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The quantum Heisenberg antiferromagnet (HAF) is approached bguteequantum self-consistent
harmonic approximatiorthat reduces it to an effective classical HAF model. The effective exchange
enters the classical-like expression for thermal averages as a temperature scale, so that one can obtain
in a simple way the quantum spin correlation length from its classical counterpart. For any spin
value S the results compare very well with those from experiments, quantum Monte Carlo simulations,
and high? expansion. The adequacy of our theory supports arguments previously raised against the
quantitative validity of the mapping of the quantum HAF onto the quantum nonlinear sigma model.
[S0031-9007(96)01445-7]

PACS numbers: 75.10.Jm, 05.30.—d, 75.40.Cx

The square-lattice Heisenberg antiferromagnet (HAFgappropriate. Unfortunately, the correlation lengttir)
has attracted much attention in recent years for itglerived from the QNkrM [5] is not always in agreement
connection with the magnetic copper ion planes of highwith the experimental data and with the high-temperature
T. superconductors and their parent compounds [1]. Thexpansion (HTE) [6] of system (1); this deviation, indeed,

model Hamiltonian reads increases wher$ increases, at variance with any semi-
N J o classical expansion. Furthe[more, it is unclear what is
H = > > 8- Siva. (1) the correct classical paramet@rmssociated with the spin
id

length:S, or+/S(S + 1), or others likeS + %

where the indexi = (i1, i2) runs over the sites of the In this Letter we present a different approach, based
square lattice, and = (1, =1) represents the displace- on the effective Hamiltonian method [7], that maintains
ments of the 4 nearest neighbors of each site. The quaghe nonuniversal lattice corrections and does not suffer of
tum spin operators; satisfy|S;|> = S(S + 1). uncertainty about the expansion parameter.

The nature of the ground state of this Hamiltonian is The mapping onto the QNEM (when possible) is
a challenging problem, as the existence of an ordereduite powerful as far as one looks for the existence
ground state, though rigorously proven for= 1 [2], is  of fixed points different from the classical one, but the
still not certain forS = % Moreover, experimental in- decimation procedure cannot furnish good values of the
vestigations of several antiferromagnetic compounds witlienormalized parameters, since it treats at the same level
differentS show a spin dependence of the thermodynamidoth the classical and the quantum part of the fluctuations
quantities which has not yet received a definite theoreticabf high-wave vector modes. Therefore, it is much more
explanation. Most theoretical approaches are based on tlag@propriate to treat within one-loop (i.e., self-consistent
seminal ideas of Ref. [3], where the continuum-limit map-Gaussian) approximatiotie purely quantum fluctuations
ping of Eqg. (1) into the quantum nonlinear sigma modelonly, yielding a temperature dependent renormalization
(QNLoM) is assumed to reproduce its low-wave vectorof the exchange interaction for a classical-like effective
and low-temperature behavior, for any value of the spin. Hamiltonian which contains all the original wave vectors.

Using the renormalization group approach the depenh this way, one preserves the classical nonlinearities due
dence of the critical behavior on the coupling has beero the peculiar behavior of classical spin variables moving
studied, on the basis of a correspondence [3,4] that givesn a sphere of radius. We then assume an ordered
the coupling parameter in terms of the spin stiffness and ground state, perturbatively described from the Néel one
the spin-wave velocity. From this analysis it appears thaand determined at the one-loop level.
real antiferromagnets with Hamiltonian (1) are always in At variance with previous applications [8] of the ef-
the so-calledenormalized-classicalegime atT = 0, so  fective Hamiltonian method to anisotropic spin systems,
that a classical-like ordered ground state turns out to b#he isotropy of the problem prevents us to use the Villain
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spin-boson transformation, suitable for easy-plane sysand on the negative sites we use the transformation ob-
tems only. Other well-known spin-boson transformationstained from the above one replacif§ — —(5#)t, with

