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A probabilistic fragmentation model is introduced and analyzed. We show that, under very g
conditions, an effective power law for the mass distribution arises with a realistic exponent.
exponent has a universal limit, but, in practice, the effective exponent depends on the detailed b
mechanism and the initial conditions. This dependence is in fair agreement with experimental r
[S0031-9007(96)01534-7]
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One of the best known physical processes in nature
fragmentation. From our daily experience we know tha
material bulk under stress or shock will break into small
pieces. Experiments show generally that the number
fragments with a linear size larger thanr behaves such as

Nsrd , r2D . (1)

The exponentD, usually called fractal dimension, is
found to lie in the rangeD ø 2 3 for fragmentation of
three-dimensional objects [1]. A theoretical understan
ing of the statistical origin of Eq. (1) is currently being
pursued by many authors. The simplest models [2] p
dict a log-normal distribution, incompatible with obser
vation. More refined models, with various assumptio
about breaking mechanism [1,3], yield a power law b
havior forNsrd. However, it appears that theories produ
ing a single universal exponent may not account for t
experimental range ofD. Recently, quite a large amoun
of numerical simulations [4] with rather realistic physica
parameters such as stress, shear, and neighborhood
able to show qualitatively correct power laws.

In this Letter we develop an analytical model of frag
mentation,without using a specific breaking mechanism
We shall see that under very general, simple conditions
effective power law will result. A general theory is calle
for, since it is difficult to observe what is really happen
ing during fragmentation. We, nevertheless, assume t
folklore that fragmentation happens in a hierarchical o
der—i.e., a large piece first breaks inton smaller ones,
and these fragments may then break further. For si
plicity we assumen ­ 2 for all levels. Our numerical
simulations show that other finiten does not affect our
conclusions.

At level k of the hierarchy, we consider one object o
volumeV and energyE, the only variables retained in ou
model. E is the total energy, including kinetic energy
elastic energy, etc. The only property of the energy w
retain is that it is conserved.

Our model describes fragmentation of free flying o
jects, thus excluding the other interesting domain whe
the fractured matter is confined [5]. Even for free objec
the neglect of dissipation is an approximation. This is re
sonable for large masses because usually dissipation i
0031-9007y96y77(17)y3577(4)$10.00
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effect proportional to the area of the fracture produce
The main effect of dissipation is to set a scale where
fragmentation cascade stops. Indeed, all the input ene
will ultimately be dissipated. In an analogy with turbu
lence, we focus here on the “inertial range” well abo
the dissipation scale.

We assume further that it is the energy densityEyV
that decides whether an object breaks: IfEyV exceeds
a threshold, set to1 for all k, the object breaks further
otherwise not. IfEyV . 1, the object breaks into two
pieces of energy,́ and E 2 ´, and volume,y and
V 2 y, respectively. The two resulting fragments wi
or will not break in their turn according to their energy
volume ratios, i.e., if

x1 ­
´

y
. 1, x2 ­

E 2 ´

V 2 y
. 1 . (2)

The above process is repeated for an arbitrary numbek
of levels. Note thatk is not necessarily proportional to
time. The above variables are all for levelk, and we have
suppressed the subindexk for clarity. At level k ­ 0, E0
andV0 are given by the initial energy and volume of th
systemsE0yV0 . 1d.

Let qs´, y j Edd´dy be the probability that the energy
and volume of an element are between´ and ´ 1 d´,
and y and y 1 dy, given that it results from the
fragmentation of an object of unit volumeV ­ 1 and
energy E . 1 (for our purposes we may consider th
volume V to be unity at any level, since only the
ratio EyV matters). This distribution accounts for a
the information of a detailed breaking mechanism. W
shall assume thatqs´, y j Ed ­

1
E wsyd. This implies a

uniform distribution in energy, but arbitrary distributio
in volume [for symmetry we requirewsyd ­ ws1 2 yd].
This certainly is not the most general case, but it s
includes a large class of models.

