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We prove stability for systems composed of arbitrarily many nonrelativistic Pauli electrons minimally
coupled to the quantized, ultraviolet-cutoff electromagnetic field and of static nuclei interacting with
each other through Coulomb forces. [S0031-9007(96)01414-7]

PACS numbers: 12.20.—m, 03.65.—w, 31.10.+z

In this Letter we prove that the quantum electrody-where

namics of nonrelativistic, quantum mechanical matter N

interacting with the quantized radiation field is stable, H, = Z{[pi + Ap(x)] - o ¥ + Ve,
provideda?(Z + 1) is sufficiently small and an ultraviolet i=1

cutoff is imposed on the quantized electromagnetic vector N 1 N.X Z
potential. As usuale denotes the elementary electric Ve = Z I — x| Z Ixi — Ry
charge % is Planck’s constant; is the velocity of light, o e

anda = e?/fic = % is the dimensionless feinstructure K 72

constant; the charges of nuclei are assumed to be bounded + —_

above byZe. A typical system described by this theory C=1 IR — Ryl

consists of an arbitrary numbeN of nonrelativistic
electrons with electric chargee, bare mass > 0, spin
% and a bare gyromagnetic factgr= 2 (Pauli electrons),
an arbitrary numbeK of static nuclei of nuclear charge
=Ze, and arbitrarily many photons. In the Coulomb The HamiltonianH acts on(ANH) ® F, whereH =
gauge, electrons and nuclei interact through Coulomi.?(R*) ® C*> and F is the bosonic Fock space over
two body potentials, and the electrons are coupled td.*(R*) ® C>. The factorsC? describe the spin of the
the transverse degrees of freedom of the radiation fielélectron and the helicity of the photon, respectively.
by minimal substitution. Photons with energies largeThe ultraviolet-cutoff electromagnetic vector potential in
compared to typical atomic energigsnc’*(Za)?] are not  the Coulomb gauge is given by
coupled to the electrons because of the ultraviolet cutoff AvG) = Ax) = A_(x) + A_(x)"
imposed on the electromagnetic vector potential. 12

Stability is the statement that the energy per charged _a’" ~1/2 ikx 13
particle in such a system is bounded uniformly An A-(x) 2 [K(k) Il AZ; ar(Ker(k)e™ d’k .
and K. Our result on stability also holds for systems of ) o
dynamicalnuclei, provided the interactions between nu-The cutoff function «(k) satisfies |«(k)| =1 and
clear magnetic moments and the quantized electromaguPp< C {k € R3_| k| = A}, for some constant < .
netic field are neglected or suitably regularized. Much of-Or €achk, the direction of propagatiok = k/|k| and
atomic, molecular, and condensed matter physics is coribe polarizationse.. (k) € C are orthonormal.  The
cerned with the study of detailed properties of the system@Peratorsa,(k)* anda, (k) are creation and annihilation

Hyf a_lf IklA;aA(k)*aA(k)aﬁk. 1)

just described. operators onF and satisfy canonical commutation
Our result extends earlier results on systems of eleclations

trons and nuclei coupled talassical static magnetic [ar(k)*, ap(K)] =0,

fields proven in [1,2]; see also [3—6] for earlier partial re- )

sults. An important part of our proof is based on methods [ar(k), ax (k)] = San8(k — &').

developed in [2,7]. Our units are*(2me?)~" for length,  The main result of the Letter is the following theorem.

2me*h 2 for energy, an@me*f ! for the magnetic vec-  Theorem 1—There is a dimensionless, positive con-

tor potential. In the Coulomb gauge, the Hamiltonian ofstante such that
a typical system is given b
P 4 ¢ y H = —constX (Z + 1))(N + K),

H=H, + Hy, provideda?(Z + 1) = £ andaA* = constX (Z + 1)*.
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Because of (1), the maximal cutoff allowed by the theo-

rem corresponds to photon energies'A = constx
a3%(Z + 1). Fora®(Z + 1)* < 1, the maximal pho-
ton energya~'A is much larger thariZ + 1), which
is the scale of typical atomic energies in our units (se
Proposition 2).

Remark—Our proof shows that

H = —const, X (Z + 1)*(N + K),

provided a?(Z + 1) =< &, for arbitrary A; but the con-
stant on the right hand side tendsctpasA — «. (Note
thatH is the unrenormalized Hamiltonian.)

