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Viscous Lengths in Hydrodynamic Turbulence are Anomalous Scaling Functions
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It is shown that the idea that scaling behavior in turbulence is limited by one outer |Ergytd one
inner lengthy is untenable. Everyth order correlation function of velocity differencgs, (R, R,,...)
exhibits its own crossover length, to dissipative behavior as a function 8{. This depends om
and on the remaining separatio®s, R3,.... One result is that when separations are of the same
orderR, this scales a$;,,(R) ~ n(R/L) with x,, = ({, — {1 + & — 6)/(2 — &), £, the scaling
exponent of theith order structure function. We derive an infinite set of scaling relations that bridge
the exponents of correlations of gradient fields to the expongntmcluding the “bridge relation” for
the scaling exponent of dissipation fluctuatiqus= 2 — ;. [S0031-9007(96)01435-4]

PACS numbers: 47.27.Gs, 05.40.+j, 47.27.Jv

The aim of this Letter is to expose the fact that theanalyze is the:-point correlation of velocity differences
notion of the dissipative length in hydrodynamic tur- / N o / /
bulence is a rich and interesting concept whose com- Fulrvoryornr) = wrlr) - wiralr)). - @)
plexity exceeds the expectations of established modelshich is anz-rank tensor. All the separatiols = |r; —
and standard theories [1]. Indeed, during a few decades| andr;; = |r; — r;| are within the “inertial range.” It
the thinking about the universal small scale structurés generally accepted that this correlation function is a
of turbulence was dominated by Kolmogorov's picturehomogeneous function of its arguments, i.e.,
of energy cascade through an “inertial interval” which / N — v / !
is Iimitegg on one side gy the integral scale of tur- FnAr Aryeedry) = A Fulrryeen). (4)
bulence L and on the other side by the Kolmogorov It should be understood that quantities like (1) are
viscous scalenp = (»3/€)'/*, where » and € are the obtained from (3) by fusing some coordinates together.
fluid’s kinematic viscosity and the mean energy flux in(In this case alr;; — 0 and allR; — R.) In this process
the turbulent flow, respectively. During the last decadeof fusion one crosses the viscous scale, and it is important
there has been a growing concern about the inabilitfo understand how to do this.
of Kolmogorov's theory to cope with the increasing Our discussion will not call for anyad hocmodel of
experimental evidence for multiscaling (or multifractal) turbulence. It will be based on two solid building blocks,
behavior of higher order structure functions. Togetheione being the Navier-Stokes equations, and the other the
with the concern about the statistical theory there aros#ision rules that were derived recently. The fusion rules
a realization that the uniqueness of the viscous length i8ppear naturally in the analytic theory of Navier-Stokes
suspicious. Paladin and Vulpiani [2] and also Frisch andurbulence [4—7] and passive scalar turbulent advection
Vergassola [3] used the multifractal model of turbulencel7—9], and they determine the analytic structure of the
to assess the characteristic viscous lengths associated witkorder correlations functions (3) when a group of co-
the higher order structure functions of velocity differences:j)rdina(tjes t[er]u? towards each (r)]thﬁr. sze)fﬁslign rulﬁs were