The fragments with energy densityx . 1 are called
“unstable,” those withx , 1 are called “stable.” The
nature of the cascade process is best illustrated
studying the distributionpksxd of energy densityx of the
unstableelements at the levelk. This can be computed
from the initial distribution p0sxd once a recurrence
relation betweenpksxd andpk11sxd is found. In order to
© 1996 The American Physical Society 3577
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e-
derive this relation, let us consider a unit volume obje
with energy E . 1 breaking in two smaller elements
The Jacobian of the transformations´, yd ! sx1, x2d is
readily found using (2), and we find the joint distributio
of x1 andx2 from the aboveqs´, y j Ed,

psx1, x2d ­
1
E

w

µ
E 2 x2

x1 2 x2

∂ ∑
sx1 2 Ed sx2 2 Ed

sx1 2 x2d3

∏
. (3)

Denoting x1 ­ maxsx1, x2d and x2 ­ minsx1, x2d, from
(2) we have x2 # E # x1. Integrating out one of
the two variables, we obtain the distributions ofx6,
respectively,

p1sxjEd ­
2usx 2 Ed

E

Z Eyx

0
ywsyddy ,

p2sxjEd ­
usE 2 xd

E
, (4)

whereusxd ­ 0 for x , 0 andusxd ­ 1 otherwise. The
s1d element always breaks further sincex1 $ E . 1,
while the s2d element does not break ifx2 , 1; this
occurs with the probability

CsEd ­
Z 1

0
p2sxjEddx ­

1
E

. (5)

Let us define the distribution of the energy densi
psxjEd of oneunstablesx . 1d element between the two
fragments. The pairx2, x1 falls into two cases. (i) If
x2 , 1, which occurs with probabilityCsEd given above,
the only possibility is thatx ­ x1. In this case, the
distribution psxjEd is just that ofx1, i.e., p1sxjEd. (ii)
If x2 . 1, which occurs with probability1 2 CsEd, x
can be eitherx1 or x2. In this case, occurring with
the probability 1 2 CsEd, psxj is the average of the
distributionsp6sxjEd, conditional tox . 1, with weight
1y2 each. Taking into account the two cases, we find

psxjEd ­ usx 2 Ed
E 1 1

E2

3
Z Eyx

0
ywsyddy 1 usE 2 xd

1
2E

.

One can verify thatpsxjEd is normalized inf1, `d. Using
psxjEd, we finally construct the iteration relation,

pk11sxd ­
Z `

1
dEpsxjEdpk sEd . (6)

As k ! `, the distributionpksxd is expected to con-
verge to a limit which describes the asymptotic behavio

p`sxd ­
Z `

1
psxjEdp`sEddE . (7)

The solution of this equation will depend on the specifi
choice ofwsyd. For the special casewsyd ­ 1, i.e., the
uniform distribution which is interestingper se, Eq. (7)
can be solved to givep`sxd ­

A
x s1 2

1
2x d exps2 1

2x d. This
distribution is not normalizable becausep`sxd , Ayx for
largex. For arbitrarywsyd, a detailed study of Eq. (7) for
3578
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x ! ` reveals that this asymptotic behavior holds as well
Indeed, settingp`sxd , Ax2g in Eq. (7) and carrying out
an asymptotic analysis, one finds that the exponentg must
satisfy the equation

g ­
Z 1

0
y12gwsyddy . (8)

This equation always has a solution forg ­ 1. For
convex w, which implies easier breaking at the middle
than at the edges, a further subleading solutiong . 1
exists. For concavew, which represents, e.g., breakoffs
from abrasion, the second solution isg , 1, but it is
never reached under iteration. Thusg ­ 1 is the physical
solution for anyw.

Denote byCk the probability that one of the fragments
(the other is unstable by definition) becomesstable at
level k:

Ck ­
Z `

1
CsEdpksEddE . (9)

The important consequence ofg ­ 1 is that Ck ! 0
as k ! `, regardless of the distributionwsyd. Indeed,
Ck ­ 2pk11s1d andg ­ 1 impliespks1d ! 0 ask ! `.

Unfortunately, we cannot obtainCk in closed form
even for the uniform distributionw ­ 1. The numerical
procedure is straightforward: start with a distribution
p0sEd ­ dsE 2 E0d at level k ­ 0 sE0 . 1d, iterate
Eq. (6) to the desired levelk, then findCk using (9). The
numerical results for a particularw and various initial
energies are plotted in Fig. 1. The functionCk is not
universal. It depends onE0 as well as on the function
w. In general, for a givenw, CksE0d decreases withE0
for fixed k, and vanishes slowly whenk ! ` (see Fig. 1).

