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Quantum Phase Diffusion of a Bose-Einstein Condensate
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We discuss the quantum properties of the Bose-Einstein condensate of a dilute gas of atoms in a trap.
We show that the phase of the condensate undergoes quantum diffusion which can be detected in far
off-resonant light scattering experiments. [S0031-9007(96)01469-X]
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Recent observations of the Bose-Einstein condensatioft.f. [11]) one associates the annihilation (creation) oper-
(BEC) in systems of trapped alkali atoms [1-3] haveator of the condensate with the condensate wave func-
triggered enormous interest in the properties of sucliion (7)o (7)]. We shall demonstrate that such an
condensates. These properties can be well described lpproach needs to be revised. (b) The phase of the con-
the mean field Bogoliubov-Hartree (BH) approach [4—6],densate is a fundamental concept in the theory of U(1)
where the condensatgave functionfulfills a nonlinear symmetry breaking for interacting Bose gases [19]. The
Schodinger equation (NLSE) [7], whereas elementarnyguantum state of an interacting condensate is convention-
excitation (quasiparticle) was functions fulfill a set of ally assumed to be aoherentstate with a fixed phase
coupled Schrédinger-like equations. Several versions adind a nonvanishing mean of the atomic field operators.
the BH approach have been discussed in the literaturgavanainen pointed out recently that the phase correla-
[8—12], but, as pointed out recently by Griffin [13], only tions will also be detected if two condensates are in
some of them are physically sound and gapless in th&(1) symmetric states, e.g., Fock states [20]. Macro-
limit of a large trap (i.e., they are in accord with the scopic populations of such states are sufficient to induce
Hugenholtz-Pines theorem [14]). Among those there ar@hase correlations independent of the fact whether the
the “Bogoliubov” approximation [11], which is valid at gas is interacting or not. This is analogous to laser the-
temperaturel’ = 0 and leads to a closed NLSE, and the ory where the density matrix of a lasing system (describ-
self-consistent “Popov” approximation [15], valid at finite ing an average over ensemble of measurements) is U(1)
temperatures. symmetric, whereas in a single quantum measurement

So far the discussion of the BH approach has mainha fixed phase is selected, and the system exhibits then
concentrated on the condensate wave function and thghase correlations as if it was from the very beginning
spectrum of quasiparticle excitations [16,17]. The quanin a state with broken phase symmetry [21]. We follow
tum properties of the condensate have not been thothis analogy further, and show that the phase of inter-
oughly discussed in the context of recent experimentsacting condensate undergoes necessarily quantum diffu-
Even the most complete presentation of this problem bygion, since having a fixed phase is inconsistent with atom
Blaizot and Ripka [18] limits the discussion to specific number conservation & = 0 [22]. (c) At finite T the
examples of homogeneous systems. In this Letter waumber of condensed atoni, may fluctuate, and the
study the quantum fluctuations of the condensate, in paphase diffusion is reduced. (d) The phase diffusion can
ticular, its phase diffusion. This problem is important be measured, for instance, with elastic off-resonant light
for three main reasons: (a) In the standard BH approachcattering.
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We start with the second quantized Hamiltonian a unique solutionUy(7) = Vi (7) = () with wo =
52 0. This is a Goldstone mode resulting from ti&1)
H = f d?\i’*(?)[—— V2 + V,(F) — ,u:|\if(?) symmetry breaking. It is the very existence of this zero
M mode that assures the gaplessness of the “Bogoliubov”
N % fd?‘iﬁ(?)\i”(?)\i'(?)\i’(?), ) approximation. It is easy to check that the operator
whereuy = 4w htay /M [23], as is the scattering length P = j dF o(F) [V (7) + oW (7)] ()
of the interatomic potentiat¥(7) [¥1(7)] is the atomic , o o N
annihilation (creation) operato the atomic mass, and commutes with the Hamiltonian and is its¢fermitian,
V,(7) the trap potential. The chemical potentialassures and as such cannot be associated with either annihila-
the conservation of the average number of ataths-  tion, or creation operator of the condensate mode. It
[d7 ¥t (@). should rather_ be assocu’:}ted with aollective motion
Our discussion is based on the “Bogoliubov” approxi-W'thOUt restoring forceand interpreted as a “momentum”
mation, which is the simplest gapless approximation thapPerator of the condensate mTode [18]. We note
describes reasonably well both the condensate and its efpat P commutes with all gx,g; for k # 0, ie.,
citations atl’ = 0. We set fc\l/(/%(;) [Udk_(?) I_ ‘gc(;)] = r(]) fork # 0. I on 5)
N — . . e immediately observe that our initial assumption
(F) = VN (7)) + 8¥9(7), (2)  isinconsistent. 'the Hamiltonian must be a biIin(Fe)ar form
where thec-number condensate wave functign(7) is  and must commute with, therefore its correct canonical
normalized asf d7|yo(7F)|? = 1. 6W(F) is the quantum formis
fluctuations part that fulfills the same standard bosonic
commutation relations a¥ (7). We assume they(7) to H =abP?2+ > Fwwgl g, (8)
be real. We substitute now (2) into Eq. (1) and neglect k#0
both 3rd and 4th order terms in fluctuations. The lineaswith the coefficientx to be determined. We can introduce

