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bcc Symmetry in the Crystal-Melt Interface of Lennard-Jones
Fluids Examined through Density Functional Theory
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Using a density functional theory for Lennard-Jones fluids, we find significant bcc (body-centered-
cubic) character in both the planar interface between the stable fcc (face-centered-cubic) crystal and the
stable liquid and at the interface of the critical fcc nucleus in a metastable liquid. We introduce an
order parameter that continuously distorts a crystal with fcc symmetry to one with bcc symmetry. Our
results suggest that metastable phases may have large effects on equilibrium interfaces and on rates of
first-order phase transitions. [S0031-9007(96)01498-6]

PACS numbers: 64.70.Dv, 64.60.Qb
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In a first-order phase transition away from the spinod
the stable phase first appears in a metastable backgr
phase via nucleation. The work of formation of
nucleus depends on the free energies of the stable
metastable phases and on a surface free energy determ
by the structure of the interface. A recent comput
simulation study by ten Woldeet al. [1] of Lennard-
Jones fluids has indicated that on the surface of a
(face-centered-cubic) critical nucleus in a background
metastable liquid lies a layer with bcc (body-center
cubic) symmetry. This finding has important implicatio
for the calculation of interfacial surface free energies u
in nucleation theories. Their findings also indicate tha
small undercoolings precritical bcc crystallites form a
then transform into the critical fcc nucleus.

These phenomena were prefigured by Ostwald [2] in
“step” rule of 1897, which postulated that the crystall
formed is not necessarily the most stable thermodyna
cally but is the state closest to the liquid. Refining this ru
Stranski and Totomanow [3] argued that the state with
lowest free energy barrier to nucleation will be the o
found. More recently, Alexander and McTague [4] a
Klein and Leyvraz [5] have suggested that a metasta
bcc phase can easily be formed from the undercoo
liquid.

A host of computer simulations have examined the p
sibility of bcc nuclei forming in the metastable liqu
[6–12]. One simulation reported the formation of bcc n
clei [6]; others reported no such findings [7–12]. Swo
and Andersen [12] found both bcc and fcc precriti
crystallites at an undercooling of 50% of the melti
temperature; however, only the fcc crystallites beca
postcritical. Recently, ten Woldeet al. [1] studied the
formation of crystallites at moderate undercoolings (2
of the melting temperature) and found evidence for p
critical bcc crystallites forming and then transforming to
critical fcc crystallite.

On the density functional theory front [13], Curt
and Runge [14] utilized a weighted-density-function
approximation (WDA) to find metastable hard sphe
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solids with bcc structure. The density functional resu
are in good agreement with their Monte Carlo simulatio
of hard sphere solids. In this Letter, we introduce
order parameter that monitors the Bain’s distortion [1
which continuously transforms a crystal of fcc symme
into a crystal of bcc symmetry. This order parame
allows us to model the continuous symmetry chan
across an interface of the fcc solid and the liquid
our density functional calculations for the Lennard-Jon
fluid. Our free energy functional has a square-gradi
form, with the parameters determined by a modifi
weighted density approximation (MWDA) applied local
through the liquid-solid interface. We find a plan
interface with significant bcc character, as well as stro
bcc character surrounding the critical fcc nucleus in
undercooled system.

We write the microscopic density,̃rsrd, as a Fourier
expansion in reciprocal lattice vectors (the symmetry
these reciprocal lattice vectors is discussed below),

r̃srd ­ r 1 rs

X
i

mie
iki ?r , (1)

wherer is the average density,rs is the average densit
of the solid, the Fourier coefficientsmi are structural order
parameters that measure the crystallinity of the solid,
the ki ’s are reciprocal lattice vectors.r ranges from
the density of the liquid to the density of the solid, a
mi ranges from zero (in the liquid) to one (in a zer
temperature perfect crystal). We approximate the den
as a sum of Gaussians,

r̃srd ­

µ
a

p

∂3y2 X
i

e2asr2Rid2

, (2)

wherea0 is the lattice constant, theRi ’s are the real-space
lattice sites, anda determines the width of the Gaussia
(the mean-square amplitude of vibrations about the cry
sites). In our Gaussian approximation, all of themi ’s are
coupled to the first one,m1,

mi ­ sm1dskiyk1d2

. (3)
© 1996 The American Physical Society 3585
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Thus,r describes the change in the average density, a
m1 (which we write asm from here on) describes the
change in structural order.

