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New Amplitude Equations for Thin Elastic Rods
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The stability of twisted straight rods is described within the framework of the time depend
Kirchhoff equations for thin elastic filaments. A perturbation method is developed to study the lin
stability of this problem and find the dispersion relations. A nonlinear analysis results in a n
amplitude equation, describing the deformation of the rod beyond the instability, which takes the
of a pair of nonlinear, second-order evolution equations coupling the local deformation amplitude to
twist density. Various solutions, such as solitary waves, are presented. [S0031-9007(96)01453-6
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Filaments are fundamental physical structures that
be found in many guises on many different scales. Th
appear in various problems in biology, chemistry, physi
and engineering [1]. One way to model these structu
is to assume that they are made of an elastic mate
obeying the appropriate laws of elasticity. The Kirchho
model for rods describes the dynamics of (thin) elas
filaments within the approximation of linear elasticity th
ory. The stability of stationary filaments under extern
(or internal) constraints is one of the oldest fundamen
problems in the theory of elasticity, dating back to E
ler. The general problem is to understand and desc
the postbifurcation behavior of stationary structures.
answer this question, many authors have considered
linear (and nonlinear) analysis of phenomenological eq
tions such as the (one-dimensional) “beam equation”
However, these simplified equations lack crucial inform
tion on the three-dimensional structure of the solution
ter bifurcation. In addition, these analyses have mai
been confined to stationary perturbations.

Here, we study the dynamical (i.e., time-depende
stability of the full three-dimensional Kirchhoff equation
for the twisted straight rod. We first develop a ne
perturbation scheme to study the stability of stationa
solutions. These perturbation expansions are perform
at the level of a local basis (the director basis) attached
the central axis of the curve. We use these expansion
perform both linear and nonlinear analyses with the lat
leading to a new amplitude equation describing how
rod deformation amplitude is coupled to the twist dens
for the solutions after, but close to, bifurcation.

We first consider a simple space curve,x, parametrized
by arc length, s, whose position may vary in time
i.e., x ­ xss, td. We assume thatx is at least twice
differentiable. In what follows,s d0 denotes differentiation
with respect tos and Ùs d differentiation with respect
to time. At each point of the curve, one can defi
a local orthonormal basisdi ­ diss, td, i ­ 1, 2, 3, by
introducing the tangent vectord3 ­ x0ss, td and choosing
two unit vectorsd1, d2 in the plane normal tod3 such
that sd1, d2, d3d forms a right-handed orthonormal bas
0031-9007y96y77(17)y3537(4)$10.00
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for each value ofss, td. By construction there exist a
twist vectork ­ k1d1 1 k2d2 1 k3d3 and aspin vector
v ­ v1d1 1 v2d2 1 v3d3 which control the space and
time evolution of the basis along the curve via thespin
and twist equations,

d0
i ­ k 3 di , Ùdi ­ v 3 di , i ­ 1, 2, 3 . (1)

Knowledge ofk ­ kss, td and v ­ vss, td is enough
to construct the position and motion of the curve in spa
(up to a rigid translation), since the solution of the sp
and twist equations determinesd3 ­ d3ss, td which can
be integrated once to givex. If one choosesd1 to be the
normal vector to the curve, thend2 is the binormal and the
local basis reduces to the well-known Frenet frame [3].

The Kirchhoff model of rod dynamics considers rod
whose length is much greater than the cross sectio
radius. Moreover, here it is assumed that the rod is
extensible and of circular cross section. These additio
assumptions are not essential to the procedure
scribed below and could be relaxed if required.
one-dimensional theory can be derived in which all th
relevant physical quantities are averaged over the cr
sections and attached to the central axis. It follow
that the total forceF ­ Fss, td and the total moment
M ­ Mss, td can be expressed locally in terms of th
director basis, i.e.,F ­

P3
i­1 fidi , M ­

P3
i­1 Midi .