Stability of matter in a classical magnetic fieldHere

we extend recent results in [2] concernlng the stablllty

of quantum mechanical matter in an arbitrary externa
magnetic field. In [2] the energy functional of the systemy-

contains the magnetic field energy. Here we show tha

Proposition 2—Let
—xeRx-Rl=zZ+1)"!

forsomej = 1,...,K}.

eI'hen there i > 0 such that

H, + L[ (V ® A)*(x)d>x = —const
8ma? Jq

X (Z + 1D’(N + K), (2)

for any classical vector potentidl(x), provideda?(Z +
= e&.

f [2]. Given K = 1 nuclei at positionsRy,..., Rk,
he physical spac®? is partitioned |nto Voronoi cells
={x|lx = Rj| = |x — Ry| for k = Ky (j =

The proof adds a localization argument to some results

K). Let D; =min{|R; — R || 7& k}/2. A
the lower bound given in [2] for the combined energy OfpotentlaIW is deflned 2] ceIIW|se ask /
matter and magnetic field holds true, at least qualitatively,
if the magnetic energy is retained only in a neighborhood W) =Zlx — RjI"' + Fj(x) forx eT;, (3)

of the nuclei of size at least that of a Bohr radius for
nuclear charg&. (A similar result is announced in [1].), where

(2Dy)~'(1 —

PO =12z + Hix - &yl

D %lx — R;1»)™!

for |X — R/l = )\Dj,
for [x — R;| > AD; .

We setA = % as in [2]. In particular, forx € I';, one !
has W(x) =[Z + max(A(1 — A?)"1/2,\/2Z + %)] X
lx = R;jI”' = Qlx — R;|”!, where Q =Z + 2Z +
22. If K =0, we setW = 0.

Let 2 be the one-particle Pauli operator with potentials_
AandWw,i.e.,

h=[p+A4) o -W 4)
Then [2,7]

Hy = dT(h) + 2 ZD L (5)
wheredI’ is fermionic second quantization [8]. Note that

N = dI'(1) is the number of electrons.
[see Egs. (3) and (18)] that

dT'(h) = —4.130%(N + 2K)/3
K
— bf B(x)*d’x — ¢ ZD-_I,
j=1

where b, ¢ are given following (18) in [2] andB =
V A A

Proof of Proposition 2—Let [ > 0 be some length
scale to be chosen later, and ©&t8), C'(B8), C"(B8) be
open cubes of sidg 3/, and5/, respectively, centered at
B € 173. The cubeg’(B) form a partition ofR* without
their boundaries, whereas tl@(8) form an open cover
of R*. By scaling we can construct a partition of unity

It is proven in [2]

(6)

{jp} subordinate tqC’(B)} satisfying

Z jple) =1 Z [Vjg(x)]* = constx [~2.
BEIZ? BEIZ?

We shall also need similarly constructed functions

Jjg (not forming a partition of unity), WIth]B =1
but =1 on C'(8) and =0 outside C""(8). We then
SetAg = jlgA + (1 - JB)an whereag = |C"(B)|~ I x
Jenp Alx)d’x is the average of over the cubeC”(B).
Clearly,Ag = AonC'(B).

Set.?\f/g = {]lR, S C”(,B)} and |etl—"3,j, Dg j, Wﬁ(x)
be the objects appearing in (3) if the set of nucleiN.
We claim that

W(x) = Wg(x) + constx Q1! forx € C'(B). (7)
Indeed, letx € C'(B) N I';. If j & Np thenW(x) =
Olx — R;|"' = Q17" If j € Ng, thenl'; C I'g;. Let
k be such thatD; = |R; — R|/2. We distinguish be-
tweenR; € C"(B) andR; & C"(B). In the first case,
D; = Dg; and W(x) = Wg(x); in the second on€, =
|x — R¢|l = |x — R;| + 2D;, which gives (7) in view of
Fj(x) = constX Q(lx - R;| +2D;)"".

AII this yields
> jghig = > (Vig)
BEIZ3 BEIZ3

= Zj,ghﬁj,g — constX (l_2 + Ql_l),
B
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wherehg is the Pauli Hamiltonian (4) with potentiakss,  T'(j)*[>5dT(15)IL(). If N =& we simply note
Wpg. A more convenient expression for the last sum isthathg = 0. Otherwise, we apply (6) and obtain

obtained by introducing a Hilbert spadd = @z H and dT(hg) = —constx QdT(15) + |NG]

operators
~ ¥ o7 . o . 2 13 -
h:H —H h=eghg, j:H—H,j=@azjs. —bede—c ZND,;,},
. , i€
Then > 5 jghgjg = j*hj and 1 = j"j. Upon sec- ’
ond quantization we haveT'(j*hj) = I'(j)*dT'(h) X where Bg =V AAg = ]‘BB + V}B A (A — ap).

