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The quantum Heisenberg antiferromagnet (HAF) is approached by thepure-quantum self-consistent
harmonic approximationthat reduces it to an effective classical HAF model. The effective exchange
enters the classical-like expression for thermal averages as a temperature scale, so that one can obtain
in a simple way the quantum spin correlation length from its classical counterpart. For any spin
valueS the results compare very well with those from experiments, quantum Monte Carlo simulations,
and high-T expansion. The adequacy of our theory supports arguments previously raised against the
quantitative validity of the mapping of the quantum HAF onto the quantum nonlinear sigma model.
[S0031-9007(96)01445-7]
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The square-lattice Heisenberg antiferromagnet (HAF
has attracted much attention in recent years for i
connection with the magnetic copper ion planes of high
Tc superconductors and their parent compounds [1]. T
model Hamiltonian reads

Ĥ ­
J
2

X
i,d

Ŝi ? Ŝi1d , (1)

where the indexi ; si1, i2d runs over the sites of the
square lattice, andd ; s61, 61d represents the displace-
ments of the 4 nearest neighbors of each site. The qua
tum spin operatorŝSi satisfyjŜij

2 ­ SsS 1 1d.
The nature of the ground state of this Hamiltonian i

a challenging problem, as the existence of an order
ground state, though rigorously proven forS $ 1 [2], is
still not certain forS ­ 1

2 . Moreover, experimental in-
vestigations of several antiferromagnetic compounds wi
differentS show a spin dependence of the thermodynam
quantities which has not yet received a definite theoretic
explanation. Most theoretical approaches are based on
seminal ideas of Ref. [3], where the continuum-limit map
ping of Eq. (1) into the quantum nonlinear sigma mode
(QNLsM) is assumed to reproduce its low-wave vecto
and low-temperature behavior, for any value of the spin

Using the renormalization group approach the depe
dence of the critical behavior on the coupling has bee
studied, on the basis of a correspondence [3,4] that giv
the coupling parameterg in terms of the spin stiffness and
the spin-wave velocity. From this analysis it appears th
real antiferromagnets with Hamiltonian (1) are always i
the so-calledrenormalized-classicalregime atT ­ 0, so
that a classical-like ordered ground state turns out to
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appropriate. Unfortunately, the correlation lengthjsT d
derived from the QNLsM [5] is not always in agreement
with the experimental data and with the high-temperatu
expansion (HTE) [6] of system (1); this deviation, indee
increases whenS increases, at variance with any sem
classical expansion. Furthermore, it is unclear what
the correct classical parameterS̃ associated with the spin
length:S, or

p
SsS 1 1d, or others likeS 1

1
2 .

In this Letter we present a different approach, bas
on the effective Hamiltonian method [7], that maintain
the nonuniversal lattice corrections and does not suffer
uncertainty about the expansion parameter.

The mapping onto the QNLsM (when possible) is
quite powerful as far as one looks for the existenc
of fixed points different from the classical one, but th
decimation procedure cannot furnish good values of t
renormalized parameters, since it treats at the same le
both the classical and the quantum part of the fluctuatio
of high-wave vector modes. Therefore, it is much mo
appropriate to treat within one-loop (i.e., self-consiste
Gaussian) approximationthe purely quantum fluctuations
only, yielding a temperature dependent renormalizatio
of the exchange interaction for a classical-like effectiv
Hamiltonian which contains all the original wave vector
In this way, one preserves the classical nonlinearities d
to the peculiar behavior of classical spin variables movin
on a sphere of radius̃S. We then assume an ordere
ground state, perturbatively described from the Néel o
and determined at the one-loop level.

At variance with previous applications [8] of the ef
fective Hamiltonian method to anisotropic spin system
the isotropy of the problem prevents us to use the Villa
© 1996 The American Physical Society 3439
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spin-boson transformation, suitable for easy-plane s
tems only. Other well-known spin-boson transformation
are the Holstein-Primakoff (HP) and the Dyson-Malee
(DM) ones. Both of them break the symmetry of th
problem, and at first glance they seem to have inconv
niences. Indeed, at finite temperatures the ordered gro
state is unstable against low-wave vector thermal fluctu
tions which, however, have a more and more pronounc
classical character; in other words, the symmetry of t
isotropic two-dimensional HAF, and hence the vanishin
of the order parameter (staggered magnetization), is
stored by essentially classical nonlinear excitations.