The conservation of linear and angular momentum th
leads to equations for the force and the moment which,
appropriately scaled variables, take the form [4,5],

F00 ­ d̈3 , (2)

M 0 1 d3 3 F ­ d1 3 d̈1 1 d2 3 d̈2 , (3)

M ­ k1d1 1 k2d2 1 Gk3d3 . (4)

The last equation is the constitutive relationship of line
elasticity theory. It introduces the elastic parameterG ­
1ys1 1 sd (wheres is the Poisson ratio) which measure
the ratio between bending and twisting coefficients of t
rod. Typically,G varies between 2y3 and 1.

Assuming that a stationary solution of these equatio
is known, we can study its stability (with respect t
© 1996 The American Physical Society 3537
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different parameters) by looking for the parameter va
ues at which new, time-dependent, solutions exist.
order to do so, we must consider a perturbation e
pansion of the variables. We demand that to each
der the approximated local basissdi ­ d

s0d
i 1 ed

s1d
i 1

e2d
s2d
i 1 · · ·d remains orthonormal. That is, to orde

Osemd, we must havedi ? dj ­ dij 1 Osem11d. This
constraint introduces at each order three arbitrary param
ters sasmd

1 , a
smd
2 , a

smd
2 d that allow us to express the per

turbed basis in terms of the unperturbed one in the f
lowing way [6]:

d
smd
i ­ asmd 3 d

s0d
i 1

X
j

b
smd
ij d

s0d
j , i ­ 1, 2, 3 , (5)

where bsmd is a symmetric tensor whose entries depe
only onaskd with k , m.

The perturbation expansion of the twist and spin vec
can be expressed in terms ofa and the unperturbed twist
and spin vectors,

k ­ ks0d 1 sssas1dddd0 1 ks0d 3 as1d 1 Ose2d, (6)

v ­ Ùas1d 1 Ose2d. (7)

The forceF can also be expanded ine,

F ­
X

i

hfs0d
i 1 effs1d

i 1 sa 3 fs0ddigjd
s0d
i 1 Ose2d.

(8)
Higher order terms in all these expansions can easily
generated.

The unperturbed stationary configuration is characte
zed by sfs0d, ks0dd. Using the perturbation scheme de
scribed here, we can obtain the appropriatevariational
equations,i.e., the linearization of Eqs. (2) and (3) abou
the exact (stationary) solution. These are written in t
form

LEsks0d, fs0dd ? ms1d ­ 0 , (9)

where LE is a linear, second-order differential operato
in s and t whose coefficients depend ons through
the unperturbed solutionks0d, fs0d and ms1d is the six-
dimensional vectorms1d ­ has1d, fs1dj. The explicit form
of this linear system of equations is given in [6].

In the case of the twisted straight rod we choose t
local basis in such a way that the vectorssd1, d2d follow
the twistg. In these variables, the stationary solution ca
be written

ks0d ­ s0, 0, gd, fs0d ­ s0, 0, P2d. (10)

We consider here a rod under tension [f
s0d
3 . 0] rather

than under compression [f
s0d
3 , 0].

The linear solutions [to (9)] can be expressed as

m
s1d
j ­ estsAxjeins 1 Apxp

j e2insd, j ­ 1, . . . , 6 ,

(11)
where the growth rates is determined from the dispersion
relations,Dss, nd ­ 0, obtained by substituting (11) into
3538
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(9). The neutral curves correspond to the values of
parameters for which the stationary solutions bifurcate
give new solutions. They are obtained by considering
solution ofDs0, nd ­ 0, namely,

sg2 2 n2d hfg2sG 2 1d 2 P2 2 n2g22

g2sG 2 2d2n2j ­ 0 . (12)

A typical plot of these relations is shown in Fig. 1. Th
straight line portion of this figure does not correspo
to an actual solution. Indeed, after reconstruction
the rod, the moden ­ g gives the trivial (null) solu-
tion (i.e., ks1d ­ vs1d ­ 0). The parabolic neutral curve
corresponds to anunstablehelix with critical parameters
nc ­ Ps2 2 GdyG and gc ­ 62PyG. For fixedP, the
straight rod becomes unstable at the critical twistgc and
the new shape is helicoidal, taking the form

x ­

√
s, 2

2A
P

sinsP,
2A
P

cossP

!
. (13)

