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Phase Transitions in Staggered Spin Ladders
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We map spin ladders with; legs and couplingg’ across all rungs and(1 = y) along the legs,
staggered in both directions, to a sigma model. Setting its 2m + 1)@ (where it is known to be
gapless), we locate the critical curves in theversusJ’/J plane at eachy;, and spinS. The phase
diagram is rich and has some surprises: When two gapped chains are suitably coupled, the combination
becomes gapless. With, y, andJ’/J to control, the prospects for experimentally observing any one
of these equivalent transitions are enhanced. We interpret our results in the framework of the resonating
valence bond description of ladders. [S0031-9007(96)01410-X]

PACS numbers: 75.10.Jm, 75.30.Ds, 75.50.Ee

With this paper we contribute to the explosive growththe topological terms for the chains are additive, giving
in the theoretical and experimental studies of antiferro = 27n;S. Different modifications of spin ladders can
magnetic spin chains and ladders. Recall Haldane’s [1ldlso be considered by adding next-to-nearest neighbor
mapping of the spirs Heisenberg chain with Hamilton- couplings [12,13]. Coupled spin chains have been studied

ian by combining mean field theory techniques with exact
results for one chain [14].
H=J Z S(n) - S(n + 1) (1) The spin systems to be considered here have a very
) " ) ) , important feature: They have staggered weight&et us
to the nonlinear sigma model with euclidean action then begin with a single chain for which
S = f dxdr[—i(vfl))z + i%cb -9, ® X ach] J(n) =J(1 + (=1)"y) (4)

is the coupling between sitesandn + 1. Notice that
(20  y— —vy amounts to sublattice exchange— n + 1
and that the restrictioy| < 1 keeps the interaction

Here ® is a unit three vector, and, which multipliesi ! ;
plest antiferromagnetic. Affleck and Haldane [2,15] showed

times the integer valued winding numbir, is e
that, in this case,
0 =27S. 3

An alternate derivation was given by Affleck [2]. 0 =2m5(1 +v) (5)
Since # enters viae'®V, (i) it matters only mod27,  so that wheny is varied from—1 to +1, § passes an odd

(i) when 6 = 0, = the path integral is invariant under multiple of 7, i.e., the system is critical exacth§ times.

x — —x (parity) under whichW — —W, and (iii) all  Itis instructive to interpret these transitions in the valence

integer (half-integer) spin chains have essentidlly- 0  bond terminology of Afflecket al. (AKLT) [16], wherein

(7). The & = 0 model is known to have exponentially each spin§ is viewed as a symmetrized product 2§

decaying correlations [3]. As fa# = , since the spin- spinors. Asvy is raised from—1, the chain goes from

% Bethe chain is gapless, so must be the= 7 sigma  being fully dimerized with all the valence bonds (spinor

model, provided the mapping to the sigma model (mos€gontractions) on oda- links to being dimerize_d wi?h all

reliable for larges) is valid down to spins. In addition, ~valence bonds on the evenlinks. As each spinor index

Shankar and Read [4] have shown independently that th@witches loyalty, it necessarily reaches a point when it

sigma model ap = = is massless by considering the ~ ¢an equally well go either way, producing a nonstaggered,

continuum Hamiltonian of the lattice regulated model. Iti.€., a gapless spig-chain. (Theeffectiveinteraction of

is also accepted that nonstaggered ladders wyithgs are  these spiré— degrees of freedom can be nonstaggered even

gapless only ifn;S is half-integer [5—9]. This is most though the original Heisenberg interaction is.)

transparent when the interleg couplifigis much larger We are interested here in staggered chains shown in

than the intraleg coupling, for we can first solve the Fig. 1, with antiferromagnetic horizontal couplings on the

problem ofn; spins along a rung, take the lowest energyath leg(a = 1,...,n;) obeying

multiplet in each rung, and then couple them with . nta+tl

thereby getting a single chain, about which everything Jaln) = J(1 + (=1) 7). ©6)

is known. One then verifies that nothing changes ase., staggered in both directions. This is a novel case not

J' is lowered. Equivalently [10,11], one can show thatconsidered before, and it is by far the most interesting. We
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— ] (14Y) Consider Fig. 2(a). On the axis, where the chains
I(1-y) decouple, there is just one critical point corresponding to

the nonstaggered sp%%chain. We predict that, ag’

grows, this becomes two critical points that move toward
J (1+Y) Iy the walls |y| = 1. Although staggering or interchain
coupling are individually bad for criticality, a certain
combination seems to restore criticalityCan we believe
this? Considery = —1. Each chain breaks up into
disconnected pairs, but the disconnected pairs of one chain
do not lie opposite to those of the other, but are displaced
FIG. 1. A ladder with staggered couplingél + y) alongthe by one unit. When these get coupled B} we have
horizontal legs and’ along the vertical rungs. a “snlake" chain that winds through the lattice. It is a