erived in [7] for systems in which Eq. (4) holds with uni-
San(R1) = (w(rilr"), (1) versal scaling exponents (i.e., the scaling exponents do not
5 / T depend on the detailed form of the driving of the turbulent
San1(R1) = Ry = wlrlr) wlmlr)I™), (@) flows). The fusion rules address the asymptotic properties
where w(r|ri, 1) = u(ry,t) — u(r,t) and u(r,t) is the  of F, when a group (or groups) of coordinates tend to-
velocity field of the fluid, R, =r; — r;, and R, =  wards a common coordinate within each group, while all
R,/R;. In homogeneous and locally isotropic turbulencesthe other coordinates remain separated by a large distance
S.(R) is a function of the magnitude oR, and the R. There are two particular examples of fusion rules that
viscous length is that value @& at which the functional we will employ in this Letter. The first pertains to the
dependence df, (R) changes from a nontrivial power law fusion of one pair of points. When the distance between
S,(R) ~ R% to a trivial power law that stems from a one pair is smallR, ~ p, and the separations between all
Taylor expansion of the velocity difference$ (R) ~ R". the other coordinates are much largRr,~ R for i # 1,
The multifractal model leads to a prediction that thisthen to leading order ip/R
length depends on the order In this Letter we argue that
a proper discussion of crossovers to dissipative behavior T Su(R)S2(p)/S2(R). )
requires the analysis of functions richer than structuré’he second situation pertains to the case in which we
functions. Firstly, we state that the fundamental object tdhave two groups of fusing coordinates separated by a large
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distanceR. When there is a group gf points separated can expand it in a Taylor series constB - r + ---,
by a typical distancep;, and a group oft — p points where B is anr-independent vector. The constant term
separated by a typical distanpe with a large distanc&  is annihilated by the projection operator. The term linear
between the groups, then in r vanishes under thdr integration due tar —>6—r
_ symmetry. The next term which is proportional 6 is
Fo = SuRISp(p1)Sn=p(p2)/ S, (R)Su—p(R) . (B) convergent in the ultraviolet. In the second case we have
These forms hold as long g8, pi, and p, are in the 3 velocity difference across the length Accordingly,

inertial range. _ _ ~we need to use the fusion rule (6), and we learn that
The Navier-Stokes equations for an incompressiblghe leading contribution is proportional t&. This is
velocity fieldu(r, ) may be written in the form sufficient for convergence in the ultraviolet. We note that

u(r,t) + Plu(r,?) - Vu(r,1) = vVu(r,t). (7) the derivative with respect to; cannot be evaluated as

1/r whenr; = r;. Rather, it is evaluated as the inverse

of the distance betweety and the nearest coordinate in

&he correlation function.

. To understand the convergence @, when the
o , . / , integration variabler becomes very large we consider
Fn= Zl<w(r1|r1,t)~-~w(rj|rj,t)---w(r,,lrn,t)>- the relevant geometry as shown in Fig. 1. There is one

” velocity difference across the coordinates — r and
Substituting Eq. (7), and considering the stationary statej’. — r (which is shown on the right of the figure), — 1
in which 9 F,/dt = 0, we find the balance equations  velocity differences across coordinates that are all within

Here v is the kinematic viscosity anH is the transverse
projector. Given the equation of motion we can take th
time derivative of Eq. (3). We find

D,rirly o rarl) = Julrirlsrarl). (8 @ baI_I of .radiusR (at the left of the figure), a'nd one
o , ) ) velocity difference across the large distancevhich is
The term J, originates from the viscosity term in (7), much larger thankR. In the notation of this figure the
d leading order contribution for large is obtained from
/. Iy — 2 2
Julrirys-ra,r,) = v Z(Vj + Vi) the fusion rules (6) for the situation on the right and (5)

= for the geometry on the left. The resulting evaluation for

X wlrlry) - w(rjlry) - wlralr,)) . (9) e leading term is-%1(R;/r)®(R/r)%1. On the face
The termD ,, stems from the nonlinear term, and it needsof it, this term is near dangerous. For any anomalous

a bit of algebra to bring to the exact form scaling the integral converges sinég+; = (-1 + &
n due to Hoelder inequalities. This convergence seems
Do n(py pls e Ty, 1)) = ] dr Z Po,p(r) slow. However, the situation is, in fact, much safer. If
j=1 we take into account the precise form of the second-

X(wa, (r1lr)) -+ LE(rj,r},r) -~ wq, (ralr))), (10)  order structure function in the fusion rules, we find that
the divergence with respect g translates, in fact, to

LP(rj.r}.r) = 1 D> {wy ;= rlr)V] any(Rj)/aRjy, which is zero due to incompressibility.
n = The next order term is convergent even for simple (K41)
+ wy(r; — rlr)V}} scaling. This completes the proof of locality of (10).

X wa(r; — rlrl — r) (11) The conclusion is that the main contribution to the
B J ) integral in (10) comes from the region~ R. Therefore
We are going to argue now that when all the separationthe integral can be evaluated by straightforward power
R; are of the same order of magnitudte the interaction counting leading to (12). It should be stressed that a more
term has a very simple evaluation, i.e., detailed analysis demonstrates that when the separations
D, ~ S,+1(R)/R. (12) between the coordinates that do not involve velocity

To this aim we need to prove that the integral is local in
the sense that it converges in the ultraviolet and in the
infrared.