It is indeed the crucial point of our approach to kee
separate the contribution of thepurely quantumfluctua-
tions from the classical contribution. While the forme
is evaluated in self-consistent Gaussian approximatio
the latter is fully accounted for by means of the effec
tive classical Hamiltonian. The symmetry of the prob
lem can be eventually restored by casting it in the for
of a spin Hamiltonian. This permits the use of the H
or the DM spin-boson transformations in a wide range
temperatures.

The procedure leading to the effective Hamiltonian
based on the above-mentioned separation, possible tha
to the path-integral formalism, between classical a
purely quantum fluctuations. It is described in Ref. [7
and we named itpure-quantum self-consistent harmoni
approximation(PQSCHA). In particular, in Refs. [8] it
has been used for anisotropic spin systems. The rec
goes through the Weyl symbols [9] for the spin operator
while their explicit form can be determined in the HP
framework with a laborious ordering procedure, followe
by a resummation [10], at the one-loop level (which w
are dealing with) DM is equivalent to HP and turns out t
be formally much simpler.

Let us consider a bipartite lattice, consisting of apositive
and anegativesublattice (for a site labeledi the sublattice
signs2di ­ 61 is defined consistently with this terminol-
ogy). We introduce the DM transformation by writing the
spin operatorŝSz

i , Ŝ6
i ­ Ŝx

i 6 iŜ
y
i in terms of boson op-

eratorssây
i , âid; for those sitting on positive sites we trans

form as

Ŝ1
i ­ s2Sd1y2âi, Ŝz

i ­ S 2 â
y
i âi ;

Ŝ2
i ­ s2Sd21y2â

y
i s2S 2 â

y
i âid , (2)
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and on the negative sites we use the transformation
tained from the above one replacingŜ

m
i ! 2sŜmdy, with

m ­ z, 1, and 2. Both transformations are canonica
(the spin commutation relations are a consequence
fâi, â

y
i g ­ 1) and satisfyjŜj2 ­ SsS 1 1d; furthermore,

they are normally ordered in the boson operatorssây, âd,
and their replacement in the Hamiltonian (1) gives rise
a normal ordered boson Hamiltonian with quartic intera
tion. Its normal symbolHNsap, ad is simply obtained by
replacing the Fock operators with commuting holomorph
variables,sây, âd ! sap, ad. Then, the Weyl symbol [7,9]
H sap, ad for Ĥ sây, âd can be obtained from the nor-
mal symbolHNsap, ad using the relation [9]H sap, ad ­
exps2 1

2 ≠ap ≠adHNsap, ad.
Using this recipe with the DM spin operators of th

positive sublattice (2) it is immediately found that the e
fective spin length̃S ; S 1

1
2 naturally appears,

S1
i ­ s2Sd1y2ai, S2

i ­ s2Sd21y2s2S̃ 2 ap
i aidap

i ,

Sz
i ­ S̃ 2 ap

i ai ; (3)

for the negative sublattice the Weyl symbols are obtain
by replacing S

m
i ! 2sŜm

i dp; we have indeedjSij
2 ­

Sz
i Sz

i 1 S1
i S2

i ­ S̃2.
Consequently, the Weyl symbol of the Hamiltonia

is readily found, but we prefer to express it in term
of the phase-space variablesspi, qid that are the Weyl
symbols for phase-space operatorssp̂i, q̂id corresponding
to sây

i , âid, such thatfq̂i, p̂ig ­ iS̃21. Eventually, the
Weyl symbol of the boson Hamiltonian becomes