are the Holstein-Primakoff (HP) and the Dyson-Maleevu = z, +, and —. Both transformations are canonical
(DM) ones. Both of them break the symmetry of the(the spin commutation relations are a consequence of
problem, and at first glance they seem to have inconve[—ai,&;f] = 1) and satisfy|S|> = S(S + 1); furthermore,
niences. Indeed, at finite temperatures the ordered groundey are normally ordered in the boson operatars a),
state is unstable against low-wave vector thermal fluctuaand their replacement in the Hamiltonian (1) gives rise to
tions which, however, have a more and more pronounceg normal ordered boson Hamiltonian with quartic interac-
classical character; in other words, the symmetry of theijon. Its normal symbolHy(a*, a) is simply obtained by
isotropic two-dimensional HAF, and hence the vanishingeplacing the Fock operators with commuting holomorphic
of the order parameter (staggered magnetization), is réariables(at,a) — (a*,a). Then, the Weyl symbol [7,9]
stored by essentially classical nonlinear excitations. H (a*,a) for g:[(&‘r’&) can be obtained from the nor-

It is indeed the crucial point of our approach to keepyg symbolZHx (a*, a) using the relation [9FH (a*, a) =
separate the contribution of thrurely quantunfluctua- exp(—%a L0.) Hn(a*, a).

tions from the classical contribution. While the former Using this recipe with the DM spin operators of the
![?Iee}lailtg?tiesd f&“yszg;%ﬁgéegr %3“;322?&%%'rggggrbositive sublattice (2) it is immediately found that the ef-
tive classical Hamiltonian. The symmetry of the prob-fecnve spin lengtts = § + 5 naturally appears,
lem can be eventually restored by casting it in the form 12 _ Y . s
of a spin Hamiltonian. This permits the use of the HP Si = (285)"“ai, Si = (28) 7728 — ajaia;
or the DM spin-boson transformations in a wide range of ¢z — g _ ata;: 3)
temperatures. ! !
The procedure Ieadlng.to the effectl\_/e Ham|It_on|an Stor the negative sublattice the Weyl symbols are obtained
based on the above-mentioned separation, possible tha replacing S* — —(§*)*: we have indeed|S;|? —
to the path-integral formalism, between classical an : g JES*SCT]_ L 2 v !
pu;ely quantur;_ﬂuctuatlons. It |s|fdescr|_bed mhRef. [7.]’ lClonse(lquelntly tHe Weyl symbol of the Hamiltonian
and we named Ipure-quantum self-consistent harmonic . - ' L
approximation(POSCHA). In particular, in Refs. [8] it is readily found, but we prefer to express it in terms

has been used for anisotropic spin systems. The recipmc the phase-space variablés;, ¢;) that are the Weyl

goes through the Weyl symbols [9] for the spin operators"c'ei/mboIS for phase-space operatdps ;) corresponding

o b 5] = 51
while their explicit form can be determined in the Hp t (ali ’al)b Sluihhth%t[q"p‘] 'lIS ; Iiventually, the
framework with a laborious ordering procedure, followedWeY! symbol of the boson Hamiltonian becomes
by a resummation [10], at the one-loop level (which we

are dealing with) DM is equivalent to HP and turns out to H = _J_52 [(1 -z (1 = z84q)
be formally much simpler. 2 ' '
Let us consider a bipartite lattice, consisting gisitive 2+ g
and anegativesublattice (for a site labelddthe sublattice + <1 - T)(Qi‘]im = PiPi+a)
sign(—)! = +1 is defined consistently with this terminol- ) )
ogy). We introduce the DM transformation by writing the N ST Zid, o
spin operatorss?, §;" = 8¢ + i§{ in terms of boson op- i) 4 (dipiva + p,qu)}, @)

erators(&if , a;); for those sitting on positive sites we trans- 5 5 5
form as wherezi = (¢i + pi)/2. Its minimum configuration is

o+ _ 125 ¢t — o _ Ata the Néel one, given bip;o = 0, gip = 0}.
f' (28) &, Si § = 4y di; The corresponding effective Hamiltonian is easily
57 = (25)ai 25 — af ay). @ | found to be
JS? i+
j-[eff = —7 |:1 - 02(Zi2 + Zi2+d) + ZiZZi2+d + <02 - %)(Qi%%—d — PiPi+d)
id

sinhf

2
- NJ§? DT. (5)