From the above preparations, we can establish the d
sired scaling laws. In Eq. (1) only thestablefragments left

FIG. 1. Ck as a function ofk for V0 ­ 1 and E0 ­ 2 sed,
E0 ­ 8 shd, and E0 ­ 32 s±d. The data refer to the tent
distribution wsyd ­ 4y for y , 1y2 and ws1 2 yd ­ wsyd.
The lines refers to the contribution

R1
Vmin

WksV ddV of the level
k to the statistics ofW sV d for Vmin , V , 1 with Vmin ­
3 3 1025. These lines refer, from left to right, to the same
values ofE0 ­ 2, 8, and32 used forCk .
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in the cascade count.Nsrd is trivially related to the distri-
butionW sV d of volumesV ­ rd : Nsrd ­

R`

V W sV 0ddV 0,
whereW sV ddV is the number of stable fragments with vo
ume betweenV andV 1 dV . We thus have the relatio
from (1):

W sV d ~ V 2a21, D ­ da . (10)
W sV d receives contributionsWksV d from all fragmentation
levels and it can be written

W sV d ­
X̀
k­1

WksV d .
X̀
k­1

CkNkwksV d . (11)

HerewksV d is the volume distribution of all the fragmen
(stable and unstable) produced by thekth step of fragmen-
tation, Nk is the number ofunstablefragments at leve
k. Nk unstable objects produce2Nk fragments, of which
s2 2 CkdNk , which is Nk11, are unstable again. Thu
CkNk stable fragments are produced at levelk. Equa-
tion (11) assumes that stable fragments are produce
level k with a probability Ck which is independent o
their volume V . This is clearly an approximation be
cause in realityCk ­ CksV d [6]. Neglecting this depen
dence allows us to keep the discussion at an elemen
level. Moreover, for distributionswsyd which are sharply
peaked aroundy ­ 1y2, this approximation is reliable
Indeed, forwsyd ­ dsy 2 1y2d the dependence on th
volume clearly drops (all the fragments at levelk have the
same volume). For general distributions this approxim
tion yields an upper bound to the true exponenta [6]. We
shall see below that even for broad distributions, such
the uniform one, we recover qualitatively correct resu
As we shall see the fractal dimension is determined by
exponential behavior ofNk with k, which depends onCk,
and the explicit factorCk in Eq. (11) does not play an
role. This observation supports the present approxima

For the uniform case,wsyd ­ 1, it is easy to find
[7] that wksV d ­ sln V dk21ysk 2 1d!. AssumingCkNk ~

s2 2 Cpdk , one can easily sum Eq. (11) with the res
W sV d ~ V 2a21 with a ­ 1 2 Cp. Let us generalize
this analysis for an arbitrary distributionwsyd. Let us
evaluate themth moment of V using (11) and (10)
Note that some moments can be divergent and ther
a smallestmp for this to happen. Multiply both side
of (11) by V m and integrate overV . On the right-hand
side, one findskV mlk , where the average is done using t
distribution wksV d. SinceV , within our approximation,
is the product ofk independent variables, each distribut
by w, we havekV mlk ­ f

R
ymwsyddygk . Multiplying

kV mlk by CkNk and summing overk, we see (e.g., by
the ratio method) that the sum first diverges whens2 2

Cpd
R

ymp

wsyddy ­ 1, whereCp is defined byNk11 ­
s2 2 CpdNk. This divergence must be matched to t
one occurring on the left-hand side of the equation, wh
is proportional to

R
dVV m2a21. The latter occurs for

mp ­ a, which therefore gives the relationZ 1

0
yawsyddy ­

1
2 2 Cp

, (12)
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which implicitly yields the exponenta within the present
approximation. Forw ­ 1, Eq. (12) reduces to the resu
we found previously. Most importantly, forCp ­ 0, and
only for this value, one findsa ­ 1, regardless ofw.

In order to derive the value ofCp, which determines the
scaling exponent, we observe that in real life the obser
tion of W sV d is limited to a finite windowVmin , V ,

V0, which may cover several decades.Ck is a slowly
varying function ofk, whereas the typicalV decreases
exponentially withk. Thus, over an exponentially large
range ofV , Ck can be regarded as constant, and aneffec-
tive power law can be established. More precisely,W sV d
in this window is dominated by contributions around
certainkp (see Fig. 1) thus givingCp ­ Ckp . Further
fragmentation fork . kp seldom adds stable fragment
larger thanVmin. Pursuing this argument further, one ca
find that, to leading order,kp . c logsV0yVmind, wherec
is a coefficient of order unity (c ­ 1 1 a for the uni-
form case within our approximation).kp appears to de-
pend weakly on the initial energyE0, as shown in Fig. 1.
Therefore, strictly speaking, there is notrue power law,
except at the ideal limitkp ! `, where one can take
Cp ­ 0 so thatD ­ d.