H ­ 2
JS̃2

2

X
i,d

∑
s1 2 z2

i d s1 2 z2
i1dd

1

µ
1 2

z2
i 1 z2

i1d

4

∂
sqiqi1d 2 pipi1dd

1 is2di z2
i 2 z2

i1d

4
sqipi1d 1 piqi1dd

∏
, (4)

wherez2
i ; sq2

i 1 p2
i dy2. Its minimum configuration is

the Néel one, given byhpi,0 ­ 0, qi,0 ­ 0j.
The corresponding effective Hamiltonian is easil

found to be
Heff ­ 2
JS̃2

2

X
i,d

∑
1 2 u2sz2

i 1 z2
i1dd 1 z2

i z2
i1d 1

µ
u2 2

z2
i 1 z2

i1d

4

∂
sqiqi1d 2 pipi1dd

1 is2di z2
i 2 z2

i1d

4
sqipi1d 1 piqi1dd

#
1 T

X
k

ln
sinhfk

fk
2 NJS̃2 D 2

2
. (5)
m
he
d

The renormalization parameteru2 ; 1 2 D y2 repre-
sents the effect of pure-quantum fluctuations,

D ­
1

S̃N

X
k

s1 2 g2
kd1y2

µ
cothfk 2

1
fk

∂
, (6)
where gk ­ scoskx 1 coskydy2, and depends on the
frequency spectrum throughfk ­ vkys2S̃T d. We recall
[7] that in order to manage with the PQSCHA in a syste
with many degrees of freedom we must also apply t
so-called “low-coupling approximation.” The low an
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intermediate temperature calculation of the pure-quant
renormalization parameters deserves a more accu
approach, since we are dealing with a system with stro
classical anharmonicity. In this temperature range w
have to take the fully renormalized (i.e., including th
classical contribution) frequency spectrum. At high
temperatures,D decreases and is less dependent on
frequency spectrum asfk tends to vanish. Therefore we
have the self-consistent definition

fk ­
2estd

S̃t
s1 2 g2

kd1y2, (7)

where t ; TysJS̃2d is the reduced temperature; the fre
quency renormalization parameterestd is estd ­ u2std
for t ! `, while at low temperatureestd ­ k2std ; 1 2

sD 1 Dcldy2 ­ u2 2 Dcly2, with

Dcl ­
1

S̃N

X
k

s1 2 g2
kd1y2 1

fk
­

t
2k2 . (8)

For increasing temperature, due to the lack of lon
range order, only spin waves with wavelengthl & 2j

(j is the spin correlation length) survive in the system. N
glecting this, the well-known instability of the frequenc
renormalizationk2 is found fort ­ u4. This unphysical
feature can be washed out by inserting a correlative c
off (in the antiferromagnetic Brillouin zone) in calculating
Dcl, thus smoothly connecting with the high-temperatu
regime.

By rescaling the classical phase-space variables
spi, qid ! su pi, u qid the effective Hamiltonian can be
cast in the same form of Eq. (4), multiplied by th
factor u4, plus uniform terms. Then, using the classic
counterpart of the DM transformation (2) for spins o
lengthu2S̃, we transform to classical spin variablesu2S̃s,
such thatjsj ­ 1. We eventually have

Heff ­ 2
JS̃2u4

2

X
i,d

si ? si1d 1 NJS̃2G std . (9)

The term Gstd ­ tN21
P

k lnfsinhfkysu2fkdg 2 2u2D
is uniform and does not play any role in calculatin
thermal averages. In this Hamiltonian the effects
quantum fluctuations are given by

(i) the log term that transforms the spin-wave contrib
tion to the free energy from classical to quantum;

(ii) the renormalized exchange integralJ ! Jeff ­
u4 J that depends on the temperaturet and on the spin
quantum numberS;

(iii) the appearance of the factor̃S ­ S 1
1
2 as the

classical spin length for the semiclassical renormalizati
approach; this is a direct consequence of the PQSC
recipe, without any empirical observation.

At lowest temperatureHeff reproduces all the results
of the self-consistent harmonic approximation (SCHA
giving the one-loop renormalization effect as long as t
self-consistent Eq. (8) fork2 admits a positive solution.
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At t ­ 0, k2 ­ u2 gives the one-loop quantum correction
to the spin stiffness, and decreases with decreasingS̃;
the instability valueu2 ­ 0 is not reached using physical
values ofS. At high temperatureHeff approaches the
classical situation. At intermediate temperature there i
an interval, whose width is larger the smaller isS, where
nonlinear quantum effects (due to higher order terms i
the coupling) are significant; this fact could be interpreted
as the presence of the so-calledquantum-criticalregime
(QCR) [3,4].

