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Nonlinear Saturation of an Electrostatic Wave: Mobile Ions Modify Trapping Scaling

John David Crawford and Anandhan Jayaraman
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

(Received 21 June 1996)

The amplitude equation for an unstable electrostatic wave in a multispecies Vlasov plasma has been
derived. The dynamics of the mode amplituderstd is studied using an expansion inr; in particular, in
the limit g ! 01, the singularities in the expansion coefficients are analyzed to predict the asymptotic
dependence of the electric field on the linear growth rateg. GenericallyjEkj , g5y2, asg ! 01, but in
the limit of infinite ion mass or for instabilities in reflection-symmetric systems due to real eigenvalues
the more familiar trapping scalingjEkj , g2 is predicted. [S0031-9007(96)01475-5]

PACS numbers: 52.35.Fp, 52.25.Dg, 52.35.Mw, 52.35.Qz
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The evolution of an unstable electrostatic mode is
fundamental problem in collisionless plasma theory, a
is perhaps the simplest nonlinear problem requiring a s
consistent treatment of the resonant interaction betw
waves and particles. When resonant particles inte
with a large amplitude wave, then much of the behav
can be understood by analyzing the particle motion
if the wave amplitude were constant; this approximati
linearizes the problem [1]. Alternatively, if the wav
amplitude is sufficiently small, then the initial instabilit
can be predicted treated by neglecting the effect of
wave on the particles; this leads to conventional line
Vlasov theory. However, to describe the dynamics
the unstable mode which develops from a small init
amplitude into a final nonlinear state requires an analy
of the self-consistent and nonlinear interaction betwe
the wave and the resonant particles.

From a dynamical systems viewpoint even the simpl
examples of instabilities in a Vlasov plasma have ma
unusual features related to the Hamiltonian characte
the dynamics and the central role played by the neutra
stable continuous spectrum (van Kampen continuum)
the appearance of the unstable modes [2]. These nove
are not present solely in Vlasov theory; entirely analogo
features arise in models of unstable inviscid shear flo
in stability calculations for certain classes of soliton
and in theories of large systems of coupled oscillat
[3–9]. In the better understood setting of dissipati
systems, the nonlinear evolution of the mode amplitud
can be described using an expansion in the amplit
of the unstable modes. Since the growth rates are v
small near onset, nonlinear effects often act to satu
the instability before the amplitudes grow appreciab
for this reason such expansions have proved a powe
tool for studying the nonlinear states emerging from t
bifurcation [10,11].

It has long been hoped that similar methods cou
be applied to the Vlasov equation despite the abse
of dissipation. However, for many years, efforts
construct such expansions, even for the case of a si
unstable mode, have been plagued by the fact
the nonlinear terms involved divergent integrals due
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resonant denominators. Thus the calculations appeare
break down precisely in the regime where the amplitud
of the unstable waves were extremely small. In additio
efforts to regularize the expansion coefficients inevitab
led to theories that predicted scaling behavior for t
saturated amplitudes that contradicted numerical res
[12,13]. More precisely, these theories predicted th
the electric field of the saturated mode would satis
E , p

g asg ! 01, whereas numerical simulations fin
the exponential growth of the mode halted at an amplitu
characterized by the “trapping scaling”E , g2 [14,15].

Recently, we have made progress on this problem
the Vlasov equation; both in the approach to constru
ing the expansions and in the way the singular lim
g ! 01 is treated and interpreted [16]. An amplitud
equation for an unstable mode in a one-dimensional c
lisionless plasma was derived for the dynamics on
two-dimensional unstable manifold of the equilibriumF0.
The essential difference from previous work lies in th
choice of unperturbed state. Earlier theories assum
an equilibrium with a neutrally stable mode and o
tained ill-defined expansion coefficients [12]. This ca
be avoided by taking the weakly unstable equilibrium
the unperturbed state; a choice that naturally leads
to work with the unstable manifold. The mode eige
valuel  g 2 iv can be complex (beam-plasma) or re
(two-stream); in either case the equations for the am
tudeAstd  rstd e2iustd,

Ùr gr 1 a1r3 1 a2r5 1 O sr7d, (1)

Ùu v 1 a0
1r2 1 a0

2r4 1 O sr6d, (2)

lead to a one-dimensional problem forr because the
spatial homogeneity of the equilibrium decouples t
phase dynamics. Asg ! 01, the expansion coefficients
diverge,

aj , a0
j ,

1
g4j21 , (3)

but these divergences can be removed toall orders in
the expansion by rescaling the mode amplitude:rstd ;
g2 rsgtd. In this way one obtains asymptotic equation
for rstd that are well behaved asg ! 01, and moreover
© 1996 The American Physical Society 3549
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through Poisson’s equation this rescaling implies that t
electric field exhibits the trapping scaling. These initia
results were obtained for a plasma of mobile electro
with infinitely massive ions providing a fixed neutralizing
background; consequently they contain no informatio
regarding unstable ion-acoustic modes, for example.

