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Freezing Transition of Compact Polyampholytes
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Polyampholytes (PAs) are heteropolymers with long range Coulomb interactions. Unlike polymers
with short range forces, PA energy levels have nonvanishing correlations and are thus very different
from the random energy model (REM). Nevertheless, if charges in the PA globule are screened
as in a regular plasma, PAs freeze in REM fashion. Our results shed light on the potential role
of Coulomb interactions in folding and evolution @foteins, which are weakly charged PAs, in
particular, making connection with the finding that sequences of charged amino acids in proteins are not
random. [S0031-9007(96)01429-9]

PACS numbers: 61.41.+e, 64.70.Dv

The freezing transition of heteropolymers, in which theconsider the case of maximally compact polymers, assum-
number of thermodynamically relevant states goes froning that maximal density is maintained independently of
an exponentially large valug@j(e")] in the random glob- Coulomb interactions, i.e., by an external box, poor sol-
ule state, to only a few® (1)] conformations in the frozen vent, or internal attractions, such that~ N/,
state, has attracted a great deal of interest. In addition The simplest characteristics of statistical dependence
to providing an interesting problem in the statistical me-of energies is the pair correlation between two arbitrary
chanics of disordered materials [1], this system is poteneonformationse and 3, given by
tially relevant to the biologically important question of
protein folding. Most previous investigations have fo- (EaEp)e = (EaEp) = (Ea)(Ep) = B'Qap, (2)
cused on heteropolymers with short range interactionsajith Qup = S ff — r}’)f(r,ﬁ — rf)_ In the fa-
Recently, however, there has been renewed theoreticgdjliar case of SR interactions@ 5% = 3 ,., A(rf" —

[2—4] and experimental [5,6] interest in polyampholytesr?)A(rf B rf) is just the number of bonds in common

(PAS), W.h'Ch are heteropolymers with charged MONOMETR e ween configuratione and 8. Numerical simulations
of both signs. It has been shown that, due to screening e}

fects, PAs collapse to compact globules if their net charg 101 |nd|cateSl£ha-t N many Cises the probab|SILty Cj|str|—
. " : . ution for Q,, i.e., Psp(Q) =2 ,56(Q — Q,p), is

is below a critical value [7]. There is also some evidence harply peaked at smalp. This ﬁa ens because one
from exact enumeration studies of short chains [8] thap 2Py P : pp

; can easily “hide” monomers by moving them only a small
dense globules of neutral PAs may have a freezing trans;. : . - R
: o . istance and decreasing their contribution@é®. Large

tion. However, it is unclear how long range (LR) interac-

d
tions affect freezing, or whether the formalism develope tatistical dependence is thus achieved only for conforma-

. : : ions that are closely related. The validity of REM rests
for globular polymers with short range (SR) interactions o )
. X on the statistical rarity of such closely related conforma-
remains applicable to the LR case.

tions. REM is valid when configurations that are statisti-

The freezing transition of SR heteropolymers is mOStcaIIy dependent can be ignored in a largdimit,

commonly described by the random energy model (REM) By contrast, with long range interactions, the relevant

[9], although it is not always applicable even in this case S . 3 R
[10]. As the principal underlying assumption of REM is parameter for judging statistical dependencegéﬁ -

>k . B B1-d—2 i
the statistical independence of energies of states (polym&_#y“rla - 1‘;| ey —L}{J .|] (@=2_ while the gselg)m?t-
conformations) over disorder (sequence of charges alorfg¢ interpretation of @ ;5 is not as clear as,p, it
the chain), we first examine correlation of the energies anfeasures the similarity in contributions from monomer

then discuss the resulting freezing transition. Our startingp@irs (/,J) in conformationsa: and 8 to the overall en-
point is the Hamiltonian ergy. Unlike the SR case, polymeric bonds always keep