As the coordinate: is being integrated over, the most
dangerous ultraviolet contribution comes from the region
of small . In this region the projection operator can
be evaluated ad/r3. Other coalescence events of
with other coordinates contribute less divergent integrands
since the projection operator is not becoming singular.
When r becomes small, there are two possibilities: (')FIG. 1. Typical geometry with — 1 velocity differences in

rj # ry and (ii)r; = rr. In the first case the correlation a pall of radiusk on the left separated by a large distance
function itself is analytic in the regiom — 0, and we r > R from a pair of points on the right.

r>>R
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differences (i.e., separations likg, but not R;) go to  Using the outer velocity scalE; we estimate ~ Ui/L
zero, the evaluation does not change. and end up with the result

The evaluation of the quantity,, is more straightfor- ~ [Re /@) (16)
ward. When all the separation®; and r;; are of the 2 ’
same orderR, the correlator in (9) is evaluated simply  We conjecture that a similar mechanism operates in the
as S,(R). The Laplacian is then of the order #fR>.  general case ofD,. (In fact, we expect the mechanism
We note that whernw — 0 (which is the limit of in- to operate for any > 3; n = 3 is a special case that will
finite Reynolds number Re), this term becomes neglinot be discussed explicitly.) As long as all the separations
gible compared taD,. The ratio J,/D, is evaluated are in the inertial intervalJ, is negligible. When one
asvS,(R)/RS,+1(R), which for fixedR vanishes in the separation, e.gs;, diminishes towards zero, and all the
limit » — 0. Thus the “balance equation” becomeba other separations are of the order Bf the internal
mogeneousntegro-differential equatiorfD, = 0 which  cancellations leading to the homogeneous equdiign=
may have scale-invariant solutions with anomalous scald disappear and , is evaluated as in (12). The tergh,
ing exponents,+1 # (n + 1)/3. It should be stressed is nhow dominated by one contrlbutlon that can be written
that the evaluation (12) remains correct for every term irin short-hand notation asV3F,(r»,{R}). We can solve
D, but various terms cancel to give zero in the homo-or F,(r2,{R}) in this limit:
geneous equatiomrovided that the scaling exponetit 2
is chosen correctly. To make this important point clear Fu(r AR} = rizSus1(R)/vR (17)
we exemplify it with the simple case = 2 for which  On the other hand, we have, from the fusion rule (6),
D, can be greatly simplified. Consider the scalar obthe form of the same quantity when, is still in the
ject Folri,ri,rarh) = w(rilrl) - wralry)). The terms inertial range, i.e.,F,(r2,{R}) = S2(r12)S,(R)/S2(R).
in the scalar balance equation for this case are exactly To estimate the viscous scalg we find when these two
Dolri, P12 rh) = d[Ss(r2) — S3(r2)]/2dr ﬁsvaluatlons are of the same order. The answerfer 3
+ d[S3(r12) — S3(ri2)]/2dry, (13) <R >xu Lt G-~ b

) n

nn(R) =72 2 —
Jo(ri, 1), ra,rh) = v{Vi[Sa(riz) — Sa(r12)] &
(18)

+ 2/ i - 91 .

) VilS:lrie) = Sl (14) We note that the Hoelder inequalities guarantee that
When all the separations are of the ordeRofve can see () and increases with. We see that the viscous “length”
explicitly that J, ~ »S>(R)/R? which is much smaller g actually an anomalous scaling function.
than each term inD,. Considering the scale invariant  Next we show that in the same spirit we can derive

solution S5(R) = AR®, whereA is a dimensional coeffi- important (and exact) scaling relations between the ex-