. T ) . ;

now show that su/ch systems have a rich phase structuagli zzﬂlgwd\/\g;hcsgegg itrlirt]%;}l 28 r;i/d?cr;gé .by(i:]eea:h,e’:ory.
in the y versusJ'/J plane at eachn; and S. We Thus the vertical/’ axis is seen to play the role of an
expect that these systems should also be experlmentalg‘f_fective y for the snake. We display this by showing
rgaliz«_s\ble. Anather family, with aIterna_tion in th(_e leg three snakes in the Ieft.margin of Fig. 2, with vertical
dlrecpon _onIy [Ja(n) = J.(l + (_1-),17,)], IS Interesting s which are stronger than, equal to, and weaker than
only if J" is ferromagnetic, and will be briefly discussed the horizontal oneg2/). The same thing happens on
later. v = +1,withn — n + 1. Itis not as easy to understand

L(;etll:_'s bgl?ln'wn? Afﬂﬁfks _den;]/a'tlort: of t_h.e sigma criticality as we go into the rectangle, but, by continuity
model Hamiftonian from thé spin chain by pairing spins, 0, the critical curve must exist. There is, however,

forming their difference and sum, and turning these |ntoOne caveat: The phase diagram in Fig. 2 does not strictly

the sigma mpdel fiel_d _and its conjugate_ momentuMc oy from the equation for§ when J’' — 0; the two
respectlvely,. in the I!mlt of IargeS.' This method critical curves coming down frord’/J = 2 on |y| = 1
was ge_nerallzed by Sierra [11]. to unlfor_m ladders. Thewill cut the y axis at distinct points on either side of the
main difference was the,-fold increase in the number origin instead of meeting there. But we know that the

?f degre;es (t):] frieedomAdlue to the tranS\I/er_se.Iz?ji_)e%t q sigma model mapping is doomed to fail &— 0: We
>+« Tor the 1egs. ow energy analysis indicate ﬁi” not get one low energy field (the putative sigma model

T J, J. J, T T

1 1 ] O I I

;[jha;_t oTjI);honeﬁ?f tthese_modes rgrrralnﬁfl l?r:N n etnergy ﬁm eld) but two, since the gap that separated the sigma model
efine € efteclive sigma moael, whilé the rest vanish€qq, ' srom the other vanishes witH. Fortunately, on the

asJ’ goes to zero. This effective model hdd= 27n;S : : -
(independent of couplings), yielding the previously quotedy axis, where the chains decouple, we know everything:
result for nonstaggered ladders, namely, that only an odd

number of half-integer chains were massless. We have b)

been able to extend this derivation to the staggered ladder: T
and found L
0 = 2mSn(1 + yf,,(J'/]), 7
where T2 2L
1
fm(-]//-]) = ?|:6n,,odd
l
Iy 1 S S Iy
m=1,3,...,n,—1 Slnz(Tu)
1 On 4n
X — = | (8)
1 + 7 cos(z,) -1 0 +1
¥

with 8, .aq €qual to 1 ifr; is odd and zero otherwise. We

refer the reader to Sierra [11] for a very similar derivation 2)

in the uniform case. FIG. 2. (a) Phase diagram for staggered ladders witk= 2
The critical points follow from setting thi® equal and spins. The solid lines represent critical lines correspond-

to odd multiples of7. We explore two cases now: ing to thed parameter being an odd multiple of (the dashed
— 2 § = 1 1 which should . th d fth line is just indicative for counting the number of critical lines
n = 2,0 = 3, 1, which should convince the reader 01 tN€ panyeeny, = —1 andy = +1). We also show the bonds as-

soundness of this methOd, and facilitate the discussion gociated with critical (nonstaggered) and gapped snakes (Stag_
the cases with largef andn;. gered). (b) The inset shows the same as above, but withlspin-

