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Viscous Lengths in Hydrodynamic Turbulence are Anomalous Scaling Functions
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(Received 6 May 1996)

It is shown that the idea that scaling behavior in turbulence is limited by one outer lengthL and one
inner lengthh is untenable. Everynth order correlation function of velocity differencesFFF nsR1, R2, . . .d
exhibits its own crossover lengthhn to dissipative behavior as a function ofR1. This depends onn
and on the remaining separationsR2, R3, . . .. One result is that when separations are of the same
orderR, this scales ashnsRd , hsRyLdxn with xn ­ szn 2 zn11 1 z3 2 z2dys2 2 z2d, zn the scaling
exponent of thenth order structure function. We derive an infinite set of scaling relations that bridge
the exponents of correlations of gradient fields to the exponentszn, including the “bridge relation” for
the scaling exponent of dissipation fluctuationsm ­ 2 2 z6. [S0031-9007(96)01435-4]

PACS numbers: 47.27.Gs, 05.40.+ j, 47.27.Jv
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The aim of this Letter is to expose the fact that th
notion of the dissipative length in hydrodynamic tur
bulence is a rich and interesting concept whose co
plexity exceeds the expectations of established mod
and standard theories [1]. Indeed, during a few decad
the thinking about the universal small scale structu
of turbulence was dominated by Kolmogorov’s pictur
of energy cascade through an “inertial interval” whic
is limited on one side by the integral scale of tur
bulence L and on the other side by the Kolmogoro
viscous scaleh ­ sn3yed1y4, where n and e are the
fluid’s kinematic viscosity and the mean energy flux i
the turbulent flow, respectively. During the last decad
there has been a growing concern about the inabil
of Kolmogorov’s theory to cope with the increasing
experimental evidence for multiscaling (or multifracta
behavior of higher order structure functions. Togeth
with the concern about the statistical theory there aro
a realization that the uniqueness of the viscous length
suspicious. Paladin and Vulpiani [2] and also Frisch a
Vergassola [3] used the multifractal model of turbulenc
to assess the characteristic viscous lengths associated
the higher order structure functions of velocity difference

S2nsR1d ­ kjwsr1jr
0
1dj2nl , (1)

S2n11sR1d ­ R̂1 ? kwsr1jr0
1d jwsr1jr0

1dj2nl , (2)

where wsr1jr
0
1, td ; usr0

1, td 2 usr, td and usr, td is the
velocity field of the fluid, R1 ; r0

1 2 r1, and R̂1 ;
R1yR1. In homogeneous and locally isotropic turbulence
SnsRd is a function of the magnitude ofR, and the
viscous length is that value ofR at which the functional
dependence ofSnsRd changes from a nontrivial power law
SnsRd , Rzn to a trivial power law that stems from a
Taylor expansion of the velocity differences,SnsRd , Rn.
The multifractal model leads to a prediction that th
length depends on the ordern. In this Letter we argue that
a proper discussion of crossovers to dissipative behav
requires the analysis of functions richer than structu
functions. Firstly, we state that the fundamental object
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analyze is then-point correlation of velocity differences

FFF nsr1, r0
1 · · · rn, r0

nd ­ kwsr1jr0
1d · · · wsrnjr0

ndl , (3)

which is ann-rank tensor. All the separationsRi ; jr0
i 2

rij andrij ; jri 2 rj j are within the “inertial range.” It
is generally accepted that this correlation function is
homogeneous function of its arguments, i.e.,

FFF nslr1, lr0
1 · · · lr0

nd ­ lzn FFF nsr1, r0
1 · · · r0

nd . (4)

It should be understood that quantities like (1) a
obtained from (3) by fusing some coordinates togeth
(In this case allrij ! 0 and allRi ! R.) In this process
of fusion one crosses the viscous scale, and it is import
to understand how to do this.