2 2
. . Z- —_ Z-
() (ipiea + Pi4i+d)j| + 7Y In
k

The renormalization parameté? = 1 — D /2 repre- | where vk = (cosk, + cosky)/2, and depends on the
sents the effect of pure-quantum fluctuations, frequency spectrum throughy = wi/(25T). We recall
[7] that in order to manage with the PQSCHA in a system
_ L Sa- y2)1/2<cothfk _ L) (6) With many degrees of freedom we must also apply the
SN 4 k fx/’ so-called “low-coupling approximation.” The low and
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intermediate temperature calculation of the pure-quantumt + = 0, k> = 2 gives the one-loop quantum correction
renormalization parameters deserves a more accurate the spin stiffness, and decreases with decreaSing
approach, since we are dealing with a system with stronthe instability valueg> = 0 is not reached using physical
classical anharmonicity. In this temperature range wevalues ofS. At high temperatureH.;; approaches the
have to take the fully renormalized (i.e., including theclassical situation. At intermediate temperature there is
classical contribution) frequency spectrum. At higheran interval, whose width is larger the smalletSiswhere
temperaturesD decreases and is less dependent on thaonlinear quantum effects (due to higher order terms in
frequency spectrum af& tends to vanish. Therefore we the coupling) are significant; this fact could be interpreted

have the self-consistent definition

_ 2e(t) ‘}’1%)1/2, @)

fk_ Sl (1_

as the presence of the so-callgdantum-criticalregime
(QCR) [3.4].

The parametef*(S, ) gives the temperature dependent
effects of the quantum fluctuations on the intensity of

wherer = T/(J§?) is the reduced temperature; the fre-the exchange for different values of the spin. The

quency renormalization parametets) is e(f) = 6%(z)
for t — o, while at low temperature(r) = «*(r) = 1 —
(D + Dy)/2 = 6> — D /2, with

PQSCHA expression of the spin-spin correlation function
in terms of a classical-like average with the effective
Hamiltonian is(=)*(S;i - Si+r) = (—)*520si = Sisrerr,

and(s; - sj+r)eff Appears to be equal to the classical-limit

L _t

- (8) average, but at the temperatuge= 1/6*(S, t).
Sk 2k

The parameted; is related to the fluctuation of spins
at a distancer, and it tends to a constant as= |r|

For increasing temperature, due to the lack of longincreases. This means that the temperature behavior of
range order, only spin waves with wavelength< 2¢  the quantum correlation leng#(z) is connected with its
(¢ is the spin correlation length) survive in the system. Ne-classical counterpag,(¢) by the equality
glecting this, the well-known instability of the frequency . a4
renormalizatiork? is found fors = #*. This unphysical £(1) = galra), e = 1/0°(1), (10)
feature can be washed out by inserting a correlative cutze., £(r) can be obtained for any spin length starting
off (in the antiferromagnetic Brillouin zone) in calculating from the classicalé. (). Values for the latter in the
D.1, thus smoothly connecting with the high-temperaturerange 1 < ¢ < 8 have been obtained by Monte Carlo
regime. simulation [11] and by HTE [6].

