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Kosterlitz-Thouless Transition and Short Range Spatial Correlations
in an Extended Hubbard Model
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We study the competition between intersite and local correlations in a spinless two-band extend
Hubbard model by taking an alternative limit of infinite dimensions. We find that the intersite densi
fluctuations suppress the charge Kondo energy scale and lead to a Fermi liquid to non-Fermi-liq
transition for repulsive on-site density-density interactions. In the absence of intersite interactions, t
transition reduces to the known Kosterlitz-Thouless transition. We show that a new line of non-Ferm
liquid fixed points replace those of the zero intersite interaction problem. [S0031-9007(96)01438-X

PACS numbers: 71.27.+a, 71.10.Fd, 71.28.+d, 74.20.Mn
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The two-band extended Hubbard model is a realis
starting point both for the highTc cuprates and for many
heavy fermion systems. The model contains a strong
correlated band and a weakly correlated one. At t
phenomenological level, the low energy properties of t
conventional heavy fermions (such as CeCu6 and UPt3)
are well described by the Fermi liquid theory [1], while
those of certain novelf-electron materials [2] and the
high Tc cuprates appear not. The theoretical questio
then, is: under what conditions do electron correlatio
lead to a non-Fermi-liquid in this model?

Recently, some progress has been made on the un
standing of this model [3,4]. In the large dimensionalit
(D) limit, the local density-density interactions alon
are found to cause Kosterlitz-Thouless [5] type quantu
phase transitions from a Fermi liquid to non-Ferm
liquid metallic states. In the spinful case, the resultin
non-Fermi-liquids have spin-charge separation [3,6
The large D limit [7] has the advantage that loca
correlations are treated in a dynamical fashion, but t
disadvantage that all intersite interactions reduce
Hartree-Fock terms;no spatial fluctuations survive. For
physical systems in finite dimensions, intersite RKK
or superexchange type interactions are expected to co
pete with local correlations [8,9]. Unfortunately, fo
“paramagnetic” phases far away from spatial orderin
transitions, there exists no controlled theoretical meth
to address such a competition. From the largeD point
of view, one way to recover spatial fluctuations is th
perturbative1yD expansion [10]. The practicality of this
procedure is unclear at this stage. An alternative rou
is a loop expansion requiring that theD ­ ` results be
recovered at the saddle-point level. This constructi
has so far been limited to models with certain forms
quenched disorder [11].

In this Letter, we take an alternative largeD limit to
study the interplay between local correlations and sh
range spatial fluctuations in the two-band extended Hu
bard model. We introduce an explicit intersite densit
density interaction and scale the interaction strength
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terms of the dimensionality such that itsfluctuation part
survives the largeD limit. This procedure leads to an im
purity embedded in a self-consistent fermionic bathand a
self-consistent bosonic bath. We will study primarily the
spinless version of the model for which asymptotically e
act results can be derived analytically. The results are
direct relevance to the charge sector of the spin-char
separated intermediate phase of the spinful model [3,6

The model is defined by the following Hamiltonian,

H ­
X

i

fe0
dndi 1 tscy

i di 1 H.c.d 1 V : nci :: ndi :g

1
X
kijl

ftijc
y
i cj 1 syijy2d : ndi :: ndj :g . (1)

The spinlessd electrons are dispersionless, with an ener
level e

o
d . The spinlessc electrons have a hopping matri

tij . kijl labels the nearest-neighbor sites. Thet term de-
scribes hybridization, and theV term the on-site density-
density interaction. Theyij term is an intersite “charge
RKKY” repulsive interaction. The standard largeD limit
[7] is taken with tkijl scaled to be of order1y

p
2D and

ykijl of order1yD. In this limit, only the static part of the
yij term survives. Here, we scaleykijl ­ y0y

p
2D and

take the largeD limit keepingy0 fixed. This limit is well
defined when we retain only the dynamical density mod
We achieve this through normal ordering,: n :; n 2 knl.
We focus on states without long range ordering, f
which the Hartree terms can be absorbed by the chem
potential.

We first give a general formulation of this alternativ
large D limit. Following the standard procedure, w
divide the Hamiltonian into local and intersite parts,

H ­
X

i

hi 1
X
kijl

sht,ij 1 hy,ijd , (2)

where hi is on site, ht,ij ­ tijc
y
i cj , and hy,ij ­

syijy2d : nci
:: ncj

:. For generality, we develop

the formalism with thec
y
i fields for possible multi-

bands or spin components; for the Hamiltonian (1
ht,ij ­ tijc

y
i cj, andhy,ij ­ syijy2d : ndi :: ndj :. Within
© 1996 The American Physical Society 3391



VOLUME 77, NUMBER 16 P H Y S I C A L R E V I E W L E T T E R S 14 OCTOBER1996

i-
an
m
-
,

o

d

e
ith

r,

ed.