In addition, we note the presence of the neutral mo
n ­ 0 which corresponds to an arbitrary rotation abo
the central axis and an arbitrary increase of the tension

The linear analysis can only describe the situat
at threshold. In order to describe the evolution
the unstable modes beyond this point the effect
nonlinearities must be included through an appropri
nonlinear analysis [7]. This is achieved by expandi
about the critical twistgc and involves introducing the
perturbation parameter

e2 ­ g 2 gc , (14)

and the stretched time and space scalest1 ­ et and
s1 ­ es. To order0sed, the (linear) solution is given by
a superposition of the neutral modes, namely,

ms1d ­ Yj0 1 Xjneins 1 Xpjp
ne2ins,

FIG. 1. Dispersion relation forP ­ 3, the straight line does
not correspond to new solutions, but the parabola is the ne
curve defining the unstable helix. The linen ­ 0 is a possible
neutral solutions corresponding to an arbitrary twist.
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whereY ­ Y ss1, t1d andX ­ Xss1, t1d represent, respec-
tively, the slowly varying amplitudes of the axial twis
and the unstable helical mode;n ­ nc; and

j0 ­ s0, 0, 1, 0, 0, 1d, jn ­ s1, i, 0, 2iP2, P2, 0d.

(15)
At this order ofe the functionsY andX are arbitrary and
constant but may vary on the longer scalesss1, t1d.

The amplitude equations describing the slow evolutio
of the rod on the stretched scaless1, t1 are derived by
the method of multiple scales analysis. To third order
e, an equation for the amplitudessY , Xd can be derived
by requiring that the solutions remain bounded in spa
which leads to a Fredholm alternative condition. The fin
result is two equations for the amplitudesY , X [7],√

P2 1 1
P2

!
≠2X

≠t2
1

2
≠2X

≠s2
1

­ PGX

√
1 2 2PjXj2 1

≠Y
≠s1

!
,

2
G

≠2Y

≠t2
1

2
≠2Y

≠s2
1

­ 22P
≠jXj2

≠s1
. (16)

In this coupled system of equations the twist densityY
plays a central role. If we setY ­ 0 it is easy to see that
the stationary solutions may blow up in finite space. Th
amplitude equations can also be understood in terms
symmetry breaking [8] in that the first-order derivative
with respect tos1 break the symmetry associated wit
the rotation of the rod about the central axis and
a result introduce a twist-imposed handedness in t
postbifurcation solution.

Although these equations (16) are probably nonint
grable (they fail the Painlevé test [9] for partial differentia
equations) the following interesting special solutions ca
be obtained:

(a) Homogeneous solutions. The spatially independe
form of (16) is simply

≠2X

≠t2
1

­
P3G

P2 1 1
Xs1 2 2PjXj2d, (17)

where the twist density decouples from the deformatio
and is set equal to a constant. After integration, th
filament solution is found to correspond to a helix,

x ­

√
s, 2

2eXsetd
P

sinsP,
2eXsetd

P
cossP

!
. (18)

(b) Traveling wave solutions. Settingz ­ s1 2 ct1
one obtains the traveling wave reduction of the amplitu
equations which, after simplification, take the form
≠2X
≠z2

­
P3G

P2sc2 2 1d 1 c2
X

√
K 1 1 1

4Pc2

G 2 2c2
jXj2

!
,

whereK is an arbitrary constant chosen in such a way th
the derivative of the twist goes to zero at infinity.

