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We map spin ladders withnl legs and couplingsJ 0 across all rungs andJs1 6 gd along the legs,
staggered in both directions, to a sigma model. Setting itsu ­ s2m 1 1dp (where it is known to be
gapless), we locate the critical curves in theg versusJ 0yJ plane at eachnl , and spinS. The phase
diagram is rich and has some surprises: When two gapped chains are suitably coupled, the combinati
becomes gapless. Withnl , g, andJ 0yJ to control, the prospects for experimentally observing any one
of these equivalent transitions are enhanced. We interpret our results in the framework of the resonatin
valence bond description of ladders. [S0031-9007(96)01410-X]
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With this paper we contribute to the explosive growt
in the theoretical and experimental studies of antiferro
magnetic spin chains and ladders. Recall Haldane’s [
mapping of the spin-S Heisenberg chain with Hamilton-
ian

H ­ J
X
n

Ssnd ? Ssn 1 1d (1)

to the nonlinear sigma model with euclidean action

S ­
Z

dxdt

"
2

1
2g

s=Fd2 1 i
u

4p
F ? ≠xF 3 ≠tF

#
.

(2)

Here F is a unit three vector, andu, which multipliesi
times the integer valued winding numberW , is

u ­ 2pS . (3)

An alternate derivation was given by Affleck [2].
Since u enters viaeiuW , (i) it matters only mod2p,

(ii) when u ­ 0, p the path integral is invariant under
x ! 2x (parity) under whichW ! 2W , and (iii) all
integer (half-integer) spin chains have essentiallyu ­ 0
spd. The u ­ 0 model is known to have exponentially
decaying correlations [3]. As foru ­ p, since the spin-
1
2 Bethe chain is gapless, so must be theu ­ p sigma
model, provided the mapping to the sigma model (mo
reliable for largeS) is valid down to spin-12 . In addition,
Shankar and Read [4] have shown independently that t
sigma model atu ­ p is massless by considering thet-
continuum Hamiltonian of the lattice regulated model. I
is also accepted that nonstaggered ladders withnl legs are
gapless only ifnlS is half-integer [5–9]. This is most
transparent when the interleg couplingJ 0 is much larger
than the intraleg couplingJ, for we can first solve the
problem ofnl spins along a rung, take the lowest energ
multiplet in each rung, and then couple them withJ,
thereby getting a single chain, about which everythin
is known. One then verifies that nothing changes a
J 0 is lowered. Equivalently [10,11], one can show tha
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the topological terms for the chains are additive, giving
u ­ 2pnlS. Different modifications of spin ladders can
also be considered by adding next-to-nearest neighb
couplings [12,13]. Coupled spin chains have been studie
by combining mean field theory techniques with exac
results for one chain [14].

The spin systems to be considered here have a ve
important feature:They have staggered weights. Let us
then begin with a single chain for which

Jsnd ­ Jsss1 1 s21dngddd (4)

is the coupling between sitesn and n 1 1. Notice that
g ! 2g amounts to sublattice exchangen ! n 1 1
and that the restrictionjgj , 1 keeps the interaction
antiferromagnetic. Affleck and Haldane [2,15] showed
that, in this case,

u ­ 2pSs1 1 gd (5)

so that wheng is varied from21 to 11, u passes an odd
multiple of p, i.e., the system is critical exactly2S times.
It is instructive to interpret these transitions in the valenc
bond terminology of Afflecket al. (AKLT) [16], wherein
each spin-S is viewed as a symmetrized product of2S
spinors. Asg is raised from21, the chain goes from
being fully dimerized with all the valence bonds (spinor
contractions) on odd-n links to being dimerized with all
valence bonds on the even-n links. As each spinor index
switches loyalty, it necessarily reaches a point when
can equally well go either way, producing a nonstaggere
i.e., a gapless spin-1

2 chain. (Theeffectiveinteraction of
these spin-12 degrees of freedom can be nonstaggered eve
though the original Heisenberg interaction is.)

We are interested here in staggered chains shown
Fig. 1, with antiferromagnetic horizontal couplings on the
ath leg sa ­ 1, . . . , nld obeying

Jasnd ­ Jsss1 1 s21dn1a11gddd , (6)

i.e., staggered in both directions. This is a novel case n
considered before, and it is by far the most interesting. W
© 1996 The American Physical Society 3443
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FIG. 1. A ladder with staggered couplingsJs1 6 gd along the
horizontal legs andJ 0 along the vertical rungs.

now show that such systems have a rich phase struc
in the g versus J 0yJ plane at eachnl and S. We
expect that these systems should also be experiment
realizable. Another family, with alternation in the le
direction only fJasnd ­ Jsss1 1 s21dngdddg, is interesting
only if J 0 is ferromagnetic, and will be briefly discusse
later.

