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Nonlinear Saturation of an Electrostatic Wave: Mobile lons Modify Trapping Scaling
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The amplitude equation for an unstable electrostatic wave in a multispecies Vlasov plasma has been
derived. The dynamics of the mode amplityde) is studied using an expansion 4n in particular, in
the limit y — 0%, the singularities in the expansion coefficients are analyzed to predict the asymptotic
dependence of the electric field on the linear growth sateGenerically|E;| ~ y*/2, asy — 07, butin
the limit of infinite ion mass or for instabilities in reflection-symmetric systems due to real eigenvalues
the more familiar trapping scalini,| ~ y? is predicted. [S0031-9007(96)01475-5]

PACS numbers: 52.35.Fp, 52.25.Dg, 52.35.Mw, 52.35.Qz

The evolution of an unstable electrostatic mode is aesonant denominators. Thus the calculations appeared to
fundamental problem in collisionless plasma theory, andreak down precisely in the regime where the amplitudes
is perhaps the simplest nonlinear problem requiring a selfef the unstable waves were extremely small. In addition,
consistent treatment of the resonant interaction betweegfforts to regularize the expansion coefficients inevitably
waves and particles. When resonant particles interaded to theories that predicted scaling behavior for the
with a large amplitude wave, then much of the behaviosaturated amplitudes that contradicted numerical results
can be understood by analyzing the particle motion a§l2,13]. More precisely, these theories predicted that
if the wave amplitude were constant; this approximationthe electric field of the saturated mode would satisfy
linearizes the problem [1]. Alternatively, if the wave E ~ /y asy — 0", whereas numerical simulations find
amplitude is sufficiently small, then the initial instability the exponential growth of the mode halted at an amplitude
can be predicted treated by neglecting the effect of theharacterized by the “trapping scaling” ~ 2 [14,15].
wave on the particles; this leads to conventional linear Recently, we have made progress on this problem for
Vlasov theory. However, to describe the dynamics ofthe Vlasov equation; both in the approach to construct-
the unstable mode which develops from a small initialing the expansions and in the way the singular limit
amplitude into a final nonlinear state requires an analysiy — 0" is treated and interpreted [16]. An amplitude
of the self-consistent and nonlinear interaction betweemquation for an unstable mode in a one-dimensional col-
the wave and the resonant particles. lisionless plasma was derived for the dynamics on the

From a dynamical systems viewpoint even the simplestwo-dimensional unstable manifold of the equilibriur.
examples of instabilities in a Vlasov plasma have manyThe essential difference from previous work lies in the
unusual features related to the Hamiltonian character athoice of unperturbed state. Earlier theories assumed
the dynamics and the central role played by the neutrallgn equilibrium with a neutrally stable mode and ob-
stable continuous spectrum (van Kampen continuum) inained ill-defined expansion coefficients [12]. This can
the appearance of the unstable modes [2]. These noveltieg avoided by taking the weakly unstable equilibrium as
are not present solely in Vlasov theory; entirely analogoushe unperturbed state; a choice that naturally leads one
features arise in models of unstable inviscid shear flowso work with the unstable manifold. The mode eigen-
in stability calculations for certain classes of solitons,valuer = y — iw can be complex (beam-plasma) or real
and in theories of large systems of coupled oscillatorgtwo-stream); in either case the equations for the ampli-
[3-9]. In the better understood setting of dissipativetudeA(r) = p(r) e 1¢®),
systems, the nonlinear evolution of the mode amplitudes - 3 5 7
can be described using an expansion in the amplitude l_) yp tapt +azp + O, @)
of the unstable modes. Since the growth rates are very 6 =w + alp* + ayp* + 0(p®), (2)

small near onset, nonlinear effects often act to saturatg,q 1o a one-dimensional problem for because the
the instability before the amplitudes grow appreC|any;Spatia| homogeneity of the equilibrium decouples the

for this reason such expgnsions have prove_d a powerflﬁhase dynamics. Ag — 0%, the expansion coefficients
tool for studying the nonlinear states emerging from thediverge

bifurcation [10,11].