-
c
e
c
e

in
).
y

led
l
e
or

e

d

a path-integral representation, we divide the action f
the lattice model into S ­ S0 1 Ss0d 1 DS, where
S0, Ss0d, and DS are the actions associated with
h0,

P
ifi0 hi 1

P
kijfi0l sht,ij 1 hy,ijd, and

P
i sht,0i 1

hy,0i 1 H.c.d, respectively. Integrating out all the
degrees of freedom except at site 0 leads to t
following effective action, Seff ­ S0 2

P`
n­1 s21dn

3 ksDSdnls0d
c yn!, where k ls0d

c denotes connected corre-
lation functions in terms ofSs0d. ksDSdnls0d

c modifies
the on-site action with terms that involven site-0
densityyfermion modes. The coefficients of these oper
tors are retarded and are given, for eachn, by n-operator
correlation functions with respect toSs0d. The order in
1yD of each term can be determined through a cumula
expansion of the original lattice Hamiltonian [12]. We
find that, to the leading order in1yD, no interference
betweenht,ij and hy,ij terms is allowed, except in local
decorations. This absence of interference implies th
n-point correlation functions have the usual dependen
on 1yD. As a result, for alln . 2, ksDSdnls0d

c vanishes
as D ! ` [7]. The absence of interference also lead
to separate Dyson equations forxij and Gij in terms
of their respective effective cumulants. This in tur
implies that Gij ­ GiiG

0
ijGjj, xij ­ xiix

0
ijxjj, G

s0d
ij ­

Gij 2 GiiG
0
i0G00G0

0jGjj , and x
s0d
ij ­ xij 2 xiix

0
i0x00

3 x
0
0jxjj, where G0

ij ;
P

paths til1 Gl1l1tl1l2 Gl2l2 · · ·
3 Glnln

tlnj , x
0
ij ;

P
paths yil1 xl1l1 yl1l2 xl2l2 · · · xlnln

ylnj,
and fi, l1, l2, . . . , ln, jg labels a non-self-retracing path
from sitei to sitej. It then follows that

G
s0d
ij ­ Gij 2 Gi0G0jyG00 ,

x
s0d
ij ­ xij 2 xi0x0jyx00 .

(3)

From Eq. (3),k: ni :ls0d ; knils0d 2 knil is of order1yD.
Hence, in the largeD limit, kDSls0d also vanishes; only
ksDSd2ls0d

c survives, leading to

Seff ­ 2
Z b

0
dt

Z b

0
dt0fcy

0 stdg21
0 st 2 t0dc0st0d

1 : nc0 std : x21
0 st 2 t0d : nc0 st

0d :g 1 S0 . (4)

Here, g21
0 st 2 t0d and x

21
0 st 2 t0d are the Fourier

transforms of

g21
0 sivnd ­ 2

X
ij

ti0t0jG
s0d
ij sivnd ,

x21
0 sinnd ­

X
ij

yi0y0jx
s0d
ij sinnd ,

(5)

whereivn andinn are the fermionic and bosonic Matsub
ara frequencies, respectively. The Dyson equations of t
lattice Hamiltonian implies thatGij is determined by the
on-site self-energy alone;xij is determined by the on-site
effective cumulant, or, equivalently, the on-site part of th
vertex function irreducible in terms of both the particle
hole bubble and the singleyij line. All these local quanti-
ties can be calculated directly in terms ofSeff. Therefore,
given anSeff, we can calculate allGij andxij and hence,
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via Eq. (5),g21
0 sivnd andx

21
0 sinnd. The self-consistent

equations (3)–(5) indeed close. They define the dynam
cal mean field equations. We note that related me
field equations arise in the metallic spin-glass proble
[13]. The retardedg21

0 can be represented by a self
consistent noninteracting fermionic bath [7]. Similarly
an additional noninteractingbosonicbath can be used to
represent the retardedx21

0 term. We have therefore a
self-consistent Anderson-like impurity model coupled t
screening bosons [14].

We now apply this formalism to the extended Hubbar
model (1). The self-consistent impurity model is a
resonant-level model with an additional bosonic bath,

Heff
imp ­ E0

dd
y
0 d0 1 H0 1 tscy

0 d0 1 H.c.d

1 V : nc0 :: nd0 : 1
X
q

Wqry
q rq

1
X
q

Fq : nd0 : srq 1 ry
2qd , (6)

where E0
d ­ e

0
d 2 m, and H0 describes the localc0

electron coupled to a noninteracting fermionic bath whos
dispersion, together with the parameters associated w
the bosonic bath,Wq and Fq, are determined from the
self-consistency Eqs. (5). In the remainder of this Lette
we focus on theD ­ ` Bethe lattice. This has the
advantage that the bare density of states is bound
For y0 ­ 0, it was shown both analytically [3] and
numerically [15] that the density of states of the self
consistent fermionic bath is nonsingular in the metalli
regime. We find this continues to be the case for finit
y0. This then allows an asymptotically exact analyti
analysis of our self-consistent problem. Note that th
spectral function of the bosonic bath is arbitrary (and is
fact non-Ohmic in the non-Fermi-liquid case; see below