Let us begin with Affleck’s derivation of the sigma
model Hamiltonian from the spin chain by pairing spin
forming their difference and sum, and turning these in
the sigma model field and its conjugate momentu
respectively, in the limit of largeS. This method
was generalized by Sierra [11] to uniform ladders. Th
main difference was thenl-fold increase in the number
of degrees of freedom due to the transverse labela ­
1, . . . , nl for the legs. A low energy analysis indicate
that only one of these modes remained low in energy a
defined the effective sigma model, while the rest vanish
asJ 0 goes to zero. This effective model hadu ­ 2pnlS
(independent of couplings), yielding the previously quote
result for nonstaggered ladders, namely, that only an o
number of half-integer chains were massless. We ha
been able to extend this derivation to the staggered ladd
and found

u ­ 2pSnlsss1 1 gfnl
sJ 0yJdddd , (7)

where

fnl sJ
0yJd ­

1

n2
l

"
dnl ,odd

1 2
X

m­1,3,...,nl21

1
sin2s pm

2nl
d

3
1

1 1
J 0

J cos2s pm
2nl

d

#
, (8)

with dnl ,odd equal to 1 ifnl is odd and zero otherwise. We
refer the reader to Sierra [11] for a very similar derivatio
in the uniform case.

The critical points follow from setting thisu equal
to odd multiples ofp . We explore two cases now
nl ­ 2, S ­

1
2 , 1, which should convince the reader of th

soundness of this method, and facilitate the discussion
the cases with largerS andnl.
3444
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Consider Fig. 2(a). On theg axis, where the chains
decouple, there is just one critical point corresponding
the nonstaggered spin-1

2 chain. We predict that, asJ 0

grows, this becomes two critical points that move towa
the walls jgj ­ 1. Although staggering or interchain
coupling are individually bad for criticality, a certain
combination seems to restore criticality.Can we believe
this? Considerg ­ 21. Each chain breaks up into
disconnected pairs, but the disconnected pairs of one ch
do not lie opposite to those of the other, but are displac
by one unit. When these get coupled byJ 0, we have
a “snake” chain that winds through the lattice. It is
spin-12 chain with alternating weights2J andJ 0. Clearly,
J 0 ­ 2J, and becomes critical as predicted by the theo
Thus the verticalJ 0 axis is seen to play the role of an
effective g for the snake. We display this by showin
three snakes in the left margin of Fig. 2, with vertic
bonds which are stronger than, equal to, and weaker t
the horizontal oness2Jd. The same thing happens o
g ­ 11, with n ! n 1 1. It is not as easy to understan
criticality as we go into the rectangle, but, by continui
of u, the critical curve must exist. There is, howeve
one caveat: The phase diagram in Fig. 2 does not stri
follow from the equation foru when J 0 ! 0; the two
critical curves coming down fromJ 0yJ ­ 2 on jgj ­ 1
will cut the g axis at distinct points on either side of th
origin instead of meeting there. But we know that th
sigma model mapping is doomed to fail asJ 0 ! 0: We
will not get one low energy field (the putative sigma mod
field) but two, since the gap that separated the sigma mo
field from the other vanishes withJ 0. Fortunately, on the
g axis, where the chains decouple, we know everythin

FIG. 2. (a) Phase diagram for staggered ladders withnl ­ 2
and spin-

1
2 . The solid lines represent critical lines correspon

ing to theu parameter being an odd multiple ofp (the dashed
line is just indicative for counting the number of critical line
betweeng ­ 21 andg ­ 11). We also show the bonds as
sociated with critical (nonstaggered) and gapped snakes (s
gered). (b) The inset shows the same as above, but with spi1.
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There is only one transition atg ­ 0 which the two chains
undergo simultaneously. The final phase diagram is t
union of what we know on theg axis (about decoupled
chains) with what we know off theg axis (from the sigma
model) [17]. Even off theg axis the sigma model is
only to be taken as a guide to the topology of the pha
diagram and not for the exact location of the critical curve
This is because the formula foru is generally not exact
except wheng ­ 0 and u ­ 2pnlS, in which case the
sigma model is invariant under parity and you canno
alter u by a small amount (say, of order1yS) without
violating parity. Along an arc [shown by a dotted line
in Fig. 2(a)] starting atg ­ 21, J 0 ­ 0 and ending at
g ­ 1, J 0 ­ 0, u rises continuously from0 to 4p. The
critical behavior is the same across any of these critic
curves and the gap will behave ast2y3, where t is the
control parameter, as predicted by Cross and Fisher [1
(There will be logarithmic corrections since theu ­ p

sigma model differs from the conformally invariant Wess
Zumino-Witten model by a marginally irrelevant operato
[4]. Chitra et al. [13] avoid the log by adding a special
value of nnn coupling to the spin-1

2 chain and find an
exponent very close to2y3.)