In order to study the effects of ion dynamics, we hav
generalized the analysis to treat a single unstable el
trostatic mode in amultispeciesone-dimensional plasma.
This changes the problem in a qualitative way: now
g ! 01, the single particle dynamics and collective mo
tions of the ions occur on a fast time scale relative to1yg.
We calculate explicit expressions for the leading nonline
coefficientsa1 and a0

1; in addition, we have determined
the dominant singularities in the amplitude expansion
all orders. The results show a qualitatively different sin
gularity structure from the limiting model (3) with fixed
ions, and provide new predictions for the scaling of no
linearly saturated modes.

The theory is described for the simplest examp
of a neutral plasma with two speciesss  e, id which
we refer to as “electrons” and “ions,” although th
results apply equally to collisionless electron-positro
plasmas. Letns  NsyL denote the average specie
density in a one-dimensional plasma of lengthL, and
eqs denotes the charge per particle of speciess. In
convenient dimensionless variables, the Vlasov-Poiss
system becomes

≠tF
ssd 1 y≠xFssd 1 kssdE ≠yFssd  0,

≠xE 
X

s

Z `

2`
dy Fssd, (4)

wherekssd ; sqsmeymsd. We assume periodic boundary
conditions and adopt the normalization

R
dx

R
dy Fssd 

qsnsLyne; note thatFssd is negative for electrons and pos
itive for ions. Given a spatially homogeneous equilibrium
F

ssd
0 syd, this system determines an evolution equation f

fssdsx, y, td ; Fssdsx, y, td 2 F
ssd
0 syd: ≠tfssd  L fssd 1

N s fssdd where L fssd  2y≠xfssd 2 kssdE ≠yF
ssd
0 and

N s fssdd  2kssdE ≠yfssd.
An unstable mode exists if the dielectric function

ekszd ; 1 2
1
k2

Z `

2`
dy

P
s kssd≠yF

ssd
0 syd

y 2 z
,

sIm z . 0d
(5)

has a rootz0  yp 1 igyk in the upper half planesg .

0d. The root determines an eigenvaluel  2ikz0 for L

with a two-component eigenvector

C  eikx

√
c sedsyd
c sidsyd

!
. (6)

We assume that there is a single such mode and tha
corresponds to a simple root ofekszd, i.e., e

0
ksz0d fi 0.

The eigenvaluel can be real or complex depending o
the equilibrium; the ion-acoustic instability correspond
to a complex eigenvalue.
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The amplitude of the unstable mode is the coefficie
of C in the expansion off

fsx, y, td  fAstdCsx, yd 1 c.c.g 1 Ssx, y, td; (7)

here f denotes the two-component fieldf ; sfsed, fsidd
and represents the full nonlinear solution. This deco
position allows the dynamics of the mode amplitudeAstd
and the remaining modesSsx, y, td to be separated

ÙA  l A 1 sssC̃, N sfdddd, (8)

≠tS  L S 1 N sfd 2 fsssC̃, N sfdddd C 1 c.c.g, (9)

using an inner product defined for two-compone
fields B  sBsed, Bsidd and D  sDsed, Dsidd by sB, Dd ;R

dx
R

dy fBsedsx, ydpDsedsx, yd 1 Bsidsx, ydpDsidsx, ydg,
and the adjoint eigenfunctioñC for lp. In (8) and (9)
the linear terms are decoupled, but nonlinear couplin
betweenÙA and≠tS remain.