N monomers within the scale of LR interactions. TT;‘S’ for
two conformations chosen at random, the over@f, 4
H = %Bsfsff(rl - ), (1) may not be negligible (even @R, is). The following
scaling argument provides an estimate of the width of the
where B is a constant,/ labels monomers along the probability distributionP; r(Q) = Za,_; 5(9 — QI;IE).
chain, ands(I) € *1 is the charge of monomdr. The First, consider the maximum overlap which occurs
range of interactions is indicated througkr), such that (for both LR and SR) wherall elements are correlated
f(r) = A(r) for SR interactions, and(r) = 1/r?"2 for  (i.e., Qmax = Qa« is the correlation of a configuration
Coulomb forces in dimensional space. Finally, we only with itself). To compute this, we note that for each of
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the N monomers there is a contribution fro@(r?~!')  conformations 4 = 3, cubic lattice). The resulting his-
monomers at a distanee(for compactstates ind dimen-  tograms, with overlaps normalized by the maximal value,
sions), resulting iNQ . ~ N [dr r?~'f(r)>. For SR are shown in Fig. 2. SR overlaps are peaked at small
interactions, this integral is dominated by contributions awvalues, whereas the LR overlaps are peaked closer to
a microscopic Iength scale (set by the interaction rangelnity. Furthermore, the sharpness of the distribution sug-
and we getQ>R ~ N. For LR interactions, while con- gests thatQ '® is approximately independent of the cho-
tributions from monomers far away are smaller, there arsen pairs of conformations.
more of them. For Coulomb interactionsdn= 4, the in- Having demonstrated the residual overlap between
tegral is dominated by the longest distance, and for a polyenergies of conformations with LR interactions, and
mer of sizeR, we getQLR ~ NR?/R?472 ~ NR4 4, hence the breakdown of REM, we go on to better
We can use similar arguments for the overlap betweegharacterize the density of states. This will take us a
two conformations chosen at randor@¥X,). In fact, step closer to understanding the freezing of PAs. To
for the LR problem,QLR and QLR scale identically, describe the density of states, we use the following three
as both cases involvé (N?) pairs of monomers, each characteristics: the annealed energy variangg, (the
g|V|ngacontr|but|on(9(1/R2d 2), for a total onmax width of the density of states for annealed disorder),
LRy ~ N2R*2=4_ Moreover, as the main contribu- the average quenched energy variangg., (the width
tion to Q-R, comes from far away sites, this residual of the density of states for quenched disorder), and the
overlap is only weakly conformation dependent. Thequenched energy correlation functign (the statistical
existence of a residual overlap changes the problerdependence between states). These quantities are given
fundamentally from the SR case: REM is not valid asby the formulas
there is always a statistical dependencd irt 4 [11]. 2 _ i Tey T —=\2
Computer simulations support the above arguments. Tann = <@>c N <@> —(EY,
To examine a large range iN, we generated random o-éucn = ((E?)). = ((E?)) = (E )Y, 3
conformations on a lattice by first choosing a radRis BN N2 =\
and then enumerating random paths [12] on the set of g =((E)9 = (E)) = (EV,
lattice sites which are withirR. R was varied from where—= and(--) denote averaging over conformations
3 to 10 lattice sites, and the following results repre-and sequences, respectively. Note that these guantities are
sent averages over 20 conformations for e&chvalue. related by a mathematical identity?,, = quen + g.
Figure 1 shows that the scaling exponentsdefined In the annealed case, the energy Vanancgi% =
by Q ~ N> appear to be the same within error for B29 .., since, in this case, all possible states can be ac-
random pairs of conformations, as well as the overlagessed and thus the width of the energy spectrum must be
of any conformation with itself. Furthermore, the fits maximal. This resultis also easily extracted from Eq. (2)
agree well with the predlﬁlonﬂmax = yima = 4/3. BY by averaging over conformations with = 8. Averag-
contrast, with SR interactiong>X, = 1, while Yiand = ing the same equation ovetl pairs of statesa and 3,
0.75 is distinctly smaller. We also calculated SR andwe can findg: For M conformations, there ar®! pairs
LR overlaps @5} and Q'R for 1000 pairs of 64-mer « = B which completely overlaf .5 = Q max, but this
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FIG. 2. Probability distributionsP(QR) and P(Q5R), ob-
. . tained from 64-mers on a cubic lattice. Because of finite size
FItG' 1.t Scaling fofE)nd andemﬂx WI'.th N ffotthRf and SLR effects, there is some residual overlap in the SR case (here
Imieractions ¢ =3) ower law scaiing of the orm peaked at 0.1). However, we expect that the SR residual over-
N7 indicates thatQrne/Q;f, does not vanish in the thermo- lap vanishes in the thermodynamic limit, while the LR overlap
dynamic limit, wherea®Q 3%,/ Q3R does. does not.