Let us examine Fig. 2(a) in terms of the resonatin
valence bond picture of White, Noack, and Scalapino [7
for a nonstaggerednl ­ 2, S ­

1
2 system, taking a typical

point P vertically above the origin in Fig. 2(a). In the
absence of defects, the bonds in each2 3 2 square reso-
nate between being vertical (with couplingJ 0) and hori-
zontal (with couplingJ). A defect forces the bonds to be
horizontal, staggered, and nonresonating until we rea
the next defect. This causes a linear confining potent
and restricts the excitations to spin-1. In our problem,
we are free to move off this point towards negativeg.
Now the staggered horizontal bond configuration betwe
the defects becomes more favorable, and we soon hit
critical curve on which the staggered bonds’ configuratio
becomes degenerate with the resonant ones, and
defects (spinons) are liberated. To the left of the critica
curve, confinement resumes, since we now reach a ph
where staggered bonds are favored over resonant ones
we drop vertically from the critical point to theJ 0 ­ 0
axis, we have decoupled staggered chains. The bonds
dimerized in the preferred sublattices. A pair of defec
now forces singlets on unfavorable bonds in the region
between. WhenJ 0 is turned on, the bonds can resonat
between the defects, since the defect has lined them
across each other. IncreasingJ 0 improves resonance,
and we finally hit the critical curve. All critical curves
may be characterized as those on which the defects
deconfined. As for the order parameter for the differen
phases, it is best to move up theg ­ 21 axis, where
we see that the valence bonds go from being horizon
to vertical. This is just the Affleck-Haldane transfer o
bonds on a chain, but along the length of the snake, whe
even/odd bonds turn into verticalyhorizontal bonds.
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Consider Fig. 2(b) for spin-1. Once again, ong ­ 21,
we get a spin-1 snake, which becomes gapless when
staggering equals61y2 according to the sigma model (5
[19]. The ratio of couplingsJ 0y2J determines the effective
staggering along the snake. SettingJ 0y2J equal tos1 6
1
2 dys1 7

1
2 d, we get critical valuesJ 0y2J ­ 3, 1y3. We

can adapt the nonlocal order parameter of den Nijs a
Rommelse [20] (rendered along the snake) to describe
Z2 symmetries.

Now for larger values ofS and nl . Each single-
chain transition on theg axis splits intonl transitions
as we turn onJ 0. The critical curves bend towards th
wall sjgj ­ 1d nearest to them. The parameteru rises
continuously from0 to 4pnlS as we follow the arc shown
in Fig. 2(a). There are, however, some differences.First,
we get honeycomb ladders instead of snakes for larg
nl . Next, we no longer have an easy way to see that
sigma model is even qualitatively correct when it locat
critical lines for us. However, we expect the model
be weakest whennl or S is small. Having passed the tes
there, it seems immune to further jeopardy. Finally, ifnlS
is half-integer, an odd number of lines will emanate fro
the origin, one of which will go straight up toJ 0 ­ `

(corresponding to nonstaggered odd-nl half-integer spin
chain ladders, known to be gapless). The top half
Fig. 3 illustrates this for the caseS ­ 1y2, nl ­ 3.

The phase diagrams have a natural extension toJ 0 ,

0, providedJasnd ­ Jsss1 1 gs21dnddd, i.e., the staggering
is only along the leg but not along the rung directio
(columnar staggering [21]). Now, if we lowerJ 0 from
0 to 2`, each transition point of the decoupled spin-S
chain splits intonl lines, and all2nlS of them flow down
to J 0 ­ 2` and terminate at theg’s corresponding to the
2nlS transitions of the spinnlS chain. The bottom half
of Fig. 3 shows this fornl ­ 3, S ­ 1y2. The similarity
between these diagrams and those of coupled quan
Hall layers will be discussed elsewhere.

To summarize, we have considered the phase diagram
ladders with staggered couplings by mapping to a sig

FIG. 3. Top half shows the phase diagram for stagger
ladders with nl ­ 3 and spin-12 with staggering in both
directions andJ 0 . 0, while the bottom describesJ 0 , 0 and
staggering only along the leg direction.
3445
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model and setting itsu to an odd multiple ofp . There
were a few surprises: We have examples here wher
coupling gapped chains leads to gapless chains beca
staggering and interchain couplings, which separately
stroy gaplessness, can conspire to keep the system
less. Thus two spin-1

2 chains with small staggering and
small J 0 can remain massless. At all these phase tran
tions, the gap will vanish ast2y3 (up to logarithms). We
anticipate confirmation of our predictions by Monte Carl
density matrix renormalization group, series expansio
etc. The sigma model complements these approaches
does not do very well numerically, but manages to give
one stroke the phase diagram for any choice ofS andnl .
For instance, we know that, ong ­ 61, where we have
a honeycomb ladder, each transition of a single chain g
transformed intonl transitions asJ 0 is varied. This ac-
cumulation of critical points (for any spin, half-integer o
otherwise) facilitates extrapolation to the ordered state
d ­ 2, although we cannot raisenl too much.

We urge experimentalists [22] to find ladders where
bonds alternate in one or both directions (6), and eith
g or J 0yJ, or both, can be varied at least slightly; o
to find the honeycomb ladders, an extreme case of bo
alternationsg ­ 61d. Once any such a ladder is found,
will have many transitions, whatever be the spin; a ladd
with four legs and spin 1 will have four transitions asJ 0

varied, say, by applying pressure.
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