L

cient, we see that ponents{, of the structure functions and exponents in-
, , GA volving correlations of the dissipation field. We consider
Dy(ri,ry,ra,r) = == correlations of the type
_ _ _ W
)=l e =] K = (el wlrlr)y = RTE O (19)
Obviously, the solution forD, = 0 requires the unique KW = (e(x)e@)wrilr]) - - wr,lr))) R

choice {3 = 1 which is the known exponent fao§; [1].
The coefficientA is now determined ag which is the here R i woical tion bet . q
mean energy dissipation per unit mass and unit time. w erE IS a gp'ca Separation between any pair an
There is a crossover from the scale invariant solu€() = #IVu(r)*, and we are interested in the scaling
tion of the homogeneous equation to dissipative solutionEelations betw.een .the exppnems and the exp-onentg.
when J2 becomes Comparable to any of the terms |nN0te that,u in this notation is the well-studied [lO 11]
D,. This happens when at least one of the separatior@xponent of dissipation fluctuation, WhICh is denoted as
appearing in (14) becomes small enough. Denotmg the.. This relation is almost at hand f(pxn . We see this

(20)

smallest separation ag, we evaluate], ~ vS,(r,)/r2. by writing
From this we can estimate, using the balance equation, n) _
S>(rm) ~ [S3(R)/vR]r? ~ €r}/v. In the inertial range X V,IIIZT ViVeFura(ria. AR (21)

we haves(r) ~ (’EV)Z/%(’/L)g2 */3. The viscous scale Using the result (17) we find immediately
1, for the second-order structure function is then deter- (1)
mined from finding where these two expressions are of My =1 = 3. (22)

the same order of magnitude, i.e., The scaling relations satisfied b.yEzZ) require considera-

eni/v = (en)?3(r/L)% 53, (15) tions of the second time derivative of the correlation (3):
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Fo= X 0lrrlr}, 00 lrilrly )<l 0) - wle e 1) (23)

i,j=1

Using the Navier-Stokes equations for the time derivatives KD ~ Spie/REx RM, 1@ =2 = 6. (28)
. sy (2) 2 _ 72
we derive a new balance equatidd,” + B» = Jx For the standard exponeat= M§)2> we choose: = 0 and

where, using the definition (11), obtain the phenomenologically proposed “bridge relation”
) _ ;< , u =2 — . To our best knowledge this is the first solid
D, f drdr i;::lP(r)P(r ) derivation of this scaling relation. In general, if we have
N AN N ) p dissipation fields correlated with velocity differences
X)Ly rior) - L, rp,r) - winalr)). the scaling exponent can be found by considepngme
(24)  derivatives of (3), with the final result

Using the fusion rules and following steps similar to those pP = p = Lissp. (29)

described above, we can prove that the integrals ever We see that Egs. (22), (28), and (29) can be guessed if we
andr’ converge. Accordingly, when all the separationsassert thafor the sake of scaling purposése dissipation
are of the order oR, every term inDY” is evaluated as field e(r) can be swapped in the correlation function
S,+2(R)/R2. The termJ% takes on the form with w3(ri|r])/Ri, whereR, is the characteristic scale.
n This reminds one of the Kolmogorov refined similarity
TP =223 (V2 + V) (V2 + V) hypothesis We should stress that (i) our result does not
ij=1 depend on this uncontrolled hypothesis, and (ii) it does
X Aw(rilry) - -w(rilr]) - -w(r;lr}) - -w(r,lry)) . not imply the correctness of this hypothesis. Our result
(25) i; implied by the refined similarity hypothesis, but not
vice versa.
As before, when all the separation in this quantity are In summary, we provided an infinite set of bridge rela-
of the order ofR, the Laplacian operators introduce ations that show that the scaling exponents of correlations
factor of 1/R* and the evaluation of this quantity is of gradient fields can be expressed in terms of the/set
@ _ v2S,(R)/R*. Clearly this is negligible compared characterizing the structure functions. Our results follow
to typical terms inD\’. The quantityB'? contains a from the Navier-Stokes equations, from the fusion rules,
cross contribution with one Laplacian operator and onénd from the conjecture that in fusing two coordinates in
nonlinear term with a projection operator. The integralthe balance equation for any removes the cancellation

is again local, and one can show that the evaluation i§SThh5_‘S beelrg demonstratf[edde_xplicittlyb;fo; Z-G sracli
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Now we consider the fusion of two pairs of coordinate
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