VOLUME 77, NUMBER 17 PHYSICAL REVIEW LETTERS 21 OTOBER 1996

New Amplitude Equations for Thin Elastic Rods
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The stability of twisted straight rods is described within the framework of the time dependent
Kirchhoff equations for thin elastic flaments. A perturbation method is developed to study the linear
stability of this problem and find the dispersion relations. A nonlinear analysis results in a new
amplitude equation, describing the deformation of the rod beyond the instability, which takes the form
of a pair of nonlinear, second-order evolution equations coupling the local deformation amplitude to the
twist density. Various solutions, such as solitary waves, are presented. [S0031-9007(96)01453-6]

PACS numbers: 46.10.+z

Filaments are fundamental physical structures that cafor each value of(s,z). By construction there exist a
be found in many guises on many different scales. Theywist vectork = k1d; + k»d, + k3d; and aspin vector
appear in various problems in biology, chemistry, physicsw = wd; + w,d, + w3ds which control the space and
and engineering [1]. One way to model these structureme evolution of the basis along the curve via t@n
is to assume that they are made of an elastic materiand twist equations
obeying the appropriajte laws of elastigity. The _Kirchhoff d =« X di, di=w X d, i=1,23. (1)
model for rods describes the dynamics of (thin) elastic )
filaments within the approximation of linear elasticity the- Knowledge ofx = «(s,1) andw = w(s,1) is enough
ory. The stability of stationary filaments under externalto construct the position and motion of the curve in space
(or internal) constraints is one of the oldest fundamentafUP to a rigid translation), since the solution of the spin
problems in the theory of elasticity, dating back to Eu-and twist equations determinel = ds(s,7) which can
ler. The general problem is to understand and describB€ integrated once to give If one chooseg/; to be the
the postbifurcation behavior of stationary structures. Tdlormal vector to the curve, theh is the binormal and the
answer this question, many authors have considered tH@cal basis reduces to the well-known Frenet frame [3].
linear (and nonlinear) analysis of phenomenological equa- The Kirchhoff model of rod dynamics considers rods
tions such as the (one-dimensional) “beam equation” [2]Whose length is much greater than the cross sectional
However, these simplified equations lack crucial informaJadius. Moreover, here it is assumed that the rod is in-
tion on the three-dimensional structure of the solution af€Xxtensible and of circular cross section. These additional

ter bifurcation. In addition, these analyses have mainigSsumptions are not essential to the procedure de-
been confined to stationary perturbations. scribed below and could be relaxed if required. A
Here, we study the dynamical (i.e., time_dependempne—d|menS|or_1aI theory' can be derived in which all the
stability of the full three-dimensional Kirchhoff equations relévant physical quantities are averaged over the cross
for the twisted straight rod. We first develop a newSections and attached to the central axis. It follows
perturbation scheme to study the stability of stationanjhat the total forceF” = F(s,7) and the total moment
solutions. These perturbation expansions are performelf = M(s.7) can be expressed locally in terms of the
at the level of a local basis (the director basis) attached tgirector basis, i.e.,F =3, fidj, M = 3| M;d;.
the central axis of the curve. We use these expansions fohe conservation of linear and angular momentum then
perform both linear and nonlinear analyses with the latteleads to equations for the force and the moment which, in
leading to a new amplitude equation describing how théppropriately scaled variables, take the form [4,5],

rod deformation amplitude is coupled to the twist density F' = dj, (2)
for the solutions after, but close to, bifurcation. ) )

We first consider a simple space curyeparametrized M +dy X F=d, Xd +d, X d>, 3)
by arc length,s, whose position may vary in time,
i.e., x = x(s,t). We assume thak is at least twice M = kidi + kydy + I'kzds. (4)

differentiable. In what follows()’ denotes differentiation The last equation is the constitutive relationship of linear
with respect tos and () differentiation with respect -elasticity theory. It introduces the elastic paramdter

to time. At each point of the curve, one can definel/(1 + o) (whereo is the Poisson ratio) which measures

a local orthonormal basisd; = d;(s,t), i = 1,2,3, by the ratio between bending and twisting coefficients of the
introducing the tangent vectal = x/(s, 7) and choosing rod. Typically,I" varies between /3 and 1.

two unit vectorsd;, d, in the plane normal tai; such Assuming that a stationary solution of these equations
that (di, d», d3) forms a right-handed orthonormal basisis known, we can study its stability (with respect to
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different parameters) by looking for the parameter val<(9). The neutral curves correspond to the values of the

ues at which new, time-dependent, solutions exist. Irparameters for which the stationary solutions bifurcate to

order to do so, we must consider a perturbation exgive new solutions. They are obtained by considering the

pansion of the variables. We demand that to each orsolution ofA(0,n) = 0, namely,

d;er(zt)he approxima'lted local basig; = d,” + ed + (y2 = i) [yXT = 1) — P> — n?P—