terms vanish providedy(r) is the lowest energfu)  a “position” operator canonically conjugated foas
solution of the NLSE

[L + uop()poF) =0, 3) Q=i f d7 Do(7) [8¥(F) — VT (H].  (9)

with £ = (r?/2M)V? + V,(¥) — u, and p(¥) = N X
gb&(?). The Hamiltonian becomes then a bilinear form of
5W¥(7) andsW¥t (), and can be transformed to a canonical
form by introducing quasiparticle annihilation operators

which has to fulfill [0, P] = i.[Q.g:] = 0 (for k # 0)
by definition, and 0, H{ ] = iaP because of (8). These
commutation relations imply that

gk = f AURGD (GERAGR UG NG 2 f dr o(F)g() = 1,
and g):. They fulfill bosonic commutation relations, fd; Oo(7) [Ur(7) + Vi(F)] = 0, (10)
[gk,g);] = S, L&k> &) = 0, which lead to the standard
biorthonormalityconditions [11] forUy () and Vi (7). for k # 0, and
For the moment, we suppose that the Hamiltonian will
take a canonical form [£ + 3uop(F)]Po(F) = ao(r), (11)

i t which has a unique solution since the operator+
H — Z hwrgi gk, () 3ugp(7) is positive definite, presented in Fig. 1.
k=0 ) Having defined the “momentum” and “position” op-
such that[ gy, H'] = Fiwigy. The latter equation then erators of the condensate mode, we can introduce the

gives corresponding annihilation operatgy = (P — i0)//2

[L + 2uop(DULGF) — uop(F)Vi(F) = hwrU(F), and the appropriate zero mode functidiig(7), Vo(7) =
- . . . . [o(F) = Bo(7)]/~/2. Only if these functions are taken
[L + 2u0p(F)IVi(F) = uop(F)Uk(F) = —haVi(F), into account the set of paird/,, V) does become com-
(6) plete

We observe that the solutions of the above equations * ) . ..,

exhibit a time-reversal symmetry; i.e., if a paiv, Vi) [U:(PU(F') = Vi()Vi(FD)] = 60 — 7)),

is a solution with w;, then the pair(V;,Uy) is the k=0

solution for —w,. Time-reversal symmetry assures that Z[Uk(ﬂV;f(?/) VAU =0, (12)

gk * g;: if w, # 0 Itis easy to check that Egs. (6) have =
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is not much greater than unity, which is the same as
saying that the total number of atorfs/7([+/N (7)) +
SWT(A][VN vo(F) + 8¥(H)]) = N. The zero tem-
perature state of (8) should havé®?) < 2fiw,/a =

//// .