The asymptotically exact analysis is carried out b
writing the partition function ofHeff

imp in a kink-gas
representation. The procedure parallels what was detai
in Ref. [3]. We only note that the effect of the additiona
bosonic bath on the action of a particular history can b
treated by a time-dependent canonical transformation, f
the arbitrary form of the boson spectral function. The
resulting kink-gas action is

Sst2n, . . . , t1d ­ 22n lns yd 1
X

i

s21dihsti11 2 tidyj0

1
X
i,j

s21di1j

∑
2e ln

tj 2 ti

j0
1 Kstj 2 tid

∏
. (7)

Here, ft2n, . . . , t1g, for n ­ 1, 2, . . ., labels a sequence
of kink events along the imaginary time axis. The
fugacity is given byy ­ trc, where rc is the density
of states of the self-consistent fermionic bath at th
Fermi energy. e ­ s1y2d sss1 2 s1ypd htan21fprcs1 2

nddV g 1 tan21sprcndV djddd2 is the stiffness constant.
The logarithmic interaction among the kinks is mediate
by the fermionic bath. h ­ E0

dj0 is the symmetry
breaking field. Finally,Kstd describes an additional long
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range interaction of the kinks induced by the boson
bath. Because of the self-consistency,Kstd is determined
entirely by the full local susceptibility

≠2Kstdy≠t2 ­ y2
0xstd . (8)

Anticipating the possible1yta form for the local sus-
ceptibility, we first solve the kink-gas action (7) with

Kstd ­ lfstyj0d22a 2 1gys2 2 ad (9)

for a fixed a value. We will consider the case with
vanishing renormalized symmetry breaking field,hp. We
have derived the renormalization group (RG) equations f
a close to 2,

dyyd ln j ­ yf1 2 se 1 ly2dg ,

deyd ln j ­ 24ey2,

dlyd ln j ­ lfs2 2 ad 2 4y2g ,
(10)

dhyd ln j ­ hs1 2 2y2d ,

valid for smallh. The RG flow is given in Fig. 1. The flow
in the y-e plane (the dotted lines) describes a Kosterlitz
Thouless transition. It goes to a strong coupling fixe
point whene , ecrit ­ 1, and to a line of weak coupling
fixed points whene . ecrit. The flow in they-l plane
(the dashed lines) are those of the Ising model with a lo
range1yta interaction [16,17]. There exists an unstabl
fixed point ats yp, lpd ­ s

p
2 2 ay2, 2d, which describes

a second order phase transition. Close to the origin, t
separatrix has the formlsep ø 2f yys2 2 adg22a . The
flow goes to a strong coupling fixed point forl , lsep ,
and to a weak coupling fixed point whenl . lsep . In
the language of the long range Ising model,a ­ 2 is the
lower critical range, anda ­ 3y2 the upper critical range
[16]. The RG flows in between these two planes (sol
lines) interpolate between these two limits. There exist
line of weak coupling fixed points withyp ­ 0, lp ­ `,
and a finiteep.

These results can be used to solve our self-consist
problem. We focus on the mixed valence regime onl

FIG. 1. The RG flow of the kink-gas action Eqs. (7) and (9
for a ,, 2 and vanishing renormalized symmetry breakin
field.
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We specify the phase diagram in terms of the thre
dimensional parameter space spanned bygt ­ tr0, gV ­
f1 2 s2ypd tan21spr0Vy2dg, and gy ­ r0y0, wherer0

is the bare density of states of the conduction electro
at the Fermi energy. The Kosterlitz-Thouless transitio
at gy ­ 0 describes the charge Kondo effect [18]. Th
critical valuegcrit

V corresponds to an attractiveV crit such
that rcV crit ­ 2s2ypd tanfs

p
2 2 1dpy2g. WhengV ,

gcrit
V , i.e.,2V , V crit

0 , the solution is a Fermi liquid with
the usual form for the local density susceptibility,

xstd , s1yDptd2 for t ¿ 1yDp, (11)

where Dp denotes the charge Kondo energy sca
which acts as the renormalized Fermi energy. AsV
approachesVc from the Fermi liquid side,Dp van-
ishes in the Kosterlitz-Thouless fashion,Dp ø srcd21

3 expf21y
p

ecrit 2 eg. For gV . gcrit
V , i.e., 2V .