By rescaling the classical phase-space variables as We ourselves have performed some Monte Carlo
(pi>qi) — (0 pi, 0 qi) the effective Hamiltonian can be simulations in order to extend this data range: using a
cast in the same form of Eq. (4), multiplied by the 256 X 256 lattice the classical values we have deter-
factor #*, plus uniform terms. Then, using the classicalmined are £(0.70) = 7.8 = 0.1, £(0.65) = 13.2 * 0.3,
counterpart of the DM transformation (2) for spins of £(0.60) = 27.3 + 0.5, and £(0.57) = 52.0 = 1.0. All
length#28, we transform to classical spin variablesSs, the available classical data sets agree with each other,
such thafs| = 1. We eventually have

J5%*
2

1
Do = 5= . (1 — )
1= 3N k( i)

Hee = —

D sisiva + NIS2G@).  (9)
id

The term G(r) = tN~'Y In[sinhfy/(6%f)] — 260°D
is uniform and does not play any role in calculating 1o}
thermal averages. In this Hamiltonian the effects of '
quantum fluctuations are given by

(i) the log term that transforms the spin-wave contribu-
tion to the free energy from classical to quantum;

(i) the renormalized exchange integrdl— J.g =
6*J that depends on the temperaturand on the spin
quantum numbes;;

~ 1

(iii) the appearance of the factdf = S + 5 as the FiG. 1. Correlation lengthé(r) vs reduced temperature—
classical spin length for the semiclassical renormalizatiorr /732, for spin§ = « (classical),%, 1, and%. The continuous
approach; this is a direct consequence of the PQSCHAnes are the low- and high-temperature results of our theory,
recipe, without any empirical observation. and the dashed line represents the application of the cutoff

At lowest temperatureH,s; reproduces all the results condition for long-wavelength spin waves. The filled circles
€

! - - . are the classical and quantum results from high-temperature
of the self-consistent harmonic approximation (SCHA)’expansion [6]; the open circles are our new Monte Carlo

giving the one-loop renormalization effect as long as theimylation results. The dash-dotted line is a fit to the classical
self-consistent Eq. (8) fok> admits a positive solution. data.

T (é+1 [2)?
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FIG. 2. Correlation length£(z) for spin § = % Squares:
experimental data [12,13] for S2uG,Cl,; triangles and dia-
monds: data for LCuQ, from neutron scattering [15] and from

[13]. For this spin value, the quantum effects are less
relevant and quantum nonlinear effects are reduced within
a shorter interval.

Our results appear to explain all the experimental data
[12-15,17] for different values of without any fitting
parameters. They also agree with the HTE results of
Ref. [6], thus confirming the inadequacy of the approach
by mapping the quantum HAF onto the QM. Most
importantly, however, we can move to much lower tem-
peratures where significant experimental data are avail-
able. On the other hand, the good agreement we still find
for S = % is an indirect proof that the ground state is or-
dered and that for nearest-neighbor interaction the criti-
cal value ofS is smaller than any physical spin value.
Finally, we approach with continuity the high-region,

83Cu NQR relaxation [14] experiments, respectively; crossesalso owing to the presence of the effective spin lenth

quantum Monte Carlo results [16]. Lines as in Fig. 1.

so we have used the data of Ref. [6] and ours, and fitte

them by a (polynomiak exponential) curve in the range
1 = ¢&=50.

The quantum counterparts of this classical curve, ob
tained by renormalization of the temperature scale for th

spin length values = % L, and%, are plotted in Fig. 1
together with the HTE results [6].

In Fig. 2 we report our result fo€(r) at spinS = %
together with experimental data for,®uG,Cl, [12,13],
for La,CuQ, [14,15], and with quantum Monte Carlo

results [16]. The region where nonlinear quantum effects

are relevant ranges from = 0.5 to ¢ < 0.75, which

agrees with the range of QCR predicted in Ref. [4].
In Fig. 3 we compare our curve at spf= 1 with

experimental data for L&iO, [17] and for KNiF,

L 1 1 L L

0.7

0.6
TIJ(S+1/2)2

1
0.4 0.5

FIG. 3. Correlation length for spi§ = 1. Triangles: exper-

imental data [17] for LaNiO,4; squares: experimental data [13]

for K;NiF,4. Lines as in Fig. 1.
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unambiguously determined by the theory itself.
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