\ O(N~%/%), since otherwise the excitation of the modes
with k # 0 would be energetically favorable. On the
other hand, evidentlfP*) > O(N~"), since otherwise

+0.25 (0?%) becomes at least of the order & Moreover, any

state with a fixedP?) = o2 (such as minimal uncertainty
squeezed state [26]) is not stationary, since (provided
(P) = (Q) = 0) it exhibits necessarily a quantum diffu-
sion

(0(1))y = 1/40? + a*c. (14)

SinceN., contains a contribution proportional {@2(r)),
Eq. (14) implies that our linearization approximation is

,,’o

=< valid only for a finite duration. The value of? is
n < o determined by the very process of condensation, and
- —_ S for the extremal caser? = 2hiw;/a,{Q%(t)) remains
ASTaS minimal =0 (N?/5) for w,t = 1.
FIG. 1. The wave functiong/y(r) and ®.(7) for the JILA What is the solution of this apparent paradox? The

TOP trap [1]: N = 2000, a. = 5.2 (nm), trap frequen- laser theory and quantum optics give a hint again. The
cies(w, : w, : ;) = (1:1:8Y2) (10 Hz). Our theory gives linearized solution with a broken U(1) symmetry cannot
p = 1769(hw,) anda = 1.129(/iw,). be strictly valid due to the condensate phase diffusion.

Similar to the case of a laser, the stationary density matrix

is U(1) symmetric, and corresponds to an “amplitude”
whereas the biorthonormality conditions are valid for anysqueezed state [26]. An elegant way to describe it would
k, k' including zero [11]. The total atomic field (2) can be employ quasiprobability distributions (such as Glauber’s

expanded as P, O, or Wigner's W functionals). Within such an
NP - . ot approach the stationary quasiprobability functionals are
() = ;)[Uk(r)gk = Vi(Pgel. (13) always U(1) symmetric, and the phase correlations and

diffusion exhibit themselves as in [20] only on the level
of higher order correlation functions [27]. An alternative
approach to rescue the linearized theory is to reinterpret it
in terms of the phase operator of the condensate. To this
aim we rewrite the atomic field operators in the form

Note that the mean value o (7) is /N () as
it should, if and only if the system is in the coher-
ent statelv/N ) of all the operatorsgi|v/N ) = z|v/N)
thatz, = zy, andzy = VN [d7 o(7') [U(F') + Vi(7)].
Note that sincé/, (¥) becomes very small &sgrows [17],
only the low excited states contribute to the coherent part W (7, 1) = VN (') — igho(F)O(t) + -
of the atomic field [24]. T = A
We can solve Egs. (3), (10), and (11) using a = [N go(F) + - Jexd—iQ(1)/VN]. (15)
Thomas-Fermi approximation [5,25], i.e., neglecting thewith such an ansatz the mean number of atoms is
kinetic energy terms. For a 3D isotropic harmonic trappractically conserved, and the variance fofmay be of
Vi(F) = Mwir?/2 yields y(F) = [15(ry — r?)/8m X order of unity.
o112, ®o(F) = 3/[87rjipo(7)] for r = ry and zero oth-  The immediate consequence of (15) is that the two-time
erwise,a = 3Nug/4mry With ro = (15Nug/4mMw?)'/>  correlation function (TTCEYW (7,1 + n)W(7 1)) de-
and u = Mw?2ri/2. Quite generally is proportional cays with ; the decay has the form efpa272/2N)
to the condensate peak density, and in a 3D harmonic trap (P2) = 1, and if the “momentum” fluctuations are
grows withN asN?/>. Gaussian. Such decay can be deduced from the standard
Even though the Hamiltonian (8) is bounded from“macroscopic” theory of BEC, where the condensate
below, it does not possess a stationary ground statevave function behaves agp(F) exd —iu(N)z], and
In general, the ground state should not contain anyhe TTCF collapses as eéxpN(du/dN)>7%/2] due to
excitation fork > 0, but it cannot havéP?) = 0, since  the Poissonian fluctuations df in the grand canoni-
then the Heisenberg relation would imply tHét>) — o,  cal ensemble [28]. Indeedy(du/IN)? = a2/N for
and the linearization approximation would cease to b = 0. However, it is easy to repeat our calculation
valid. We can only trust the solution provided the using the “Popov” approximation [13] valid fdF # 0
total number of excitationsVe, = [d7 (SWT(#H6W (7)) [i.e., replacing p(¥) by po(7) + 28p(7) in Eq. (3),
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p(F) by po(F) + 8p(7) in the diagonal, angp(7) by  w,, ¥,.(7,) fulfills the quantum Langevin equation