In specifying the symmetry of the crystal lattice, w
look for a model that continuously distorts the fcc lattic
into a bcc lattice. We introduce an order parameterx that
monitors the Bain’s distortion [15] in thêy direction (see
Fig. 1). The set of real-space lattice vectors that span
bcc-fcc lattices are

a1 ­
a0

2

µ
û 1

xŷ
p

2

∂
, a2 ­

a0

2

µ
t̂ 1

xŷ
p

2

∂
, (4)

and

a3 ­
a0

2
st̂ 1 ûd, (5)

wherex ­ 1 defines the bcc lattice andx ­
p

2 the fcc
lattice. The reciprocal lattice vectorski in Eq. (1) are
linear combinations of the following vectors:

b1 ­
2p

a0

µ
2t̂ 1 û 1

p
2 ŷ

x

∂
,

b2 ­
2p

a0

µ
t̂ 2 û 1

p
2 ŷ

x

∂
, (6)

and

b3 ­
2p

a0

µ
t̂ 1 û 2

p
2 ŷ

x

∂
. (7)

Three order parameters,r (change in density),m (crys-
tallinity), and x (lattice symmetry of the solid) vary
through the crystal-melt interface.

In studying phase transitions, it is convenient to em
ploy the grand canonical potential,V, which allows
fluctuations in the number density at fixed chemical pote
tial. In density functional theory,V is a functional of the
microscopic densitỹrsrd. In modeling a Lennard-Jones
fluid (argon) we use a square-gradient approximation
the nonlocal contributions to the grand canonical pote
tial. To simplify our calculations and obtain a qualitativ
picture of the liquid-solid interface, we keep the densityr

constant, so that the grand canonical potential functio

FIG. 1. Two fcc (face-centered-cubic) cells are shown ou
lined with thin black lines. The solid circles are atoms at th
front of the cubes; the dot-filled circles are in the midplan
and the open circles are in the back. After undergoing a Bai
distortion along they axis, the cube outlined with thick dark
lines becomes bcc (body-centered cubic).
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for the equilibrium planar interface is

V

rskBTf
­

Z
dr vfxsrd, msrdg

1
1
2

Z
dr K2

mmfxsrd, msrdg
µ

≠m
≠z

∂2

1
1
2

Z
dr K2

xx fxsrd, msrdg
µ

≠x

≠z

∂2

1
Z

dr K2
mx frsrd, msrdg

µ
≠x

≠z

∂ √
≠m
≠z

∂
, (8)

wherekB is the Boltzmann constant,Tf is the coexistence
temperature,v is the local free energy, and theK2

jk ’s
are square-gradient coefficients obtained by expanding
free energy with respect tos≠my≠zd ands≠xy≠zd,

K2
jk ­

kBT
2V srskBTfd

Z
dr

3
Z

dr 0sz 2 z0d2cs2d ≠rsrd
≠j

≠rsr0d
≠k

, (9)

whereV is the volume andcs2d is the direct correlation
function.

To construct the local grand canonical potential dens
v, we adopt a compromise between simply expanding
free energy about the liquid density and truncating it
second order [16,17] and using the full weighted dens
approximation [18]. We follow the approach propos
by Ohnesorgeet al. [19] that separates the Lennard
Jones potential into a hard sphere and an attractive
The hard sphere free energy is then calculated using
MWDA [20]. For details of the free energy functiona
see Refs. [19] and [21].

Throughout our calculations, we hold the densityr

constant (a0 changes). At the coexistence temperatu
T ­ 83.1 K, we chooser ­ 0.888 so that the free energy
of the solid is equal to that of the liquid. The loca
grand canonical free energy surface is shown in Fig
Note the stable fcc solid atx ­ 1.414 and m ­ 0.818,
the metastable bcc solid atx ­ 1 and m ­ 0.750, and
the liquid atm ­ 0 (the value ofx is irrelevant for the
liquid).

The planar equilibrium interface is found by minimiz
ing the grand canonical potential functional,

dV

dr̃srd
­ 0 . (10)

This gives two ordinary differential equations describin
the evolution ofm andx across the interface,

dV

dmszd
­ 0,

dV

dxszd
­ 0 . (11)
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FIG. 2. The local grand canonical free energy densityv at
T ­ 83.1 K and r ­ 0.888. Note the stable fcc solid (x ­
1.414, m ­ 0.818), the metastable bcc solid (x ­ 1.0, m ­
0.750), and the stable liquid (m ­ 0). The metastable bcc solid
creates a saddle point nearx ­ 1.0.