max
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is overshadowed by the remainin@Z (M — 1) pairs governed by the low energy tail of the density of
with overlap Q .5 = Qang, resulting ing =~ BQ 4.  statesp(E) = MP(E), where M is the total number
In addition to measuring the statistical dependence besf conformations, andP(E) is the single level energy
tween stateg = ((E )?). also describes how the mean of distribution. In the standard REM entropy crisis scenario,
the energy spectrum for a given sequence varies betweehe system freezes in a microstate, much like a snapshot,
sequences. Finally the width of the energy spectrum foat a temperatur&; at whichpy ~ 1, wherepy = p(Er)
a typical sequence i85, = 03,, — & = B*(Qmax —  is the density of states at the equilibrium enefyat the
Q.and). This makes sense physically as correlation (antemperaturd’.
ticorrelation) in the energies should narrow (broaden) the The density of states in the high temperature regime is
width of the energy spectra. Also, we see that when thergoverned byo,,.,, as can be seen by a high temperature
is no correlation ¢ = 0), Gann = Tquen, as in the REM.  expansion: The partition functiod = tr[exp(—BH )]
The following picture emerges from the above resultsis first expanded in powers of3 = 1/T, resulting
As Q3R . =0, we haveg = 0 for the SR case above in (after averaging over sequences)BF = (Inz) =
the freezing temperature, and the mean of the energp M — B(E) + B*((E?))./2 + ---. From this ex-
spectrum does not vary significantly between sequencepression [and using Eq. (3)], the entropy is calculated as
Also, the width of the spectrum for a given sequence isS(T) = In2M — ,Bzaguen/z + ---, where (as demon-
large (the maximum possible value, as in the annealestrated earlier) for Coulomb interactions id = 3,
case). The variation of the means of the energy spectrag,., ~ ¢*N*/R, yielding
between sequences is much smaller than the typical _ 1,2 2
width of each spectrumafluen; thus disorder is not pr = Mext=3(e"N/TR)"]. ()
important for SR interactions above freezing. Of course, From the structure of the series [3], we expect the
below the freezing temperature, self-averaging breakbigh temperature expansion to break down for tempera-
down, and disorder is relevant. By contrast, for LRturesT < Tp = ¢*N/R. This temperature can also be
interactions,Q LR, does not vanish and is significant. We obtained by regarding the polymer globule as a (nonpoly-
thus expect the widths of the energy spectra to be smaiheric) plasma of the sam#& charges confined within
and the means to vary widely from sequence to sequenctéhe volumeR?>. As the Debye screening length for this
The results of a computational test of the aboveplasma is of the orderp ~ (TR?/Ne?)!/?, there are two
scenario, obtained from the exact enumeration of altegimes: ForT < Tp, the plasma is fully screened as
globular states of 36-mers on a cubic lattice=€ 3) are  rp < R. However, forT > Tp, rp > R and the charges
presented in Fig. 3. We see that for SR interactionsare not screened. The latter regime is meaningless for
the means of the spectra are indeed well defined ana regular plasma, but describes the high temperature be-
their width (gray region) is large. For LR interactions, havior of the polymer globule. It is not clear that, with
the means are poorly defined, with a variance betweethe constraints of polymeric bonds, the scaling for a PA
sequences which is greater than the widths of individuashould be the same as that for a screened plasma at low
spectra (error bars). temperatures. However, assuming that this is the case,
Is the insight gained above sufficient to analyze thethe entropy can be estimated by noting that the plasma
freezing transition in PAs? In general, freezing isis composed of roughl' ~ R3/rj) ~ (Ne?/RT)*? in-
dependent Debye volumes. Assuming that the entropy is
proportional toN', we finally conclude

30
[ ELR + SR pr ~ M exd —c(e*N/TR)*], (5)
20 where ¢ is a numerical constant. Note that Eg. (5)
ial ] ll|’ _ 1 J: i indicates a very sharp decrgase of the density of states in
f o 1o J__|_\ Tl IH the_ low energy tall., proportional to ekpc/(E — E )],
w o I el r.fﬂ. I ]H: g Bl which reflgcts the fine tuning of configurations necessary
i .\;‘_%-|*|-# . t'lt #iﬁfq for screening.
.10 B :P’ I8 tlﬁ" ISl . I ¢! Typically the number of conformations of a polymer
f M i T 1 scales asM ~ ¢“V, with w of the order of unity. In the
i [ — ¥ l ' limit where the polymer is kept maximally compact by
: an external box, poor solvent, or internal attractions, such
-30 that R ~ aN'/3, wherea is a monomeric length scale,
O dF el 99 et Ak Sl Al R0 w is approximately the entropy of Hamiltonian walks.
Sequence Freezing, which is signaled by ~ 1, can take place

FIG. 3. Mean and width of the energy spectra for 80 se-in the unscreened regime only fF)r short chains with
quences of 36-mers, determined by full enumeration over alV < 1/w@. (The “apparent” freezing temperature for
maximally compact conformations (see text for details). unscreened polymers grows a5/°)) In this case, a
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further decrease of temperature will not lead to screeninglhis is intriguing, considering the recent finding that
of course. For longer chains, we predict freezing at arprotein sequences are indeed anticorrelated with respect
N-independent temperature @fy ~ e?/(aw??) in the to their charge [14]. This indicates that perhaps protein
screened regime. In this sense, the compact PA freezes @volution was not just dictated solely by the degree
a phase transition that is similar to REM. We stress thabf hydrophobicity of monomers (which depends on the
this happens despite the unusual scaling of the width oflegree of charge, not the sign), but by Coulomb effects
the density of statesr ~ N%3. The distinction between as well.
the two behaviors is important for understanding the The work was supported by NSF (DMR 94-00334).
results of lattice simulations, as it appears that 36-merd. Y. G. acknowledges the support of Kao Fellowship.
are in the short chain regime. Computations were performed on Project SCOUT (ARPA
We expect that the nature of the frozen state als&@ontract No. MDA972-92-J-1032). We thank R. Du for
depends orfs/Tp. For freezing in the screened regime a critical reading of the manuscript.
(T < Tp), the system looks much like that of the SR
case, i.e., like a disordered version of a salt crystal. For
freezing in the unscreened regini€ (> Tp), we expect
a smaller degree of antiferromagnetic ordering; consistent
with the idea that freezing at a higher temperature leads to California, Berkeley, CA 94720-7300.
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