3444



VOLUME 77, NUMBER 16 PHYSICAL REVIEW LETTERS 14 ©TOBER 1996

There is only one transition at = 0 which the two chains Consider Fig. 2(b) for spin- Once again, oy = —1,
undergo simultaneously. The final phase diagram is theve get a spint snake, which becomes gapless when its
union of what we know on thes axis (about decoupled staggering equals1/2 according to the sigma model (5)
chains) with what we know off the axis (from the sigma [19]. The ratio of couplingg’/2J determines the effective
model) [17]. Even off they axis the sigma model is staggering along the snake. Settifg2J equal to(1 *
only to be taken as a guide to the topology of the phasé)/(l ¥ %), we get critical valued’/2J = 3,1/3. We
diagram and not for the exact location of the critical curvescan adapt the nonlocal order parameter of den Nijs and
This is because the formula fer is generally not exact Rommelse [20] (rendered along the snake) to describe the
except wheny = 0 and 8 = 27n;S, in which case the Z, symmetries.
sigma model is invariant under parity and you cannot Now for larger values ofS and n,. Each single-
alter & by a small amount (say, of orddr/S) without chain transition on they axis splits inton; transitions
violating parity. Along an arc [shown by a dotted line as we turn onJ/. The critical curves bend towards the
in Fig. 2(a)] starting aty = —1,J' = 0 and ending at wall (|y| = 1) nearest to them. The parametgrrises
vy = 1,J/ =0, 6 rises continuously fron to 477. The  continuously fromD to 477n,S as we follow the arc shown
critical behavior is the same across any of these criticaih Fig. 2(a). There are, however, some differencesst,
curves and the gap will behave a%°, wherer is the we get honeycomb ladders instead of snakes for larger
control parameter, as predicted by Cross and Fisher [18};. Next, we no longer have an easy way to see that the
(There will be logarithmic corrections since ti#le= 7=  sigma model is even qualitatively correct when it locates
sigma model differs from the conformally invariant Wess-critical lines for us. However, we expect the model to
Zumino-Witten model by a marginally irrelevant operator be weakest when,; or S is small. Having passed the test
[4]. Chitraet al.[13] avoid the log by adding a special there, it seems immune to further jeopardy. Finallyy,i§
value of nnn coupling to the spi%-chain and find an is half-integer, an odd number of lines will emanate from
exponent very close t»/3.) the origin, one of which will go straight up td’ = oo

Let us examine Fig. 2(a) in terms of the resonating(corresponding to nonstaggered oddhalf-integer spin
valence bond picture of Whitef Noack, and Scalapino [7khain ladders, known to be gapless). The top half of
for a nonstaggered, = 2, S = 5 system, taking a typical Fig. 3 illustrates this for the case= 1/2,n; = 3.
point P vertically above the origin in Fig. 2(a). In the  The phase diagrams have a natural extensiof’ ta
absence of defects, the bonds in eack 2 square reso- 0, providedJ,(n) = J(1 + y(=1)"), i.e., the staggering
nate between being vertical (with couplidg) and hori- is only along the leg but not along the rung direction
zontal (with coupling/). A defect forces the bonds to be (columnar staggering [21]). Now, if we lowet from
horizontal, staggered, and nonresonating until we reacf to —«, each transition point of the decoupled sgin-
the next defect. This causes a linear confining potentiathain splits intor; lines, and aln;S of them flow down
and restricts the excitations to spin- In our problem, toJ’ = — and terminate at thg’s corresponding to the
we are free to move off this point towards negative 2n;S transitions of the spim;S chain. The bottom half
Now the staggered horizontal bond configuration betweenf Fig. 3 shows this for; = 3,5 = 1/2. The similarity
the defects becomes more favorable, and we soon hit tHeetween these diagrams and those of coupled quantum
critical curve on which the staggered bonds’ configuratiorHall layers will be discussed elsewhere.
becomes degenerate with the resonant ones, and theTo summarize, we have considered the phase diagram of
defects (spinons) are liberated. To the left of the criticaladders with staggered couplings by mapping to a sigma
curve, confinement resumes, since we now reach a phase
where staggered bonds are favored over resonant ones. If
we drop vertically from the critical point to thg’ =
axis, we have decoupled staggered chains. The bonds are >0
dimerized in the preferred sublattices. A pair of defects T 3n 5 g:;;g;?:g
now forces singlets on unfavorable bonds in the region in
between. Whery' is turned on, the bonds can resonate n =3
between the defects, since the defect has lined them up -1 +1

PN S=1/2 v 0 Y

across each other. Increasing improves resonance,
and we finally hit the critical curve. All critical curves J<0
may be characterized as those on which the defects are Columpar
deconfined. As for the order parameter for the different n 3n 5n Staggering
phases, it is best to move up the= —1 axis, where
we see that th? \{alence bonds go from being horizontati'IG. 3. Top half shows the phase diagram for staggered
to vertical. Thl_s is just the Affleck-Haldane transfer of |3qders with n, =3 and spini with staggering in both
bonds on a chain, but along the length of the snake, whergrections and/’ > 0, while the bottom describes’ < 0 and
even/odd bonds turn into vertigéorizontal bonds. staggering only along the leg direction.
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