We solve the equations using a Runge-Kutta variable st
size routine [22], with the following boundary conditions

mz!2` ­ msolid, mz!1` ­ 0,

xz!2` ­
p

2 . (12)

Figure 3 shows the two order parametersm and x as
they depend parametrically on the positionz through a
planar equilibrium crystal-melt interface. Note the sig
nificant bcc character in the interface as the crystal b
comes less ordered (m decreases): the value ofx evolves
quickly from 1.414 to 1. The presence of the metastab
bcc state creates a saddle point (evident in Fig. 2) wh
serves as the lowest free energy barrier between the c
tal and the liquid; the equilibrium interfacial profile passe
close to this saddle point. The simpler path in which on
m changes at fixedx is of higher free energy. Our results
confirm those of ten Woldeet al. [1], who found residual
bcc character in the crystal-liquid interface. A qualitativ
description of our results is that the fcc solid is “wetted
by a bcc layer. Because the density is held constant,
calculated surface free energyg is 0.19eys2, which is
somewhat outside the range of values from simulatio
0.34eys2 [23], and from free minimization of the free en
ergy functional,0.29eys2 [24].

In general, the presence of metastable states in
vicinity of two stable states creates saddle points th
provide lower free energy barriers for the equilibrium
profiles to cross. This was also seen by Ohnesorgeet
al. [19] in the surface melting of Lennard-Jones vapo
solid interfaces, where a metastable liquid layer li
between the stable solid and the stable vapor. In
system with many metastable states (such as in ice)
depending on the geometry of the free energy surfa
the interface may be quite complicated as the equilibriu
p-
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FIG. 3. A plot of the two order parametersm and x as
they depend parametrically on positionz through a planar
equilibrium crystal-melt interface. Note that the symmetry
the lattice changes from fcc to bcc beforem approaches the
liquid value.

interfacial profile passes close to one or more of the
metastable phases.

We now ask how this bcc character in the interface a
fects the nucleation of Lennard-Jones fluids. In dens
functional theory, the critical nucleus is obtained by find
ing the extremum (saddle point) of the grand canonic
potential functional,

dV

dr̃srd
­ 0 . (13)

From the above equation, two ordinary differential equ
tions describe the evolution ofm and x in a spherically
symmetric nucleus, wherem ­ 0 asr (distance from the
center of the nucleus) approaches1`,

dV

dmsrd
­ 0,

dV

dxsrd
­ 0 . (14)

As the liquid-solid interface is undercooled, the syste
is kept under nonequilibrium conditions by constrainin
the density to be0.888. There is again significant bcc
character in the interface. As the undercooling increas
the interface with bcc character moves toward the cen
until at T ­ 50.0 K, the nucleus is essentially all surfac
and the critical nucleus has essentially bcc symmet
This is in accord with the results of ten Wolde [1]
who found clusters that were small enough to be surfa
dominated by bcc order. Our work and that of Ref. [1
show that bcc symmetry appearing between the fcc so
and the liquid is quite common both for equilibrium
interfaces and for critical nuclei.

Further work is needed to incorporate the effects
density on these interfaces and to look at the role
strain in neighboring fcc and bcc crystalline regions. A
3587
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small undercoolings, ten Woldeet al. [1] found bcc nuclei
forming and then changing into the more stable fcc nucl
However, at large undercoolings Swope and Anders
[12] found that only the stable fcc crystallites becam
postcritical. Further work is needed to understand t
limits of Ostwald’s “step rule.”

Our suggestion that metastable states may play a criti
role in nucleation dynamics could have much broad
implications for other kinds of first-order phase transition
Perepezko [25] has observed that both fcc and bcc crys
form at comparable rates over a range of compositio
in nickel-vanadium alloys; this is surprising because th
driving force depends on composition, so the nucleati
rates should be exponentially different from one anoth
A possible mechanism is a single (largely bcc) critic
nucleus that subsequently grows into either a bcc or
fcc crystal. Smitset al. [26] have shown that nucleation
rates for colloidal crystals depend strongly on the ran
of the repulsive potential (through changes in the polym
coating) and have suggested the possibility that metasta
bcc transition complexes may accelerate the nucleati
This is exactly the scenario present in our work.

This work was supported by the National Scienc
Foundation through Grant No. CHE 9422999 and th
Materials Research Science and Engineering Center at
University of Chicago.
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