Our discussion will not call for anyad hocmodel of
turbulence. It will be based on two solid building blocks
one being the Navier-Stokes equations, and the other
fusion rules that were derived recently. The fusion rul
appear naturally in the analytic theory of Navier-Stoke
turbulence [4–7] and passive scalar turbulent advecti
[7–9], and they determine the analytic structure of th
n-order correlations functions (3) when a group of co
ordinates tend towards each other. The fusion rules w
derived in [7] for systems in which Eq. (4) holds with uni
versal scaling exponents (i.e., the scaling exponents do
depend on the detailed form of the driving of the turbule
flows). The fusion rules address the asymptotic propert
of FFF n when a group (or groups) of coordinates tend t
wards a common coordinate within each group, while a
the other coordinates remain separated by a large dista
R. There are two particular examples of fusion rules th
we will employ in this Letter. The first pertains to the
fusion of one pair of points. When the distance betwe
one pair is small,R1 , r, and the separations between a
the other coordinates are much larger,Ri , R for i fi 1,
then to leading order inryR

Fn ~ SnsRdS2srdyS2sRd . (5)

The second situation pertains to the case in which w
have two groups of fusing coordinates separated by a la
© 1996 The American Physical Society 3541
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distanceR. When there is a group ofp points separated
by a typical distancer1, and a group ofn 2 p points
separated by a typical distancer2 with a large distanceR
between the groups, then

Fn , SnsRdSpsr1dSn2psr2dySpsRdSn2psRd . (6)

These forms hold as long asr, r1, and r2 are in the
inertial range.

The Navier-Stokes equations for an incompressib
velocity fieldusr, td may be written in the form

Ùusr, td 1 P$fusr, td ? =gusr, td ­ n=2usr, td . (7)

Heren is the kinematic viscosity andP$ is the transverse
projector. Given the equation of motion we can take th
time derivative of Eq. (3). We find

ÙFFF n ­
nX

j­1

kwsr1jr
0
1, td · · · Ùwsrjjr

0
j , td · · · wsrnjr0

n, tdl .

Substituting Eq. (7), and considering the stationary sta
in which ≠FFF ny≠t ­ 0, we find the balance equations

DDD nsr1, r0
1; · · · rn, r0

nd ­ JJJ nsr1, r0
1; · · · rn, r0

nd . (8)

The termJJJ n originates from the viscosity term in (7),

JJJ nsr1, r0
1; · · ·rn, r0

nd ­ n

nX
j­1

s=2
j 1 =2

j0d

3 kwsr1jr0
1d · · · wsrjjr0

jd · · · wsrnjr0
ndl . (9)

The termDDD n stems from the nonlinear term, and it need
a bit of algebra to bring to the exact form

D a1a2···an
n sr1, r0

1; · · · rn, r0
nd ­

Z
dr

nX
j­1

Pajbsrd

3kwa1 sr1jr0
1d · · · Lbsrj , r0

j , rd · · · wan
srnjr0

ndl , (10)

Lbsrj , r0
j , rd ;

1
n

nX
k­1

hwgsrj 2 rjrkd=g
j

1 wgsr0
j 2 rjr0

kd=g
j0j

3 wbsrj 2 rjr0
j 2 rd . (11)

We are going to argue now that when all the separatio
Rj are of the same order of magnitudeR, the interaction
term has a very simple evaluation, i.e.,

DDD n , Sn11sRdyR . (12)

To this aim we need to prove that the integral is local i
the sense that it converges in the ultraviolet and in th
infrared.

As the coordinater is being integrated over, the mos
dangerous ultraviolet contribution comes from the regio
of small r. In this region the projection operator can
be evaluated as1yr3. Other coalescence events ofr
with other coordinates contribute less divergent integran
since the projection operator is not becoming singula
When r becomes small, there are two possibilities: (
rj fi rk and (ii) rj ­ rk. In the first case the correlation
function itself is analytic in the regionr ! 0, and we
3542
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can expand it in a Taylor series const1 B ? r 1 · · ·,
whereB is an r-independent vector. The constant ter
is annihilated by the projection operator. The term line
in r vanishes under thedr integration due tor ! 2r
symmetry. The next term which is proportional tor2 is
convergent in the ultraviolet. In the second case we ha
a velocity difference across the lengthr. Accordingly,
we need to use the fusion rule (6), and we learn th
the leading contribution is proportional torz2 . This is
sufficient for convergence in the ultraviolet. We note th
the derivative with respect torj cannot be evaluated as
1yr whenrj ­ rk. Rather, it is evaluated as the invers
of the distance betweenrj and the nearest coordinate i
the correlation function.