po(7) in the off-diagonal terms in Egs. (6) witho(7) = 5oz — (i V(7
Nolgo(F)?, 8p(F) = (8VT(F)5W (7). It is then ele- A0/t = ~liwe + 7 + 74Vl 1)

mentary to show that in Thomas-Fermi limif becomes — iV, O Fe(7, 1) — i(QL/2)

ro(T) = ro(0) [2 — f(T)]'/*, where f(T) = No(T)/N is X exp(—iw ) W(F, 1), (16)
the condensate fraction. The phase diffusion rate be- ] )
comes thena(T)/y/No(T) = 3ugy/No(T) /4w [ro(T)P = Wherew, and2y are the energy and natural linewidth

\/W[BM(N, T)/oN1/[2 — f(T)]. This expression of the excited state, wheredB,,.(7,¢) is the quantum
shows that forT # 0 the diffusion is only partially noise term describing vacuum fluctuations of the elec-

related to conservation @, and the nonconservation of tromagnetic field [26]. Equation (16) is derived using

N, reducessignificantly its rate. the Markov-Born approximation, and neglecting the
The phase diffusion can be detected, for instance bpesonant dipole-dipole interactions between the excited

measuring the beat note between the two interferin nd ground state atoms. It is thus valid only for a dilute

condensates [21]. It can also be measured in cohereREC: The (complex) rate, accounts for free evolution
light scattering. The coherently scattered field is deter®f the excited wave packet, i.e., its energy shift due to the

mined by the mean value of the atomic dipole operatoPhOtO” recoil,' and its sprgading rate. Such appro_ximation
QF 1) = (WHFE, )W,(7, 1), whereW, (7, 1) is the anni- works amazingly well in the conS|dere_d regime .of
hilation operator for excited atoms. In the presence of £arameters [29]. In the case of weak field scattering,

laser field of the Rabi frequendy; and photon frequency We solve Eq. (16) perturbatively with respecté and
| E...(r,t), and using Eq. (15) we obtain a&t= 0

t
lim(d(7, 1)) = Iim[ di’ e ot i==io (gt (7 (7 1))
t—x0 t—x0 0

~ Nlgpo(F )[Pe ! a7
Y+ ya + ilwe — wr) + ia/2N — iaP /N |-
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mean value of the dipole operator, while the spectrum of? term.
the elastic scattering is given by the square modulus of the
right-hand side of Eq. (17). The phase diffusion causes
a shift of the spectrumx a /N, whereas the fluctuations
of P cause a broadening «/+/N. Both effects vanish  [1] M.H. Andersonet al., Science269, 198 (1995).
when N — «: the shift asN /5, and the broadening [2] C.C. Bradleyet al., Phys. Rev. Lett75, 1687 (1995).
as N~1/10, provided <}32> = 0(1). For finite N = few [3] K.B. Davis et al., Phys. Rev. Lett75, 3969 (1995).
hundred thousands the latter of these effects is small (ofl4] M. Edwards and K. Burnett, Phys. Rev. Al, 1382
the order of a feww,), but should bedetectableat least (1995); P. A. Ruprechet al., ibid. 51, 4704 (1995).
if the condensation occurs in a tight trap, such as a far-off % $ E;g;:?glchﬁyzegé?/k’LF;TtyYSé 22‘7’-0 Lgﬁggef;)(lg%)'

O immarizing, we have. shown that the tandard ap.UT] VoL Ginburg and L. Piaevski, Sov: Phys. JET
v ) ) 858 (1958); L.P. Pitaevskii, Sov. Phys. JETB, 451

proach of associating .the_ condensate wave function Wlth (1961); E. P. Gross, J. Math. Phys. (N.¥,)195 (1963).

the zero mode annihilation operator has to be revisedig) \. Lewensteinet al., Phys. Rev. AS0, 2207 (1994).