It has long been hoped that similar methods could a; a, ~ 1 , (3)
be applied to the Vlasov equation despite the absence S A
of dissipation. However, for many years, efforts tobut these divergences can be removedalioorders in
construct such expansions, even for the case of a singtbe expansion by rescaling the mode amplitudé) =
unstable mode, have been plagued by the fact thag?r(yr). In this way one obtains asymptotic equations
the nonlinear terms involved divergent integrals due tdor r(7) that are well behaved ag — 0", and moreover
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through Poisson’s equation this rescaling implies that the The amplitude of the unstable mode is the coefficient

electric field exhibits the trapping scaling. These initialof ¥ in the expansion of

results were obtained for a plasma of mobile electrons . )

with infinitely massive ions providing a fixed neutralizing flv.n) = [AO¥ ) + cel+ Stv.n), (7))

background; consequently they contain no informatiorhere f denotes the two-component fief= (£, (1))

regarding unstable ion-acoustic modes, for example. and represents the full nonlinear solution. This decom-
In order to study the effects of ion dynamics, we haveposition allows the dynamics of the mode amplitutie)

generalized the analysis to treat a single unstable eleand the remaining mode&x, v, r) to be separated

trostatic mode in anultispecieone-dimensional plasma. _ =

This changes the problem in a qualitative way: now as A=ArA+ (VN (8)

y — 07, the single particle dynamics and collective mo- . =

tions of the ions occur on a fast time scale relativé tg. 0§ = LS+ N(f) — (V. NNV +ccl (9

We calculate explicit expressions for the leading nonlineausing an inner product defined for two-component

coefficientsa; and «/; in addition, we have determined fields B = (B*®),B%) and D = (D®,D®) by (B,D) =

the dominant singularities in the amplitude expansion tof dx [ dv [B)(x,v)*D“(x,v) + BV (x,v)*DV(x,v)],

all orders. The results show a qualitatively different sin-and the adjoint eigenfunctiod for A*. In (8) and (9)

gularity structure from the limiting model (3) with fixed the linear terms are decoupled, but nonlinear couplings

ions, and provide new predictions for the scaling of non-hetweend andd,S remain.

linearly saturated modes. The amplitude equation fot follows when we express
The theory is described for the simplest examplethe time dependence & in terms of A: S(x,v,t) =

of a neutral plasma with two speciés = ¢,i) which  H[x,v,A(t),A*(t)]. As we have discussed elsewhere,

we refer to as “electrons” and “ions,” although the this step can be visualized as a restriction of the initial

results apply equally to collisionless electron-positroncondition to the two-dimensional unstable manifold of

plasmas. Letn; = N,/L denote the average speciesthe equilibrium [16]. Consistency between the time

density in a one-dimensional plasma of lendih and dependence of = H and the evolution ofS described

eq, denotes the charge per particle of species In by (8) and (9) requires thaf[x, v, A(t), A*(¢)] satisfy

gsgt\gr]llgzzodrhrggnsmnless variables, the Vlasov PmssortA OuH + A" apHl oy = LH + N()

9 FY + va, FO + kWE9,FO =0, — [T, N (DY + (P, N ()" ¥*],  (10)
B * ) where f“(x,v) =[A¥(x,v) + c.c]+ H(x,v,A,A*). For
0k = Z- f% dv F'™, 4) solutions of this form, the dynamics d@f(r) (8) yields an

where k) = (¢,m./m;). We assume periodic boundary autonomous equation far,

conditions and adopt the normalizatigndx [ dv F*®) = A=A+ (B, N(f), (11)
gsnsL/n.; note thatF®) is negative for electrons and pos-
itive for ions. Given a spatially homogeneous equilibrium