To understand the convergence ofDDD n when the
integration variabler becomes very large we conside
the relevant geometry as shown in Fig. 1. There is o
velocity difference across the coordinatesrj 2 r and
r0

j 2 r (which is shown on the right of the figure),n 2 1
velocity differences across coordinates that are all with
a ball of radiusR (at the left of the figure), and one
velocity difference across the large distancer which is
much larger thanR. In the notation of this figure the
leading order contribution for larger is obtained from
the fusion rules (6) for the situation on the right and (
for the geometry on the left. The resulting evaluation f
the leading term isrzn11 sRjyrdz2 sRyrdzn21 . On the face
of it, this term is near dangerous. For any anomalo
scaling the integral converges sincezn11 # zn21 1 z2
due to Hoelder inequalities. This convergence see
slow. However, the situation is, in fact, much safer.
we take into account the precise form of the secon
order structure function in the fusion rules, we find th
the divergence with respect torj translates, in fact, to
≠S

bg
2 sRjdy≠Rjg , which is zero due to incompressibility

The next order term is convergent even for simple (K4
scaling. This completes the proof of locality of (10
The conclusion is that the main contribution to th
integral in (10) comes from the regionr , R. Therefore
the integral can be evaluated by straightforward pow
counting leading to (12). It should be stressed that a m
detailed analysis demonstrates that when the separat
between the coordinates that do not involve veloc

FIG. 1. Typical geometry withn 2 1 velocity differences in
a ball of radiusR on the left separated by a large distanc
r ¿ R from a pair of points on the right.
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differences (i.e., separations likerjk but not Rj) go to
zero, the evaluation does not change.

The evaluation of the quantityJJJ n is more straightfor-
ward. When all the separationsRj and rij are of the
same orderR, the correlator in (9) is evaluated simply
as SnsRd. The Laplacian is then of the order of1yR2.
We note that whenn ! 0 (which is the limit of in-
finite Reynolds number Re), this term becomes neg
gible compared toDn. The ratio JnyDn is evaluated
as nSnsRdyRSn11sRd, which for fixed R vanishes in the
limit n ! 0. Thus the “balance equation” becomes aho-
mogeneousintegro-differential equationDDD n ­ 0 which
may have scale-invariant solutions with anomalous sc
ing exponentszn11 fi sn 1 1dy3. It should be stressed
that the evaluation (12) remains correct for every term
DDD n, but various terms cancel to give zero in the hom
geneous equation,provided that the scaling exponentzn

is chosen correctly.To make this important point clear
we exemplify it with the simple casen ­ 2 for which
Dn can be greatly simplified. Consider the scalar o
ject F2sr1, r0

1, r2, r0
2d ­ kwsr1jr

0
1d ? wsr2jr

0
2dl. The terms

in the scalar balance equation for this case are exactly

D2sr1, r0
1, r2, r0

2d ­ dfS3sr120d 2 S3sr12dgy2dr1

1 dfS3sr102d 2 S3sr1020dgy2dr 0
1 , (13)

J2sr1, r0
1, r2, r0

2d ­ nh=2
1fS2sr120d 2 S2sr12dg

1 =2
10 fS2sr102d 2 S2sr1020dgj . (14)

When all the separations are of the order ofR we can see
explicitly that J2 , nS2sRdyR2 which is much smaller
than each term inD2. Considering the scale invarian
solution S3sRd ­ ARz3 , whereA is a dimensional coeffi-
cient, we see that

D2sr1, r0
1, r2, r0

2d ­
z3A

2

3

h
r

z321
120 2 r

z321
12 1 r

z321
102 2 r

z321
1020

i
.

Obviously, the solution forD2 ­ 0 requires the unique
choice z3 ­ 1 which is the known exponent forS3 [1].
The coefficientA is now determined ase which is the
mean energy dissipation per unit mass and unit time.

