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Probabilistic Fragmentation and Effective Power Law
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A probabilistic fragmentation model is introduced and analyzed. We show that, under very general
conditions, an effective power law for the mass distribution arises with a realistic exponent. The
exponent has a universal limit, but, in practice, the effective exponent depends on the detailed breaking
mechanism and the initial conditions. This dependence is in fair agreement with experimental results.
[S0031-9007(96)01534-7]
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One of the best known physical processes in nature isffect proportional to the area of the fracture produced.
fragmentation. From our daily experience we know that arhe main effect of dissipation is to set a scale where the
material bulk under stress or shock will break into smalleffragmentation cascade stops. Indeed, all the input energy
pieces. Experiments show generally that the number o#ill ultimately be dissipated. In an analogy with turbu-
fragments with a linear size larger tharbehaves such as lence, we focus here on the “inertial range” well above

N(r) ~ rP. 1) the dissipation scale. o
. . ) We assume further that it is the energy dendityV
The exponentD, usually called fractal dimension, is that decides whether an object breaks: EJfV exceeds
found to lie in the rangeb ~ 2-3 for fragmentation of 5 threshold, set td for all &, the object breaks further,
three-dimensional objects [1]. A theoretical understandgiherwise not. IfE/V > 1, the object breaks into two
ing of the statistical origin of Eq. (1) is currently being pieces of energys and E — ¢, and volume,v and
pursued by many authors. The simplest models [2] prey — ,, respectively. The two resulting fragments will

dict a log-normal distribution, incompatible with obser- or il not break in their turn according to their energy-
vation. More refined models, with various assumptions,g|yme ratios, i.e., if

about breaking mechanism [1,3], yield a power law be-
havior forN(r). However, it appears that theories produc- X = AN 1, Xy = E-e
ing a single universal exponent may not account for the 4 V—-v
experimental range db. Recently, quite a large amount The above process is repeated for an arbitrary nunber
of numerical simulations [4] with rather realistic physical of levels. Note thak is not necessarily proportional to
parameters such as stress, shear, and neighborhood wéree. The above variables are all for levgland we have
able to show qualitatively correct power laws. suppressed the subindéxXor clarity. At levelk = 0, Eq
In this Letter we develop an analytical model of frag- andV, are given by the initial energy and volume of the
mentation,without using a specific breaking mechanism. system(Eq/Vy > 1).
We shall see that under very general, simple conditions an Let g(e,v | E)dedv be the probability that the energy
effective power law will result. A general theory is called and volume of an element are betweerand e + de,
for, since it is difficult to observe what is really happen-and v and v + dv, given that it results from the
ing during fragmentation. We, nevertheless, assume th&agmentation of an object of unit volumg = 1 and
folklore that fragmentation happens in a hierarchical orenergy E > 1 (for our purposes we may consider the
der—i.e., a large piece first breaks intosmaller ones, volume V to be unity at any level, since only the
and these fragments may then break further. For simratio £/V matters). This distribution accounts for all
plicity we assumen = 2 for all levels. Our numerical the information of a detailed breaking mechanism. We
simulations show that other finite does not affect our shall assume thag(e,v |E) = %go(v). This implies a
conclusions. uniform distribution in energy, but arbitrary distribution
At level k of the hierarchy, we consider one object of in volume [for symmetry we require(v) = ¢(1 — v)].
volumeV and energy, the only variables retained in our This certainly is not the most general case, but it still
model. E is the total energy, including kinetic energy, includes a large class of models.
elastic energy, etc. The only property of the energy we The fragments with energy density> 1 are called
retain is that it is conserved. “unstable,” those withx < 1 are called “stable.” The
Our model describes fragmentation of free flying ob-nature of the cascade process is best illustrated by
jects, thus excluding the other interesting domain wheratudying the distributio,(x) of energy density of the
the fractured matter is confined [5]. Even for free objectsunstableelements at the level. This can be computed
the neglect of dissipation is an approximation. This is reafrom the initial distribution po(x) once a recurrence
sonable for large masses because usually dissipation is aglation betweerp,(x) and p;+(x) is found. In order to

> 1. 2
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derive this relation, let us consider a unit volume objectt — oo reveals that this asymptotic behavior holds as well.
with energy E > 1 breaking in two smaller elements. Indeed, setting..(x) ~ Ax~” in Eq. (7) and carrying out
The Jacobian of the transformatidm, v) — (x;,x2) is  an asymptotic analysis, one finds that the exponemiust
readily found using (2), and we find the joint distribution satisfy the equation
of x; andx, from the abovey(e, v | E), 1

y= [ o e, ®)

1 (E—x\[(&1 — E)(x, — E)
p(xlaXZ) = ¢ . ( . )3
XX X1 X2 This equation always has a solution fer= 1. For

E } ®)