€*d;” + ---) remains orthonormal. That is, to order » 2 2

O(e™), we must haved; - d; = 8;; + O(e"*!). This y(I'=2n}=0. (12)

constraint introduces at each order three arbitrary parame typical plot of these relations is shown in Fig. 1. The

ters (alm),aé’”),agm)) that allow us to express the per- straight line portion of this figure does not correspond

turbed basis in terms of the unperturbed one in the folto an actual solution. Indeed, after reconstruction of

lowing way [6]: the rod, the mode: = y gives the trivial (null) solu-
tion (i.e., k) = 0 = 0). The parabolic neutral curve

i =1,2,3, (5) corresponds to annstablehelix with critical parameters
n.=PQ2 —T)/T andy. = +2P/T. For fixedP, the

where B8 is a symmetric tensor whose entries dependstraight rod becomes unstable at the critical twistand

d" =am xd” +> pirad”
j

only ona® with k < m. the new shape is helicoidal, taking the form
The perturbation expansion of the twist and spin vector 24 24
can be expressed in terms @fand the unperturbed twist =S T sinsP, P CossP |. (13)

and spin vectors, i addit e th ‘i ral g
0 D/ 0 1 2 n addition, we note the presence of the neutral mode
=k @)+ k¥ x ol o), (6) n = 0 which corresponds to an arbitrary rotation about
w =&V + 0(e). (7)  the central axis and an arbitrary increase of the tension.
The linear analysis can only describe the situation
at threshold. In order to describe the evolution of
F = Z{ffo) + e[V + (@ x fO74” + o). the unstable modes beyond this point the effect of
i nonlinearities must be included through an appropriate
(8) nonlinear analysis [7]. This is achieved by expanding
Higher order terms in all these expansions can easily babout the critical twisty. and involves introducing the
generated. perturbation parameter
The unperturbed stationary configuration is characteri- 2 .
. . € Y Yeo (14)
zed by (f©, k©). Using the perturbation scheme de-
scribed here, we can obtain the appropriasgiational ~and the stretched time and space scaless e and
equationsj.e., the linearization of Egs. (2) and (3) about s1 = €s. To order0(e), the (linear) solution is given by
the exact (stationary) solution. These are written in thed superposition of the neutral modes, namely,

form M(l) =Y& + Xégneins + X*égn*efins’
Le(©. ) - utV =0, (9)

where L is a linear, second-order differential operator  :: B
in s and ¢+ whose coefficients depend on through
the unperturbed solutior@, f© and uV is the six- 1,07
dimensional vecton™® = {aV, fM}, The explicit form . %
of this linear system of equations is given in [6]. o<l
In the case of the twisted straight rod we choose the e,
local basis in such a way that the vectéus, d,) follow . ’
the twisty. In these variables, the stationary solution can |
be written i

K@ = 0,0y, f®=0p,) (@0 M9 ey =0

The forceF can also be expanded &)

n, s ...............{,--:.......‘_.
We consider here a rod under tensiqﬁo)[ > 0] rather "'?,}'""'ﬁ R i
than under compressiogféf)) < 0].
The linear solutions [to (9)] can be expressed as - + —
,u,j-l) = e¢”'(Axje™ + A*xje_i’l“), j=1,...,6, e
11 FIG. 1. Dispersion relation foP = 3, the straight line does
. . . ( ) not correspond to new solutions, but the parabola is the neutral
where the growth rate is determined from the dispersion cuyrve defining the unstable helix. The line= 0 is a possible

relations,A(o, n) = 0, obtained by substituting (11) into neutral solutions corresponding to an arbitrary twist.
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whereY = Y(sy,11) andX = X(sy, f;) represent, respec- tary wave solution traveling along the rod with constant
tively, the slowly varying amplitudes of the axial twist speedc. For P2/(P?> + 1) > ¢> > I'/2, one finds a
and the unstable helical mode;= ».; and heteroclinic connection of the form
& = (0,0,1,0,0,1), &, = (1,i,0,—iP?, P?0). X(z) = pitanh(p,z), (20)
(15) with K =T/(I' —2c?, pi=1/2P, and p; =
At this order ofe the functionsY andX are arbitrary and ¢*P°T/[(P*c¢* — P* + ¢*) (I — 2¢%)], which  de-
constant but may vary on the longer scales;). scribes drontlike solitary wave connecting two different
The amplitude equations describing the slow evolutiorasymptotic states. The two different solutions are shown
of the rod on the stretched scalegr, are derived by inFig. 2.
the method of multiple scales analysis. To third order in We remark that the minimum speed of these traveling
€, an equation for the amplitude®, X) can be derived Wwaves isc? = I'/2. This is the speed of the torsional
by requiring that the solutions remain bounded in spac&aves obtained from elementary linear elastic theory
which leads to a Fredholm alternative condition. The fina[10]. We believe that the solutions obtained here are