The amplitude equation forA follows when we express
the time dependence ofS in terms of A: Ssx, y, td 
Hfx, y, Astd, Apstdg. As we have discussed elsewher
this step can be visualized as a restriction of the init
condition to the two-dimensional unstable manifold o
the equilibrium [16]. Consistency between the tim
dependence ofS  H and the evolution ofS described
by (8) and (9) requires thatHfx, y, Astd, Apstdg satisfy

f ÙA ≠AH 1 ÙAp ≠Ap Hgjffu  L H 1 N sfud

2 fsssC̃, N sfudddd C 1 sssC̃, N sfuddddp Cpg, (10)

wherefusx, yd  fACsx, yd 1 c.c.g 1 Hsx, y, A, Apd. For
solutions of this form, the dynamics ofAstd (8) yields an
autonomous equation forA,

ÙA  l A 1 sssC̃, N sfudddd, (11)

provided H can be determined from (10). The homo
geneity of the equilibriumF0 forces this amplitude
equation to have a simple form:ÙA  A psjAj2d where
psjAj2d must still be determined. In polar variables
A  re2iu , the system (11) separates

Ùr  r Re fpsr2dg, Ùu  2Im fpsr2dg, (12)

yielding a one-dimensional flow forrstd; the essential
problem is to studypsr2d.

Our conclusions regarding the evolution of the wave a
based on an analysis of the amplitude expansion forp,

psr2d 
X̀
j0

pj r2j , (13)

and similar expansions forHsx, y, A, Apd. By substitut-
ing ÙA  A psr2d into (11) we obtain one set of rela
tions between the coefficients ofp andH: A

P
j pj r2j 

l A 1 sssC̃, N sfudddd; the defining equation (10) forH pro-
vides a second set of relations. The expansion coefficie
are calculated by solving these coupled relations rec
sively; full details of this calculation and our analysis o
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the resulting recursion relations will be published els
where [17].

The first coefficientp0 is simply the linear eigenvalue
l. Information about the nonlinear evolution is provide
by the higher order coefficients; in particular, the firs
nonlinear term is given by

p1 
1

g4

"
ksids1 2 ksid2d Imsssasz0dddd

4ke
0
ksz0d

2 g

√
1
4

1
ksids1 2 ksid2da0sz0d

4k2e
0
ksz0d

!
1 O sg2d

#
, (14)

wherea0szd is the derivative ofaszd ;
R

dy ≠yF
sid
0 ysy 2

zd. If

ksids1 2 ksid2d Imsssasz0dddd fi 0 , (15)

then the first term in (14) is nonzero and, in the lim
of weak instabilityg ! 01, there is ag24 singularity
in p1. When (15) holds, the trapping scaling introduce
previously forr no longer removes the singularity inp1,
and a new scalingrstd  g5y2 rsgtd is required to obtain
a nonsingular leading order term.

Beyond this leading order calculation, we have prove
that the coefficients in (13) have the asymptotic behav
pj , g2s5j21d to all ordersj $ 1. This general result
implies that when Eqs. (12) are rewritten in the rescal
amplitude r the singularities will be canceled toall
orders inr [17]. Thus given the generic condition (15
the theory predicts the asymptotic scaling for the mo
electric field isjEkj , g5y2 asg ! 01.

Our prediction must be reexamined if the genericity co
dition (15) fails and the leading term inp1 vanishes. The
three factors in (15) indicate three exceptional circum
stances when this can happen:ksid  0, Imsssasz0dddd  0, or
ksid2  1. The first circumstance corresponds to the lim
of fixed ions,meymi ! 0, and the cubic term (14) reduce
to our previous result (3). With fixed ions, the terms o
the amplitude expansion are known to be nonsingular
all orders once the amplitude has been scaled withg to
balance the divergence inp1, i.e.,rstd  g2 rsgtd [16].

The second circumstance arises naturally when t
equilibria under consideration are reflection symmetr
F

ssd
0 s2yd  F

ssd
0 syd. With such a reflection symmetry,

one can find pure imaginary rootszp
0  2z0 (hence real

eigenvalues) and thenasz0d is forced to be real; an
example is provided by a reflection-symmetric two-strea
instability. In this case, the trapping scaling forr cancels
the singularity in p1 and moreover can be proved to
yield an amplitude expansion which is nonsingular to a
orders [17]. As in the fixed ion case, this result predic
the familiar trapping scaling for the mode electric fiel
jEkstdj , g2.