Denoting x+ = maxx;,x;) and x_ = min(x;, x;), from  convex ¢, which implies easier breaking at the middle
(2) we havex- = E = x;. Integrating out one of than at the edges, a further subleading solutjon- 1
the two variables, we obtain the distributions ef, exists. For concave, which represents, e.g., breakoffs

respectively, from abrasion, the second solution js< 1, but it is
20(x — E) [EN never reached under iteration. Thus= 1 is the physical
p+(x|E) = —/—= f vo(v)dv, solution for anye.
E 0 Denote byC; the probability that one of the fragments
_0(E —x) (the other is unstable by definition) becomstsble at
p-&E) = ——, (4) :
E level k:
wheref(x) = 0 for x < 0 andf(x) = 1 otherwise. The *
(+) element always breaks further singe = E > 1, Cr = ]1 C(E)pi(E)dE . 9)

while the (=) element does not break if- < 1; this

occurs with the probability The important consequence of =1 is that C, — 0

. as k — o, regardless of the distributiop(v). Indeed,
C(E) = f p_(x|E)dx = l (5) Cr = 2pr+1(1) andy = 1 implies pi(1) — 0 ask — .

0 E Unfortunately, we cannot obtaid; in closed form

Let us define the distribution of the energy density€ven for the uniform distributiop = 1. The numerical

p(x|E) of oneunstable(x > 1) element between the two procedure is straightforward: start with a distribution

fragments. The pair_, x; falls into two cases. (i) If Po(E) = 6(E — Eo) at level k =0 (Eo > 1), iterate
x_ < 1, which occurs with probability’(E) given above, Ed. (6) to the desired levél, then findCy using (9). The
the only possibility is thatr = x;. In this case, the numerical results for a particulap and various initial
distribution p(x|E) is just that ofx,, i.e., p; (x|E). (i)  energies are plotted in Fig. 1. The functign is not

If x_ > 1, which occurs with probabilityl — C(E), x universal. It depends offy as well as on the function
can be eitherx; or x_. In this case, occurring with - In general, for a giverp, Ci(Eo) decreases wittk,
the probability 1 — C(E), p(x| is the average of the for fixed k, and vanishes slowly when— <o (see Fig. 1).

distributions p— (x|E), conditional tox > 1, with weight ~ From the above preparations, we can establish the de-
1/2 each. Taking into account the two cases, we find ~ Sired scaling laws. In Eqg. (1) only tis¢ablefragments left
E+1
P(IE) = 0(x — E)~ 7 .
E/x . 0.4}
X dv + 0(E — x)—. ¢
| vewia + ok — 05

One can verify thap(x|E) is normalized i1, «). Using
p(x|E), we finally construct the iteration relation,

Pt (x) = ]1 dEp(x|E)pi(E). 6)

As k — o, the distributionp(x) is expected to con-
verge to a limit which describes the asymptotic behavior

peto = [ " p(IE)p(E)dE @)

The solution of this equation will depend on the specificFIG. 1. C as a function ofk for Vo = 1 and Ey = 2 (<),
choice ofg(v). For the special case(v) = 1, i.e., the Eo =38 (0), and Eq = 32 (o). The data refer to the tent
uniform distribution which is interestinger se Eq. (7)  distribution o(v) = 4v for v < 1/2 and ¢(1 = v) = ¢(v).

. A 1 1 . The lines refers to the contr|but|of1\,min W (V)dV of the level
can ,be SfO|V?d to g'Vﬁx(x), = 21 = g)expl—5). This ;45 the statistics ofW(V) for Vi, <V <1 with Vi, =
distribution is not normalizable becauge(x) ~ A/x for 3 x 1075, These lines refer, from left to right, to the same
largex. For arbitrarye (v), a detailed study of Eq. (7) for values ofE, = 2,8, and32 used forC;.
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in the cascade countN(r) is trivially related to the distri-  which implicitly yields the exponent within the present
bution W (V) of volumesV = r?: N(r) = f?j w(V"dv',  approximation. Fog = 1, Eq. (12) reduces to the result
whereW (V)dV is the number of stable fragments with vol- we found previously. Most importantly, far* = 0, and
ume betweerV andV + dV. We thus have the relation only for this value, one finde = 1, regardless of.

from (1): In order to derive the value @™, which determines the
W(V) ey el D=do. (10) scaling exponent, we observe that in real life the observa-
W (V) receives contribution®, (V) from all fragmentation  tion of W(V) is limited to a finite windowVyi, <V <
levels and it can be written Vo, which may cover several decade€; is a slowly
% % varying function ofk, whereas the typical/ decreases
W) = Z Wi (V) = Z CiNywi (V). (11) exponentially withk. Thus, over an exponentially large
k=1 k=1 range ofV, C; can be regarded as constant, anceffac-