How does the exponenta vary in practical situations?
We notice that often, in experiments,Vmin is set by a
dissipation scale, below which an object cannot bre
anymore. In other words, at this scale, the energy l
in the rupture of an object becomes non-negligible w
respect to its energy. Thus we conclude thata depends
on V0 through the dependence ofCp ­ Ckp on kp ,
logsV0yVmind. This suggests that forV0yVmin ! ` it is
possible to recover the ideal limitD ­ d. Moreover,Cp

depends also onE0. A larger E0 results in a smaller
Cp, since Ck decreases withE0 (see Fig. 1). Thus the
effective asE0d increases withE0 until it reaches the
universal value of1.

Figure 2 shows that, in spite of the approximation us
to derive Eq. (12), this scenario is confirmed by numeric
simulations. It also has many features that have be
observed in real experiments. In the fragmentation
two-dimensional glass plates [8], the fractal dimensi
was nicely extrapolated toD ­ 2 for infinite input
energy. The same agreement can be found compa
our results with three-dimensional data [1]. We no
in particular, thatD for stony meteorites and asteroid
debris resulting from extremely long fragmentation, are
excellent agreement withD ­ 3. For these systems we
expectV0yVmin andE0yV0 to be extremely large. On the
other hand, in projectile fragmentation, the input ener
is the kinetic energy of the projectile. The volume to b
considered is the total volume of the system, which
essentially that of the target object. Therefore, even
extremely high kinetic energies, the input energy dens
E0yV0 which would enter our calculation can be relative
small. Indeed, experiments of projectile fragmentati
yield exponentsD ø 2.5, below the universal value
3579
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FIG. 2. Fit of the mass size distribution forwsyd ­ 1 and
E0yV0 ­ 4 shd, for the tent distribution andE0yV0 ­ 8 sed,
and forwsyd ­ dsy 2 1y2d andE0 ­ 16 s±d. Inset: exponent
a, obtained from the fit, versusE0yV0 for the uniformshd, the
tent sed, and the deltas±d distributions.

D ­ 3. Our analysis yieldsd as an upper bound for
D (Cp $ 0 implies a # 1). It is reassuring that, apart
from the data concerning ash and pumice, materials wh
probably need a separate treatment, all the data in Ref.
haveD # d ­ 3. Comparing the exponents obtained fo
different materials, in terms of our model, translates in
computing the exponent for different distributionswsyd.

Problems arise when considering thed ­ 1 experi-
ments described, e.g., in Ref. [9]. There it was found th
long thin glass rod fragmentation produces a size dist
bution with an exponentD ø 1.5. This is clearly incon-
sistent with our analysis, since it would need aCp , 0.
This failure, we believe, lies in the assumption that th
breaking of a large object is determined by its global e
ergy density. Without loss of generality we know tha
energy correlation inside a volume propagates via ne
est neighbor interaction; this leads to a Laplace equ
tion. For correlation induced by a Laplace equation, w
know that for d . 2 the correlation is very strong, and
d ­ 2 is the marginal case. This strong correlation a
lows to describe the fragmentation of one object as
event which produces two objects and which depends
a single variable, its energy density. Ford ­ 1, this is
not true. The energy is very loosely correlated along
line. We suspect that, because of the weak correlatio
3580
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simultaneous breaking will happen in many uncorrelate
regions of a larged ­ 1 object, making our scenario in-
valid. For smaller and smaller rod lengths, the energ
correlation becomes stronger and stronger. We therefo
expect that below a certain length threshold our scena
can be applied. Remarkably, in experiments of fragme
tation of long glass rods [9], a crossover occurs, and f
intermediate sizes the mass distribution is described by
exponentD ø 0.6 , 1.

In this work we have analyzed a simple fragmentatio
model. We show that, under very general conditions, a
effective power law arises. The exponent is not univers
but depends on the detailed mechanism and the init
conditions. There is an ideal universal limit, independe
of any of our choices, which can be approached for high
input energies.
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