) thi tem determi luti tion f eneity of the equilibriumF, forces this amplitude
o (v), this system de ermlni? an evolution equation 0equation to have a simple formt = A p(|A|*) where

O v,0) = FOv,0) = Fy () 6,/ = L+ (AR) must still be determined. In polar variables,

provided H can be determined from (10). The homo-

N(f¥) where £ ) = —pa, f® — kOE3,Fy and A = pe%, the system (11) separates
N(f©) = —kWEa,fv. : 2 ; 2

An unstable mode exists if the dielectric function p=pRe[p(p)] 0 =—Im[p(pI)]. (12

1 (® >, K(s)avp(()‘)(v) yielding a one-dimensional flow fop(r); the essential
ex(z) =1 - yE dv ="——""—", problem is to study (p?).
o < ) Our conclusions regarding the evolution of the wave are
(Im z > 0) based on an analysis of the amplitude expansiorpfor

has a rooty = v, + iy/k in the upper half plan¢y > o
0). The root determines an eigenvale= —ikz, for £ p(p>) = pip¥, (13)
with a two-component eigenvector Jj=0

P — it P (v) ©) and similar expansions falf (x,v,A,A*). By substitut-
¢ yDw) | ing A = A p(p?) into (11) we obtain one set of rela-
We assume that there is a single such mode and that tions between the coefficients pfandH: AY'; p; p* =
corresponds to a simple root @f(z), i.e., ei(z0) # 0. AA + (¥, N (f*)); the defining equation (10) fd pro-
The eigenvaluex can be real or complex depending on vides a second set of relations. The expansion coefficients
the equilibrium; the ion-acoustic instability correspondsare calculated by solving these coupled relations recur-
to a complex eigenvalue. sively; full details of this calculation and our analysis of
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the resulting recursion relations will be published elsecated. The cubic coefficient hasya? singularity which

where [17]. suggests trapping scaling fpr, but the divergence of fifth
The first coefficientp, is simply the linear eigenvalue order coefficient turns out to bg, ~ y~® which is not

A. Information about the nonlinear evolution is provided removed by trapping scaling [17]. This fifth order singu-

by the higher order coefficients; in particular, the firstlarity is canceled if we sep(r) = y%/* r(yt). However,

nonlinear term is given by inspection of the higher order terms in the expansion

1T kD1 = 92) Im(a(zo)) shows the divergence structure pf ~ y‘(5-7‘3?, and
=7 kel (z0) cancellng'these_ singularities to all orders again requires

Y Kerizo) the generic scaling(r) = y/2 r(yt) even though to any

(L. k(1 = kD?)a!(z0) L0603 e finite orderp; a smaller exponent would suffice [17].

"\ 4 4k2 € (z0) Yo With the notable exception of this third example, our
_ o 0 conclusions are easily summarized: the scaling required

wherea/(z) is the derivative ofx(z) = [dv d,Fy /(v —  to obtain a nonsingular expansion is correctly predicted
7). |If by the divergence found in the cubic coefficiept.

kD1 = k%) Im(a(zy)) # 0, (15) G_en(_erically, this sin%ullarity di_ctqtes gs_cgling’pi/_z, bqt
this is replaced byy“ in the limit of infinite ion inertia
then the first term in (14) is nonzero and, in the limit or for instabilities in reflection-symmetric systems due to
of weak instabilityy — 0, there is ay™* singularity  real eigenvalues. In the generic case we can estimate
in p;. When (15) holds, the trapping scaling introducedthe range of growth rates where the new? scaling

previously forp no longer removes the singularity ;, s visible by determining the range in where they
and a new scaling (1) = y*/ r(y1) is required to obtain  divergence dominates;. In general, this will depend on
a nonsingular leading order term. the specific parameters of the equilibrium, and we give