V crit
0 , the solution is a line of non-Fermi-liquids with the

connected local density susceptibility

xstd ø jrcytja . (12)

The exponenta is interaction dependent, increasing from
0 to 2 as one moves away from the critical point [19,20]

The intersite interactiony0 modifies the phase diagram
in several ways. Consider firstgV . gcrit

V . The line of
fixed points of they0 ­ 0 problem becomes unstable. In
terms of the parameters appropriate for the kink-gas act
Eq. (7), the RG flow is towards an infinite value of thel

coupling. Usually, one cannot specify the resulting fixe
points when a coupling constant flows towards infinit
Remarkably, in our case we can determine the correlat
functions in the new fixed points due to the special featu
of the solution to the kink-gas action Eqs. (7) and (9): th
local susceptibility has an algebraic time dependence w
an exponent identical to that of the range ofKstd [21,20].
The RG flow is towards another line of fixed points wit
an infinite lp, a finite ep, and a vanishing hybridization
yp. The connected local susceptibility remains to ha
the algebraic1ytap

form, with the exponentap entirely
determined byep.

For gV , gcrit
V , we are able to establish the existenc

of a phase transition asy0 is increased. First, the solution
must be a non-Fermi-liquid for sufficiently strongyo .
Suppose that it is a Fermi liquid, with a renormalize
Fermi energyEp. Then the local susceptibility has a
long time s1yEptd2 dependence fort longer than1yEp.
At times up to 1yEp, if the local susceptibility decays
slower than1yt2, then the correspondingKstd in this
intermediate time range has the form Eq. (9) witha , 2
and l ­ y

2
0A, whereA is the prefactor in the decay of

the local susceptibility. The scaling equations (10) imp
that, fore 1 ly2 . 1, the fugacity decreases in this time
range. If the local susceptibility decays faster than1yt2,
one can still choose ay0 sufficiently large such that the
fugacity does not increase up to the time scale1yEp. In
both cases, at times beyond1yEp, the kink-gas action
corresponds to a Coulomb gas with a stiffness const
3393
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2 Epd2 and a small fugacity
y0. Wheny0 becomes sufficiently large,se0, y0d will lie in
the weak coupling side of the RG flow, makingEp ­ 0.
Therefore, the Fermi liquid solution cannot occur. Th
only self-consistent solution in this largey0 regime is
one similar to what we found for thegV . gcrit

V case,
characterized by ayp ­ 0, a finite ep, and an infinite
lp. The local susceptibility has the form of Eq. (12)
with a , 2. Physically, the intersite density-density
interactions provide charge screening, which contribu
to the orthogonality effect [4,14]. In the mixed valence
regime, this orthogonality helps realize the weak couplin
fixed point with incoherent charge excitations.

For sufficiently smally0, on the other hand, the Fermi
liquid solution is stable. This can be seen by ay0

expansion around they0 ­ 0 solution. We replaceKstd
in Eq. (7) by what we would get from Eq. (8) with the
local susceptibilityxstd of they0 ­ 0 problem, Eq. (11).
At the time scalej0 ­ 1yDp, esj0d , esj0d , 1, and
Kstd ­ sy0yDpd2 lnstyj0d. From Eq. (8), the kink-gas
action atj . j0 is a Coulomb gas with a stiffness constan
e0 ­ esj0d 1 sy0y

p
2 Dpd2. For sufficiently smally0,

e0 , ecrit ­ 1. In this range, the Fermi liquid solution
is self-consistent. Self-consistency, however, will modif
the renormalized Fermi energy, making it unlikely that th
phase transition is of the Kosterlitz-Thouless type. Th
precise nature of the transition is beyond the reach of o
RG formalism. The schematic phase diagram is give
in Fig. 2.

As a result, non-Fermi-liquids with self-similar correla-
tion functions occur even for repulsive values of the on-si
density-density interaction.

In the non-Fermi-liquid case, that the renormalize
lp is infinite is one indication that the ground state
cannot be the paramagnetic metallic state. The fa
that the Ising model corresponding to the kink-gas a
tion Eqs. (7) and (9) has a divergent free energy
zero temperature fora , 1 implies the same physics.
The precise nature of the ordering depends on the d
tails of the band structure and the intersite interaction

FIG. 2. The phase diagram of the Hamiltonian Eq. (1) in th
mixed valence regime. The dashed line is schematic.
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Our results apply at temperatures above the order
temperature.

The extension to the spinful extended Hubbard mod
is straightforward. The form of the scaling equation
implies that our results carry over to the charge sec
of the spin-charge-separated intermediate phase.

We thank V. Dobrosavljevic, A. Georges, an
A. Sengupta for stimulating discussions. Q. S. was su
ported by an A. P. Sloan Fellowship, and by NSF Gra
No. PHY94-07194 at ITP, UCSB.

Note added.—After the completion of this work, we
learned of the independent work of Kajueter and Kotlia
[22] who constructed related mean field equations
the context of a spinless one-band fermion model wi
semicircular density of states and found no numeric
evidence for non-Fermi-liquids in that model.
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