For c2 . Gy2, two interesting situations arise. Ifc2 .

maxhGy2, P2ysP2 1 1dj a homoclinic orbit can be found,

Xszd ­ r1sechsr2zd. (19)

with K ­ 0, r
2
1 ­ s2c2 2 Gdys2Pc2d, r

2
2 ­ sP3Gdy

sP2c2 2 P2 1 c2d, which corresponds to apulselikesoli-
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tary wave solution traveling along the rod with consta
speed c. For P2ysP2 1 1d . c2 . Gy2, one finds a
heteroclinic connection of the form

Xszd ­ r1tanhsr2zd, (20)

with K ­ GysG 2 2c2d, r
2
1 ­ 1y2P, and r

2
2 ­

c2P3GyfsP2c2 2 P2 1 c2d sG 2 2c2dg, which de-
scribes afrontlike solitary wave connecting two differen
asymptotic states. The two different solutions are sho
in Fig. 2.

We remark that the minimum speed of these traveli
waves isc2 ­ Gy2. This is the speed of the torsiona
waves obtained from elementary linear elastic theo
[10]. We believe that the solutions obtained here a
the nonlinear version of torsional waves that takes in
account the three-dimensional structure of the syst
and allows propagation of waves between regions w
different twist densities.

The propagation of solitary waves along an elas
rod has been of interest in recent years [5,11] a
some particular exact traveling wave solutions have be
obtained for systems with constant twist. The solutio
presented here are obtained as possible postbifurca
behaviors of the twisted straight rod and have noncons
twist densityY . Preliminary numerical results show tha
some of these solutions are remarkably stable and
there exists a mechanism for selection between differ
solutions with different speeds. Also, the collision
between pairs of stable pulses with opposite, but equ
speeds show near perfect (i.e., form preserving) collisio
However, closer inspection of the solutions show th
there is a small amount of radiation loss clearly indicati
that the system is not completely integrable [12].

(c) Stationary solutions. The stationary limit of (16
reduces, somewhat remarkably, to a simple system wh

FIG. 2. Traveling waves solutions: The pulse (a)c ­ 4,
P ­ 7 and front solutions (b}c ­ 0.7, P ­ 1. G ­ 3y4 in
both cases.
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equation forX is linear. The solutions are easily obtaine

Xss1d ­ K2ei
p

PGK1 s1 1 K3e2i
p

PGK1 s1 ,

Yss1d ­ K2Kp
3 e2i

p
PGK1 s1 1 Kp

2 K3e22i
p

PGK1 s1

1 s1f1 2 K1 2 2PsjK2j
2 1 jK3j

2dg 1 K4 ,

where theKi are constants determined by the bounda
conditions.

If we hold the extremities of a finite rod of lengthL
fixed, the constantsKi are determined and we find a
envelope solution for the rod,

xssd ­

√
s,

p
4L2e2PG 2 1

2PL
p

Ga1a2

3 sa2 cosa1s 2 a1 cosa2sd,
p

4L2e2PG 2 1

2PL
p

G a1a2

3 sa2 sina1s 2 a1 sina2sd

!
,

wherea6 ­ P 6 1y2L. This solution is shown in Fig. 3
for a particular set of parameters.

As described in [7] this solution reveals a delay in t
bifurcation as a function of the rod length. Indeed, the
furcation now occurs atg ­ gc 1 1y4PGL2. A similar
influence of the boundary conditions on bifurcation h
been described in fluid dynamics [13].

The amplitude equations (16) are of interest in th
own right and deserve more theoretical and numeri
study. Preliminary work reveals that they have a Ham
tonian structure. The stability and selection mechanis
of different solutions will be described elsewhere [12
The Kirchhoff equations are a central model to study t
different conformations of filamentary structures. Mo
of the theoretical work has focused on obtaining statio

FIG. 3. The stationary solution for (P ­ 5, G ­ 3y4).
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ary solutions. There is now a vast body of literature co
cerning this problem. However, the dynamics of solutio
after bifurcation has, to the best of our knowledge, hard
been investigated. The methods we have developed
study the dynamical stability of stationary solutions a
quite general and have been applied to different struct
such as the twisted ring and the helix. These studies
veal an extraordinarily rich dynamical behavior of fila
ments after bifurcations, and we hope they will be furth
developed to enrich our understanding of these univer
structures.
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93-ER25174.
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