $kj,
which compensates exactly the reduction in the num
of states in which the quasiparticle can decay asv ! ek.
Setting h̄yF  3y2ta, where t  2.6 eV, a  1.4 Å, and
e0  2.4 [12], we find that the constant of proportionali
between the inverse lifetime and the quasiparticle en
is 0.049 in eV21 fs21. This value compares well to the e
perimental one,0.029 eV21 fs21 [1]. Note that the inverse
lifetime should be an average ofIm S over a finite inter-

FIG. 3. Imaginary part of the self-energy as the funct
of frequency for various momenta: Solid line,k  0.1 Å21,
dashed line,k  0.2 Å21, broken line,k  0.4 Å21.
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val of energies and momenta (see below), and express
(5) is an upper bound to such an average.

The behavior ofIm Ssv, $kd as v ! ek, including
the RPA and interplane interactions, can be calculat
numerically, and it is shown in Fig. 3, using expressio
(4), with d  3.35 Å and the parameters given above.

The kinematical constraints discussed earlier arise fro
the requirement of momentum conservation. In the pre
ence of disorder, quasiparticles have a finite spread in m
menta. Because of the sharp rise ofIm S away from the
line v  ek, this spread leads also to a finite quasipartic
lifetime. This is shown in Fig. 4, whereIm Ssek , j $kj 2

Dkd is plotted, with Dk  0.002 Å21. sDkd21 corre-
sponds, roughly, to the mean distance between scatter
centers, in our case,l , 500 Å. Other inelastic scattering
channels, such as phonons, will also contribute to give
spread in momentum and energy to the quasiparticles [1

The lifetimes shown in Fig. 4 are consistent with th
experimental observations [1]. The explanation that w
propose here also implies non-Fermi liquid behavior i
other properties of graphite, such as the conductivity
the susceptibility. Note, however, that we expect ou
model to break down at low energies,, 0.2 eV.

It was argued that low energy plasmons can be r
sponsible for the unconventional quasiparticle lifetimes
graphite [1]. A layered 2D electron gas has plasmon
above a certain threshold which depends linearly on m
mentum,vpl  yplj $qj [2]. These collective excitations
give rise to a new decay channel for quasiparticles wi
velocity yqp  h̄kym . ypl. In most cases, decay into
low energy plasmons cannot take place near the Fer

FIG. 4. Inverse quasiparticle lifetime, as defined in the tex
as a function of the energy of the quasiparticle.
3591
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level, becauseypl . yF . It is proposed in Ref. [1] that,
in graphite,ypl , yF . The value ofyFyypl scales as
fNseFde2dg21y2, where d is the interlayer distance and
NseFd is the density of states at the Fermi energy. Henc
the fact thatypl , yF can be traced back to the low den
sity of states at the Fermi level in graphite. Moreove
in a 2D free electron model, the density of states is ind
pendent of energy, so that the entire conduction band
graphite is assumed to have the same density of states
we assume that the plasmon peaks lie within thise-h con-
tinuum, they will acquire a finite linewidth, which goes
as the density ofe-h pairs at low energies,~ v. Thus,
the plasmons cease to be well defined excitations, and
expressions from [2] should be replaced by more com
plex, nonanalytical, formulae. The model that we us
on the other hand, describes correctly the semimeta
character of graphite, and the increase in the density
states away from the Fermi level. Electron-hole excit
tions arise, mostly, from interband transitions. As we su
the RPA diagrams, plasmonlike excitations are includ
in (3). Thus, we think that our model provides a mor
adequate description of decay processes in graphite.

The results depicted in Fig. 4 have been obtained
combining a many loop propagator, the RPA bubble mo
ified by interplane effects, with a zero loop description o
the quasiparticles. We neglect the renormalization of t
quasiparticle pole, calculated in [6]. As we scale towar
low energies, the quasiparticle pole loses spectral streng
in the manner analyzed in [6]. We expect, however, t
main result of this Letter, shown in Fig. 4, to be weakly de
pendent on this renormalization. Unlike in 1D conductor
the Hamiltonian (1) flows towards a free fixed point [6
which makes plausible the use of unrenormalized quasip
ticle propagators in the calculation of the lifetimes. Not
however, that the bare coupling constant,e2ye0h̄yF , is of
order unity, although most likely reduced by density o
states factors,,s2pd22.

The main physical basis for the unconventional depe
dence of the quasiparticle lifetimes in energy, and t
deviation from Fermi liquid theory, lies in the absenc
of metallic screening. As mentioned before, this pictu
does not hold for energies sufficiently close to the Ferm
energy,e 2 eF , 0.2 eV, where we expect conventiona
Fermi liquid behavior to be restored. Note, howeve
that the model in (1) describes correctly the low energ
physics of a single graphite sheet, or single sheet carb
nanotubes [14].

We expect that other semimetals may exhibit simil
behavior. In particular, it is well known that the ban
structure of zero gap semiconductors can be approxima
3592
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by the 3D Dirac equation [13]. In these materials,
description similar to the one used here should be va
down to the lowest energies. Hence, the model in (1), a
extensions of it, are capable of describing realistic syste
which deviate from non-Fermi liquid behavior beyond on
dimension.

Note added.—After this manuscript was submitted fo
publication, a comment and a reply on the experimen
reported in [1] were published [15]. We agree wit
the main issue raised in the Comment (a layered Fe
liquid shows a conventional quasiparticle lifetime). Th
reply affirms that the band structure in graphite diffe
significantly from that of a Fermi liquid, and suggests a
alternative dispersion relation. We agree with the fir
statement, but we find that a more realistic band struct
is the one used in this Letter.
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