The parameteru4sS, td gives the temperature dependent
effects of the quantum fluctuations on the intensity o
the exchange for different values of the spin. The
PQSCHA expression of the spin-spin correlation function
in terms of a classical-like average with the effective
Hamiltonian iss2drkŜi ? Ŝi1rl ­ s2dr S̃2u4

r ksi ? si1rleff,
andksi ? si1rleff appears to be equal to the classical-limit
average, but at the temperaturetcl ­ tyu4sS, td.

The parameteru4
r is related to the fluctuation of spins

at a distancer, and it tends to a constant asr ­ jrj
increases. This means that the temperature behavior
the quantum correlation lengthjstd is connected with its
classical counterpartjclstd by the equality

jstd ­ jclstcld, tcl ­ tyu4std , (10)

i.e., jstd can be obtained for any spin length starting
from the classicaljclstd. Values for the latter in the
range 1 & j & 8 have been obtained by Monte Carlo
simulation [11] and by HTE [6].

We ourselves have performed some Monte Carlo
simulations in order to extend this data range: using
256 3 256 lattice the classical values we have deter-
mined arejs0.70d ­ 7.8 6 0.1, js0.65d ­ 13.2 6 0.3,
js0.60d ­ 27.3 6 0.5, and js0.57d ­ 52.0 6 1.0. All
the available classical data sets agree with each othe

FIG. 1. Correlation lengthjstd vs reduced temperaturet ­
TyJS̃2, for spinS ­ ` (classical),52 , 1, and1

2 . The continuous
lines are the low- and high-temperature results of our theory
and the dashed line represents the application of the cuto
condition for long-wavelength spin waves. The filled circles
are the classical and quantum results from high-temperatu
expansion [6]; the open circles are our new Monte Carlo
simulation results. The dash-dotted line is a fit to the classica
data.
3441
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FIG. 2. Correlation lengthjstd for spin S ­
1
2 . Squares:

experimental data [12,13] for Sr2CuO2Cl2; triangles and dia-
monds: data for La2CuO4 from neutron scattering [15] and from
63Cu NQR relaxation [14] experiments, respectively; crosse
quantum Monte Carlo results [16]. Lines as in Fig. 1.

so we have used the data of Ref. [6] and ours, and fit
them by a (polynomial3 exponential) curve in the range
1 & j & 50.

The quantum counterparts of this classical curve, o
tained by renormalization of the temperature scale for t
spin length valuesS ­

1
2 , 1, and 5

2 , are plotted in Fig. 1
together with the HTE results [6].

In Fig. 2 we report our result forjstd at spin S ­
1
2

together with experimental data for Sr2CuO2Cl2 [12,13],
for La2CuO4 [14,15], and with quantum Monte Carlo
results [16]. The region where nonlinear quantum effec
are relevant ranges fromt * 0.5 to t & 0.75, which
agrees with the range of QCR predicted in Ref. [4].

In Fig. 3 we compare our curve at spinS ­ 1 with
experimental data for La2NiO4 [17] and for K2NiF4

FIG. 3. Correlation length for spinS ­ 1. Triangles: exper-
imental data [17] for La2NiO4; squares: experimental data [13
for K2NiF4. Lines as in Fig. 1.
3442
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[13]. For this spin value, the quantum effects are le
relevant and quantum nonlinear effects are reduced wit
a shorter interval.

Our results appear to explain all the experimental da
[12–15,17] for different values ofS without any fitting
parameters. They also agree with the HTE results
Ref. [6], thus confirming the inadequacy of the approa
by mapping the quantum HAF onto the QNLsM. Most
importantly, however, we can move to much lower tem
peratures where significant experimental data are av
able. On the other hand, the good agreement we still fi
for S ­

1
2 is an indirect proof that the ground state is o

dered and that for nearest-neighbor interaction the cr
cal value ofS is smaller than any physical spin value
Finally, we approach with continuity the high-T region,
also owing to the presence of the effective spin lengthS̃
unambiguously determined by the theory itself.
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