There is a crossover from the scale invariant sol
tion of the homogeneous equation to dissipative solutio
when J2 becomes comparable to any of the terms
D2. This happens when at least one of the separatio
appearing in (14) becomes small enough. Denoting t
smallest separation asrm we evaluateJ2 , nS2srmdyr2

m.
From this we can estimate, using the balance equati
S2srmd , fS3sRdynRgr2

m , er2
myn. In the inertial range

we haveS2srd , serd2y3sryLdz222y3. The viscous scale
h2 for the second-order structure function is then dete
mined from finding where these two expressions are
the same order of magnitude, i.e.,

eh2
2yn ­ seh2d2y3sryLdz222y3. (15)
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Using the outer velocity scaleUL we estimatee , U3
LyL

and end up with the result

h2 , LRe21ys22z2d. (16)

We conjecture that a similar mechanism operates in t
general case ofDDD n. (In fact, we expect the mechanism
to operate for anyn . 3; n ­ 3 is a special case that will
not be discussed explicitly.) As long as all the separatio
are in the inertial intervalJJJ n is negligible. When one
separation, e.g.,r12 diminishes towards zero, and all the
other separations are of the order ofR, the internal
cancellations leading to the homogeneous equationDDD n ­
0 disappear andDDD n is evaluated as in (12). The termJJJ n

is now dominated by one contribution that can be writte
in short-hand notation asn=

2
1Fnsr12, hRjd. We can solve

for Fnsr12, hRjd in this limit:

Fnsr12, hRjd ø r2
12Sn11sRdynR . (17)

On the other hand, we have, from the fusion rule (6
the form of the same quantity whenr12 is still in the
inertial range, i.e.,Fnsr12, hRjd ø S2sr12dSnsRdyS2sRd.
To estimate the viscous scalehn we find when these two
evaluations are of the same order. The answer forn fi 3
is

hnsRd ­ h2

µ
R
L

∂xn

, xn ­
zn 1 z3 2 zn11 2 z2

2 2 z2
.

(18)
We note that the Hoelder inequalities guarantee thatxn .

0 and increases withn. We see that the viscous “length”
is actually an anomalous scaling function.

Next we show that in the same spirit we can deriv
important (and exact) scaling relations between the e
ponentszn of the structure functions and exponents in
volving correlations of the dissipation field. We conside
correlations of the type

KKK snd
e ; kesx1dwsr1jr0

1d · · · wsrnjr0
ndl ~ R2m

s1d
n , (19)

KKK snd
ee ; kesx1desx2dwsr1jr0

1d · · · wsrnjr0
ndl ~ R2m

s2d
n ,

(20)
where R is a typical separation between any pair an
esrd ; nj=usrdj2, and we are interested in the scalin
relations between the exponentsmn and the exponentszn.
Note thatm

s2d
0 in this notation is the well-studied [10,11]

exponent of dissipation fluctuation, which is denoted
m. This relation is almost at hand form

s1d
n . We see this

by writing

KKK snd
e ­ n lim

r12!0
=1=2FFF n12sr12, hRjd . (21)

Using the result (17) we find immediately

ms1d
n ­ 1 2 zn13 . (22)

The scaling relations satisfied bym
s2d
n require considera-

tions of the second time derivative of the correlation (3)
3543
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F̈FF n ­
nX

i,j­1

kwsr1jr0
1, td · · · Ùwsri jr0

i , td · · · Ùwsrjjr0
j , td · · · wsrnjr0

n, tdl . (23)
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Using the Navier-Stokes equations for the time derivativ
we derive a new balance equationDDD

s2d
n 1 BBB

s2d
n ­ JJJ

s2d
n

where, using the definition (11),

DDD s2d
n ­

Z
drdr0

nX
i,j­1

PsrdPsr0d

3kwsr1jr0
1d · · · Lsri, r0

i , rd · · · Lsrj, r0
j , r0d · · · wsrnjr0

ndl .

(24)

Using the fusion rules and following steps similar to tho
described above, we can prove that the integrals over
and r0 converge. Accordingly, when all the separation
are of the order ofR, every term inD

s2d
n is evaluated as

Sn12sRdyR2. The termJJJ
s2d
n takes on the form

JJJ s2d
n ­ n2

nX
i,j­1

s=2
i 1 =2

i0 d s=2
j 1 =2

j 0d

3 kwsr1jr0
1d · · · wsrijr0

id · · · wsrjjr0
jd · · · wsrnjr0

ndl .

(25)

As before, when all the separation in this quantity a
of the order ofR, the Laplacian operators introduce
factor of 1yR2 and the evaluation of this quantity is
JJJ

s2d
n , n2SnsRdyR4. Clearly this is negligible compared

to typical terms inD
s2d
n . The quantityBBB

s2d
n contains a

cross contribution with one Laplacian operator and o
nonlinear term with a projection operator. The integr
is again local, and one can show that the evaluation
BBB

s2d
n , nSn11sRdyR3, which is also negligible compared

to typical terms inD
s2d
n .