to include the proper description of its quantum fluctua- [9] p.G. de GennesSuperconductivity of Metals and Alloys

tions. The present approach associates the condensate (W.A. Benjamin, New York, 1966).

wave function with the condensate “momentum” opera{10] A.L. Fetter and J. D. Waleck&Quantum Theory of Many-

tor. In effect, the Hamiltonian of quasiparticle excitations Particle SystemgMcGraw-Hill, New York, 1971).

contains a term proportional to the square of this “mo-{11] A.L. Fetter, Ann. Phys. (N.Y.J0, 67 (1972).

mentum” operator. The condensate is time dependent arlg2] A. Griffin,  Excitations in a Bose-Condesed Liquid

exhibits quantum phase diffusion. We have derived anay (Cambridge University Press, Cambridge, 1993).

lytic expressions for the phase diffusion constarat low ~ [-3] A- Griffin, Phys. Rev. B53, 9341 (1996).

- - .[14] N.M. Hugenholtz and D. Pines, Phys. Rell6 489
T. The effects of the phase diffusion are measurable n[\ (1959); P.C. Hohenberg and P.C. Martin, Ann. Phys.

off-resonant elastic light scattering. (N.Y.) 34, 291 (1965).
We want to thank Dr. Y. Castin, Dr. J.1. Cirac, Dr. R. [15] v.N. Popov, Functional Integrals and Collective Modes
Dum, Dr. W. HOSton, Dr. C.W. Gard|ner, Dr. K. Huang, (Cambndge University Press, Cambridge, 1987)

and Dr. P. Zoller for enlightening discussions. L.Y. also[16] M. Edwards et al., Phys. Rev. A53 R1950 (1996);
wants to acknowledge constructive criticism by Professor M. Edwardset al., Phys. Rev. Lett77, 1671 (1996).

3492



VOLUME 77, NUMBER 17

PHYSICAL REVIEW LETTERS

21 OTOBER 1996

[17] L. You et al., (to be published).

[18] J.-P. Blaizot and G. RipkaQuantum Theory of Finite
SystemgMIT Press, Cambridge, MA, 1986).

[19] Ph. Nozieres and D. Pinesfhe Theory of Quantum
Liquids (Addison-Wesley, New York, 1990), Vol. Il;
A.J. Legget, inBose-Einstein Condensatiordited by

A. Griffin, D.W. Snoke and S. Stringari (Cambridge

University Press, Cambridge, 1995).
[20] J. Javanainen and S.M. Yoo, Phys. Rev. Le®& 161
(1996).

[6W(F) — ¥t(7)]/2, 6% = g« + ziP for k # 0,7, =
2t/2+/N,andP’ = P. In such a representation the atomic
field can be written a¥ (¥ ) = (//O(F)g(l)-!: excitation part,
with g = (P — 2i0)/2 = [dF yo(F)¥(F); i.e., the
condensate wave function can indeed be associated with
the zero mode annihilation operator. However, in such a
representation, the Hamiltonian becomes more complex,
H = aP?)2 + Yz hwi(gi — 2P) (gi — 2 P).

[25] D.A. Huse and E.D. Siggia, J. Low Temp. Phy§, 137

(1982).

[21] Y. Castin and J. Dalibard (to be published); J.l. Cirac[26] C.W. Gardiner,Quantum Nois€Springer-Verlag, Berlin,

et al., (to be published).

1992).

[22] The situation is closely analogous to that of the center of27] An elegant U(1) symmetric approach has been proposed

mass motion for an atomic nucleus: if the center of mass
[28] E.M. Wright, D.F. Walls, and J.C. Garrison, Phys. Rev.

is fixed, the total momentum cannot be conserved.
[23] K. Huang, Statistical Mechanics(Wiley, New York,
1987).

by Y. Castin and R. Dum.

Lett. 77, 2158 (1996); F. Sols, Physica (Amsterdam)
194-196B 1389 (1994).

[24] 1t is worth noticing that there exists a unitary trans- [29] L. You, et al., Phys. Rev. A53, 329 (1996).

form U, such that Q' = UQUT =i [dF yp(F) X

3493