Beyond this leading order calculation, we have provedwo illustrative examples: an unstable plasma wave driven
that the_cSQ§1:f|C|ents in (13) have the asymptotic behaviopy an electron beam and an ion-acoustic instability. For
p;j ~ v %~V to all ordersj = 1. This general result sjmplicity, we have evaluated the dispersion relation and

implies that when Eqgs. (12) are rewritten in the rescaledhe cubic coefficient using Lorentzian distributions for the
amplitude r the singularities will be canceled tall  two species,

orders inr [17]. Thus given the generic condition (15)

the theory predicts the asymptotic scaling for the mode F(E)(v) _ T ny/mw B apnp/m
electric field is|Ex| ~ y*/2> asy — 0. 0 (v —u)+ a2 (v —up)?+al’
Our prediction must be reexamined if the genericity con- a;/mw (16)
L

dition (15) fails and the leading term jm vanishes. The F(()’)(v) =
three factors in (15) indicate three exceptional circum-

stances when this can happet! =0, Im(a(z0)) =0, Of  with n, + n, = n; = 1.
kM2 =1. The first circumstance corresponds to the limit A plasma wave instability is calculated for an equal

of fixed ions,m,./m; — 0, and the cubic term (14) reduces density cold beam with four mass ratios; the parameters
to our previous result (3). With fixed ions, the terms of of this example ar€@n, =2n, =n; =1, a, = a; =

the amplitude expansion are known to be nonsingular tQ0q, = 1.0, and u, = 0. The variation ofy? Re(p))
all orders once the amplitude has been scaled witlo a5 y — 0* is shown in Fig. 1. For each mass ratio
balance the divergence m, i.e., p(r) = y* r(yt) [16]. in Fig. 1, we fixk and varyu,; the chosen values are
The second circumstance arises naturally when the — .75 for m./m; = 0.5 and k = 0.5 for m,/m; =
equilibria under consideration are reflection symmetriqy.1,0.01, and0.001. As m,/m; decreases, the fixed ion
F(()S)(—v)=F(()s)(v). With such a reflection symmetry, result > Re(p;) — —1/4 holds down to smaller and
one can find pure imaginary rootg = —z, (hence real smaller growth rates. Interestingly, the effect of the
eigenvalues) and them(zo) is forced to be real; an mobile ions is to shift the asymptotic sign R&(p;) from
example is provided by a reflection-symmetric two-streammegative to positive. Since the higher order terms in the
instability. In this case, the trapping scaling foicancels amplitude expansion cannot be neglected, this does not
the singularity in p; and moreover can be proved to automatically imply the onset of subcritical bifurcation
yield an amplitude expansion which is nonsingular to allbut may nevertheless be significant.
orders [17]. As in the fixed ion case, this result predicts An ion-acoustic instability is shown in Fig. 2 also
the familiar trapping scaling for the mode electric field for four mass ratios. In this case, = 100«; = 1.0,
|Ec(t)] ~ 2. n, = 0, and there is only a drifting electron population
The third exceptional circumstaneé?’? = 1 requires  with n, = n; = 1. For each mass ratio, we fik and
(gim./m;)*> =1 which corresponds to an electron- vary u,.; the chosen values arke = 1.5,1.2,0.75, and
positron plasma¢; = 1, m; = m,). In this case the 0.4 corresponding ton./m; = 0.5,0.1,0.01, and 0.001,
singularity structure of the expansion is more compli-respectively. Here the effect of decreasing/m; is to

b}

v2+a,-
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1.00

sharedby the wave and the mobile ions with the result
that the saturated wave has a smaller amplitude. We
do not understand this sharing well enough to provide
an intuitive derivation of they®? scaling. In addition,
the fact that the effect disappears when the equilibria

0.75 |

0.50 |
are reflection symmetric suggests there are subtleties not
S oz accounted for by the simple observation that the ions
5 can absorb energy. More work is needed to understand
how the mobile ions manage to cut off the growth of the
0.0 unstable mode at such small amplitudes.
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