result is two equations for the amplitudesx [7], the nonlinear version of torsional waves that takes into

P2+ 1\o2x 92X , oY account the three—di.mensional structure of th_e system

(T)F T PFX(I - 2P|X|” + a—) and allows propagation of waves between regions with
f 51 51 different twist densities.

2 82_Y . 82_Y — _op x| (16) The propagation of solitary waves along an elastic

U arf as? asy rod has been of interest in recent years [5,11] and
In this coupled system of equations the twist dengity Some particular exact traveling wave solutions have been
plays a central role. If we sét = 0 it is easy to see that oObtained for systems with constant twist. The solutions
the stationary solutions may blow up in finite space. Thepresented here are obtained as possible postbifurcation
amplitude equations can also be understood in terms dfehaviors of the twisted straight rod and have nonconstant
symmetry breaking [8] in that the first-order derivativestwist densityY. Preliminary numerical results show that
with respect tos; break the symmetry associated with some of these solutions are remarkably stable and that
the rotation of the rod about the central axis and aghere exists a mechanism for selection between different
a result introduce a twist-imposed handedness in th&olutions with different speeds. Also, the collisions
postbifurcation solution. between pairs of stable pulses with opposite, but equal,
Although these equations (16) are probably nonintespeeds show near perfect (i.e., form preserving) collisions.
grable (they fail the Painlevé test [9] for partial differential However, closer inspection of the solutions show that
equations) the following interesting special solutions carthere is a small amount of radiation loss clearly indicating

be obtained: that the system is not completely integrable [12].
(a) Homogeneous solutions. The spatially independent (C) Stationary solutions. The stationary limit of (16)
form of (16) is simply reduces, somewhat remarkably, to a simple system whose
92X P37
—5 = —>——X(1 = 2P|X]*), 17
arr P2+ 1 ( X1 (7 "

where the twist density decouples from the deformation
and is set equal to a constant. After integration, the
filament solution is found to correspond to a helix,

.- (s, _ 2eX(et) sinsP. 26);(61‘)

COSSP). (18)

(b) Traveling wave solutions. Setting = s; — cf;
one obtains the traveling wave reduction of the amplitude

equations which, after simplification, take the form B
9*X Pr 4Pc?

— = X(K+1+———IX :

9z2  PXc*— 1) + ¢? ( I —2¢? X )’ "

wherek is an arbitrary constant chosen in such a way that
the derivative of the twist goes to zero at infinity.

Forc¢? > I'/2, two interesting situations arise. df >
maxI' /2, P%/(P? + 1)} a homoclinic orbit can be found,

X(z) = pisech(paz). (19) . -
. . 2 nn ) 2 o3 FIG. 2. Traveling waves solutions: The pulse (@)= 4,
with K =0, pi = (2¢” — I)/(2Pc?), p; = (P°T')/  p =17 and front solutions (b}e = 0.7, P = 1. T = 3/4 in
(P2¢? — P2 + ¢?), which corresponds to pulselikesoli-  both cases.
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equation forX is linear. The solutions are easily obtained, ary solutions. There is now a vast body of literature con-

X(sy) = K ei\/p—n(, Ut Kae /PTK, s, cerning this problem. However, the dynamics of solutions
! 2 o -’ after bifurcation has, to the best of our knowledge, hardly
Y(s;) = K2K§e2’\/PFK‘S‘ + KjKze HVPTKis: been investigated. The methods we have developed to

2 2 study the dynamical stability of stationary solutions are
Fall = K = 2P + K] + K. quite general and have been applied to different structure
where thek; are constants determined by the boundarysuch as the twisted ring and the helix. These studies re-
conditions. veal an extraordinarily rich dynamical behavior of fila-
If we hold the extremities of a finite rod of length  ments after bifurcations, and we hope they will be further
fixed, the constantX; are determined and we find an developed to enrich our understanding of these universal

envelope solution for the rod, structures.
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