Herew, (V) is the volume distribution of all the fragments tive power law can be established. More precis@#(})
(stable and unstable) produced by f#tk step of fragmen- in this window is dominated by contributions around a
tation, N is the number ofunstablefragments at level certaink* (see Fig. 1) thus giving”* = C-. Further
k. Ny unstable objects produ@, fragments, of which fragmentation fork > k* seldom adds stable fragments
(2 — Cy)Ng, which is Ny1;, are unstable again. Thus larger thanV,,;,. Pursuing this argument further, one can
Cy N, stablefragments are produced at level Equa- find that, to leading ordek™ = clog(Vo/Vmin), Wherec
tion (11) assumes that stable fragments are produced &t a coefficient of order unityc(= 1 + « for the uni-
level k with a probability C;, which is independent of form case within our approximation)k* appears to de-
their volume V. This is clearly an approximation be- pend weakly on the initial energ§y, as shown in Fig. 1.
cause in realityC, = Cy(V) [6]. Neglecting this depen- Therefore, strictly speaking, there is true power law,
dence allows us to keep the discussion at an elementagxcept at the ideal limitt* — o, where one can take
level. Moreover, for distributiong (v) which are sharply C* = 0 so thatD = 4.
peaked aroundr = 1/2, this approximation is reliable. How does the exponent vary in practical situations?
Indeed, forg(v) = 8(v — 1/2) the dependence on the We notice that often, in experiment¥,,, is set by a
volume clearly drops (all the fragments at lekdbtave the dissipation scale, below which an object cannot break
same volume). For general distributions this approximaanymore. In other words, at this scale, the energy lost
tion yields an upper bound to the true exponer6]. We  in the rupture of an object becomes non-negligible with
shall see below that even for broad distributions, such asespect to its energy. Thus we conclude thatlepends
the uniform one, we recover qualitatively correct resultson V, through the dependence &* = C;- on k* ~
As we shall see the fractal dimension is determined by théog(Vy/Vmin). This suggests that foVy/ Vi, — o it is
exponential behavior a¥; with k, which depends o8,  possible to recover the ideal limi2 = 4. Moreover,C*
and the explicit factoiC, in Eq. (11) does not play any depends also oif,. A larger E, results in a smaller
role. This observation supports the present approximatiorc*, since C; decreases witlt, (see Fig. 1). Thus the

For the uniform casep(v) = 1, it is easy to find effective a(Ey) increases withE, until it reaches the
[7] thatwi (V) = (InV)*~1/(k — 1)!. AssumingC;N; =«  universal value of.
(2 — C*)X, one can easily sum Eq. (11) with the result Figure 2 shows that, in spite of the approximation used
W(V) e« V-e 1 with « =1 — C*. Let us generalize to derive Eq. (12), this scenario is confirmed by numerical
this analysis for an arbitrary distributiop(v). Let us  simulations. It also has many features that have been
evaluate themth moment of V using (11) and (10). observed in real experiments. In the fragmentation of
Note that some moments can be divergent and there tsvo-dimensional glass plates [8], the fractal dimension
a smallestm™ for this to happen. Multiply both sides was nicely extrapolated taD = 2 for infinite input
of (11) by V™ and integrate ovel. On the right-hand energy. The same agreement can be found comparing
side, one findgV"),, where the average is done using theour results with three-dimensional data [1]. We note,
distribution w, (V). SinceV, within our approximation, in particular, thatD for stony meteorites and asteroids,
is the product ok independent variables, each distributeddebris resulting from extremely long fragmentation, are in
by ¢, we have(V"y = [[v"¢(v)dv]F. Multiplying  excellent agreement withh = 3. For these systems we
(V™) by CyN; and summing ovek, we see (e.g., by expectVy/Vmin andEy/V, to be extremely large. On the
the ratio method) that the sum first diverges wtign—-  other hand, in projectile fragmentation, the input energy
C*) [v™ o(v)dv = 1, whereC* is defined byN,+; = s the kinetic energy of the projectile. The volume to be
(2 — C*)N¢. This divergence must be matched to theconsidered is the total volume of the system, which is
one occurring on the left-hand side of the equation, whictessentially that of the target object. Therefore, even for
is proportional to fdVV™ <"1, The latter occurs for extremely high kinetic energies, the input energy density
m* = a, which therefore gives the relation Ey/Vo which would enter our calculation can be relatively

! small. Indeed, experiments of projectile fragmentation
] v¥p(v)dv = (12)
0

2 — C*’ yield exponentsD ~ 2.5, below the universal value
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1.0 0o simultaneous breaking will happen in many uncorrelated
regions of a largel = 1 object, making our scenario in-
valid. For smaller and smaller rod lengths, the energy
correlation becomes stronger and stronger. We therefore
expect that below a certain length threshold our scenario
can be applied. Remarkably, in experiments of fragmen-
tation of long glass rods [9], a crossover occurs, and for
intermediate sizes the mass distribution is described by an
exponentD = 0.6 < 1.

In this work we have analyzed a simple fragmentation
model. We show that, under very general conditions, an
effective power law arises. The exponent is not universal
but depends on the detailed mechanism and the initial
5 conditions. There is an ideal universal limit, independent
log (VIVy) pf any of our choices, which can be approached for higher
input energies.

This work was supported partially by the Swiss Na-
tional Foundation Grant No. 20-40672.94/1.
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FIG. 2. Fit of the mass size distribution fas(v) = 1 and
Ey/Vy = 4 (0O), for the tent distribution andc,/V, = 8 (<),
and fore(v) = 6(v — 1/2) andEy; = 16 (o). Inset: exponent
a, obtained from the fit, versus,/V, for the uniform(J), the
tent (<), and the deltdo) distributions.
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