The third exceptional circumstanceksid2  1 requires
sqimeymid2  1 which corresponds to an electron
positron plasma (qi  1, mi  me). In this case the
singularity structure of the expansion is more comp
e-
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cated. The cubic coefficient has ag23 singularity which
suggests trapping scaling forr, but the divergence of fifth
order coefficient turns out to bep2 , g28 which is not
removed by trapping scaling [17]. This fifth order singu
larity is canceled if we setrstd  g9y4 rsgtd. However,
inspection of the higher order terms in the expansio
shows the divergence structure ofpj , g2s5j23d, and
canceling these singularities to all orders again requir
the generic scalingrstd  g5y2 rsgtd even though to any
finite orderpj a smaller exponent would suffice [17].

With the notable exception of this third example, ou
conclusions are easily summarized: the scaling requir
to obtain a nonsingular expansion is correctly predicte
by the divergence found in the cubic coefficientp1.
Generically, this singularity dictates a scaling byg5y2, but
this is replaced byg2 in the limit of infinite ion inertia
or for instabilities in reflection-symmetric systems due t
real eigenvalues. In the generic case we can estim
the range of growth rates where the newg5y2 scaling
is visible by determining the range ing where theg24

divergence dominatesp1. In general, this will depend on
the specific parameters of the equilibrium, and we giv
two illustrative examples: an unstable plasma wave drive
by an electron beam and an ion-acoustic instability. F
simplicity, we have evaluated the dispersion relation an
the cubic coefficient using Lorentzian distributions for th
two species,

F
sed
0 syd 

2ae npyp

sy 2 ued2 1 a2
e

2
ab nbyp

sy 2 ubd2 1 a
2
b

,

F
sid
0 syd 

aiyp

y2 1 a
2
i

,
(16)

with np 1 nb  ni  1.
A plasma wave instability is calculated for an equa

density cold beam with four mass ratios; the paramete
of this example are2np  2nb  ni  1, ae  ai 
10ab  1.0, and ue  0. The variation ofg3 Resp1d
as g ! 01 is shown in Fig. 1. For each mass ratio
in Fig. 1, we fix k and varyub ; the chosen values are
k  0.75 for meymi  0.5 and k  0.5 for meymi 
0.1, 0.01, and 0.001. As meymi decreases, the fixed ion
result g3 Resp1d ! 21y4 holds down to smaller and
smaller growth rates. Interestingly, the effect of th
mobile ions is to shift the asymptotic sign ofResp1d from
negative to positive. Since the higher order terms in th
amplitude expansion cannot be neglected, this does n
automatically imply the onset of subcritical bifurcation
but may nevertheless be significant.

An ion-acoustic instability is shown in Fig. 2 also
for four mass ratios. In this caseae  100ai  1.0,
nb  0, and there is only a drifting electron population
with np  ni  1. For each mass ratio, we fixk and
vary ue; the chosen values arek  1.5, 1.2, 0.75, and
0.4 corresponding tomeymi  0.5, 0.1, 0.01, and 0.001,
respectively. Here the effect of decreasingmeymi is to
3551
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FIG. 1. Asymptotic behavior ofg3 Resp1d for the beam-
plasma instability; each curve is labeled by mass ratio. T
growth rate g is measured in units of the electron plasm
frequency. The divergence asg ! 01 indicates the regime
predicted to show the generic scalingjEkj , g5y2.

increase the range of the generic scaling as measure
units of the ion plasma frequencyv

2
i  4pe2niymi .

The qualitative result of the scalingjEkj , g5y2 is to
reduce the electric field of the nonlinearly saturated wa
compared to a wave characterized by trapping scali
The fact that the new singularities disappear if the io
inertia becomes infinite strongly indicates that the io
response is key. For smallg, near the resonant velocity
the finite mass ions see a nearly steady, very slow
growing electric field, and they can absorb energy fro
the wave (not possible for fixed ions). The availab
kinetic energy of the drifting electrons is now presumab

FIG. 2. Asymptotic behavior ofg3 Resp1d for an ion-acoustic
instability. The growth rateg is measured in units of the ion
plasma frequency. The divergence asg ! 01, indicates the
regime predicted to show the generic scalingjEkj , g5y2.
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sharedby the wave and the mobile ions with the resul
that the saturated wave has a smaller amplitude. W
do not understand this sharing well enough to provid
an intuitive derivation of theg5y2 scaling. In addition,
the fact that the effect disappears when the equilibri
are reflection symmetric suggests there are subtleties n
accounted for by the simple observation that the ion
can absorb energy. More work is needed to understa
how the mobile ions manage to cut off the growth of the
unstable mode at such small amplitudes.
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