I'(j) =T(j)'[Xgdl'(hg)Il'(j) and N =dT'(j*j) = | Therefore

fB%d3x = 2[ jpB*d’x + zf[vj,g A (A — ap)Pd’x

= 2[ B>d*x + constXx l_zf (A — ap)*d’x = constx [ (V® A’d’x,
C”(B) C”(B) C”(B)

since the second to last integral is bounded |bythe cutoff is
(5072 [cup)(V ® A)?dx  (Poincaré’s  inequality).
Moreover, we note thaDgz; = D;'. Collecting esti- H,
mates and using that the cubfggd’(8)} have the uniform

finite intersection property we find that

o ! [ WP Y ark) a0k
A=+

It follows from
dT'(h) = —constX [(Q2 + 173 (N + K)

ia1/2

Vo) =" [ Wk ¥ a®

+b (V ® A)d’x . o=
Unig#oC"(B) X [k ® ex(k)]le™ d’k

K
+ CZDJ_I}- that
j=1

s 3. 2
The domain of integration is contained §n for 531 = f(V ® A-) (1) (Ve A )()d’x =2ma’Hy, (8)

(z + 1)1, so thatQ? + 172 =< constx (Z + 1)>. The

conclusion, which we now sketch, is as in [2]. We use w1

parameterX = Za?, Y = a instead ofZ, «. The con- [(VeA)),(VeA) )] =dmaCy, ©
ditions constx b = (87a?)~! and constx ¢ = Z%/8  ith C. = m)73 [1c(®)Plkld?k = 2m)2A%)2.

[see (5)] are seen to hold fof = X,, ¥ = Y, for some Lemma 3—Let f € L'(R?) N L*(R3) be real valued.
Xo,Yo > 0, proving the bound (2) in that case. For Tphenp

X = Xy, Y = Yy, a bound is obtained by using that the

infimum of the left hand side of (2) is decreasinganif 1 3 )
Z = XY, %, and inZ otherwise. Thug + 1in (2) gets 8 ff(x) [Ve AW d’x = &l fll-H.
replaced by ma(>Z,X0Y0_2) + 1 =constx (Z + 1). + aCll fll:. (10)

Stability of matter coupled to the quantized electromag-
netic field—The Hamiltonian of the modes allowed bP/ Proof —We setA’ = V ® A for brevity and estimate

FEA' (x)? = f)[A_(x)*AL(x) + A_(x)A_(x)* + A (x)*"A_(x)* + A" (x)A"_(x)]
=[f) + [FOINALx)"AL(x) + AL(x)AL(x)"] = 4f+ () [A_(x)"AL(x) + 27maC,]

by making use of BB =0 for B =|f(x)|"!/? x | with f the characteristic function d® we find
(I fF()IA-(x) = f(x)A"(x)*) as well as of (9). Integra- H = H,, + a%(Z + )& 'H,
tion and (8) then yield (10).

We are now able to reduce the stability problem to the = H, + Z+1
case of a classical field. 87e
Proof of Theorem —Let a*(Z + 1) < &, wheree is 2 3 .
the bound in Proposition 2. By using; = H, and (10) X fQ[V ® AW d'x — e (Z + DaClQ].
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All fields on the right hand side are multiplication for some positiveny. Thus the renormalized Hamiltonian
operators in the same Schrédinger representatiogFof of the theory is given by
[3,8]. Hence (2) applies te(Z + 1)~! instead ofa”> and

N
yields Hy= S M p; + Ar(x)] - o7
H = —constx [(Z + 1)* + ¢ 'aA*(Z + 1)7?] A FZI AAlp AG)] - o}
X (N + K). — mAN + Ve + Hy,

Remarks—(1) Carefully rearranging the calculations with M, — 0 and s — o, asA — o. The problems of

presented above and keeping track of the explicit val;. . . )
ues of various constants, one finds that the stability re]ilndlng the correc{nonperturbativejexpressions fon

] and wa and of proving stability forH,, uniformlyin A,
sult of Theorem 1 holds foZ = 6 and a = 135, for remain open.
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