Now we consider the fusion of two pairs of coordinat
e.g.,r12 ! 0 and r34 ! 0. As before, the cancellations
in DDD

s2d
n are eliminated and the evaluation of a typic

term becomes the evaluation of the quantity. The oth
two terms in the balance equation also become of
same order because the Laplacian operators=

2
1 and=

2
3 are

evaluated asr22
12 andr22

34 , respectively. As before we can
consider the resulting balance equation as a differen
equation forFnsr12, r34, hRjd. The leading term in this
equation is

4n2=2
1=2

2Fnsr12, r34, hRjd ø BBB s2d
n 1 DDD s2d

n

, Sn12sRdyR2.

The solution is

Fnsr12, r34, hRjd , r2
12r2

34Sn12sRdyn2R2. (26)

Finally, we can write the quantitiesKKK snd
ee in terms of the

correlation function as

KKK snd
ee ­ n2 lim

r12,r34!0
=1=2=3=4FFF n14sr12, r34, hRjd . (27)

Using (26) here we end up with the evaluation
es

e
r
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re

e
l
is

,

l
er
he

ial

KKK snd
ee , Sn16yR2 ~ R2m

s2d
n , ms2d

n ­ 2 2 zn16 . (28)

For the standard exponentm ­ m
s2d
0 we choosen ­ 0 and

obtain the phenomenologically proposed “bridge relatio
m ­ 2 2 z6. To our best knowledge this is the first soli
derivation of this scaling relation. In general, if we hav
p dissipation fields correlated withn velocity differences
the scaling exponent can be found by consideringp time
derivatives of (3), with the final result

mspd
n ­ p 2 zn13p . (29)

We see that Eqs. (22), (28), and (29) can be guessed if
assert thatfor the sake of scaling purposesthe dissipation
field esrd can be swapped in the correlation functio
with w3sr1jr

0
1dyR1, whereR1 is the characteristic scale

This reminds one of the Kolmogorov refined similarit
hypothesis. We should stress that (i) our result does n
depend on this uncontrolled hypothesis, and (ii) it do
not imply the correctness of this hypothesis. Our res
is implied by the refined similarity hypothesis, but no
vice versa.

In summary, we provided an infinite set of bridge rela
tions that show that the scaling exponents of correlatio
of gradient fields can be expressed in terms of the setzn

characterizing the structure functions. Our results follo
from the Navier-Stokes equations, from the fusion rule
and from the conjecture that in fusing two coordinates
the balance equation for anyn removes the cancellation
as has been demonstrated explicitly forn ­ 2.

This work was supported in part by the German Isra
Foundation, the Minerva Center for Nonlinear Physic
and the Naftali and Anna Backenroth-Bronicki Fund fo
Research in Chaos and Complexity.

[1] U. Frisch,Turbulence(Cambridge, New York, 1995).
[2] G. Paladin and A. Vulpiani, Phys. Rev. A35, 1971 (1987).
[3] U. Frisch and M. Vergassola, Europhys. Lett.14, 439

(1991).
[4] V. V. Lebedev and V. S. L’vov, Pis’ma Zh. Eksp. Teor

Fiz. 59, 546 (1994) [JETP59, 577 (1994)].
[5] V. S. L’vov and I. Procaccia, Phys. Rev. E52, 3858

(1995).
[6] V. S. L’vov and I. Procaccia, Phys. Rev. E53, 3468

(1996).
[7] V. S. L’vov and I. Procaccia, Phys. Rev. Lett.76, 2896

(1996).
[8] A. L. Fairhall, O. Gat, V. S. L’vov, and I. Procaccia, Phys

Rev. E53, 3518 (1996).
[9] M. Chertkov, G. Falkovich, I. Kolokolov, and V. Lebedev

Phys. Rev. E52, 4924 (1995).
[10] A. A. Praskovsky, Phys. Fluids A4, 2589 (1992).
[11] K. R. Sreenivasan and K. R. Kailasnath, Phys. Fluids A5,

512 (1993).


