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Kosterlitz-Thouless Transition and Short Range Spatial Correlations
in an Extended Hubbard Model
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We study the competition between intersite and local correlations in a spinless two-band extended
Hubbard model by taking an alternative limit of infinite dimensions. We find that the intersite density
fluctuations suppress the charge Kondo energy scale and lead to a Fermi liquid to non-Fermi-liquid
transition for repulsive on-site density-density interactions. In the absence of intersite interactions, this
transition reduces to the known Kosterlitz-Thouless transition. We show that a new line of non-Fermi-
liquid fixed points replace those of the zero intersite interaction problem. [S0031-9007(96)01438-X]

PACS numbers: 71.27.+a, 71.10.Fd, 71.28.+d, 74.20.Mn

The two-band extended Hubbard model is a realistidcerms of the dimensionality such that ftactuation part
starting point both for the higlf. cuprates and for many survives the larg® limit. This procedure leads to an im-
heavy fermion systems. The model contains a stronglpurity embedded in a self-consistent fermionic baiid a
correlated band and a weakly correlated one. At theself-consistent bosonic bathWe will study primarily the
phenomenological level, the low energy properties of thespinless version of the model for which asymptotically ex-
conventional heavy fermions (such as Ce@md UPt)  act results can be derived analytically. The results are of
are well described by the Fermi liquid theory [1], while direct relevance to the charge sector of the spin-charge-
those of certain novef-electron materials [2] and the separated intermediate phase of the spinful model [3,6].
high T. cuprates appear not. The theoretical question, The model is defined by the following Hamiltonian,
then, is: under what conditions do electron correlations 0 +
lead to a non-Fermi-liquid in this model? = X[Ed"dr +leidi + He) +Ving g, ]

Recently, some progress has been made on the under- ' "
standing of this model [3,4]. In the large dimensionality + > [tijci cj + (0i/2) : ng, = ng, 2. ()

(D) limit, the local density-density interactions alone Gj)

are found to cause Kosterlitz-Thouless [5] type quantunThe spinlesg electrons are dispersionless, with an energy
phase transitions from a Fermi liquid to non-Fermi-level ;. The spinlesg electrons have a hopping matrix
liquid metallic states. In the spinful case, the resultings;;. (ij) labels the nearest-neighbor sites. TFherm de-
non-Fermi-liquids have spin-charge separation [3,6]scribes hybridization, and theé term the on-site density-
The large D limit [7] has the advantage that local density interaction. The;; term is an intersite “charge
correlations are treated in a dynamical fashion, but th&kKKY” repulsive interaction. The standard lar@elimit
disadvantage that all intersite interactions reduce t¢7] is taken withz;;, scaled to be of ordet/+2D and
Hartree-Fock termsno spatial fluctuations surviveFor  v(;; of order1/D. In this limit, only the static part of the
physical systems in finite dimensions, intersite RKKY v;; term survives. Here, we scale;, = vo/+/2D and

or superexchange type interactions are expected to cortake the largeD limit keepinguv, fixed. This limit is well
pete with local correlations [8,9]. Unfortunately, for defined when we retain only the dynamical density modes.
“paramagnetic” phases far away from spatial orderingNe achieve this through normal ordering; := n — {(n).
transitions, there exists no controlled theoretical methodve focus on states without long range ordering, for
to address such a competition. From the lafyeoint  which the Hartree terms can be absorbed by the chemical
of view, one way to recover spatial fluctuations is thepotential.

perturbativel /D expansion [10]. The practicality of this ~ We first give a general formulation of this alternative
procedure is unclear at this stage. An alternative routéarge D limit. Following the standard procedure, we
is a loop expansion requiring that tie = o results be divide the Hamiltonian into local and intersite parts,
recovered at the saddle-point level. This construction

has so far been limited to models with certain forms of H = Z hi + (Z;(h,,, + hyij) ()
guenched disorder [11]. 1

In this Letter, we take an alternative large limit to where h; is on site, h.; = t,-.,-e,//,- i, and hy; =
study the interplay between local correlations and shor?v”/z) ny, @ ny, . For generality, we develop
range spatial fluctuations in the two-band extended Hubthe formahsm with they, fields for possible multi-
bard model. We introduce an explicit intersite density-bands or spin components; for the Hamiltonian (1),
density interaction and scale the interaction strength i, ;; = t,-.,-c?cj, andhy ;; = (v;/2) : ng, = ng, :. Within
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a path-integral representation, we divide the action fowvia Eq. (5),go ' (iw,) and xo '(iv,). The self-consistent
the lattice model intoS =S, + S© + AS, where equations (3)—(5) indeed close. They define the dynami-
So, S© and AS are the actions associated with cal mean field equations. We note that related mean
ho, Xizo hi + 2jz0)(heij + hyij), and > (ho; +  field equations arise in the metallic spin-glass problem
hyoi + H.c), respectively. Integrating out all the [13]. The retardedg,' can be represented by a self-
degrees of freedom except at site 0 leads to theonsistent noninteracting fermionic bath [7]. Similarly,
following effective action, S°f =S, — >, (—=1)"  an additional noninteractingosonicbath can be used to
x (AS))Y /n1, where () denotes connected corre- represent the retardeg, ' term. We have therefore a
lation functions in terms ofs©@. ((AS)"Y modifies Self-consistent Anderson-like impurity model coupled to

the on-site action with terms that involve site-0 SCreening bosons [14]. _

density/fermion modes. The coefficients of these opera- We now apply this formalism to the extended Hubbard
tors are retarded and are given, for eactby n-operator Model (1). The self-consistent impurity model is a
correlation functions with respect 0. The order in resonant-level model with an additional bosonic bath,

1/D of each term can be determined through a cumulant it — Egdgdo + Hy + t(c(’)rdo + H.c)

expansion of the original lattice Hamiltonian [12]. We 1mp

find that, to the leading order in/D, no interference + Ving ng : +Z qu;pq
betweeni, ;; and h, ;; terms is allowed, except in local q

decorations. This absence of interference implies that + Z Fying:(p, + qu), (6)
n-point correlation functions have the usual dependence q

on 1/D. As a result, for alln > 2, ((AS)" © vanishes where ES = € — u, and H, describes the locak,

as D — » [7]. The absence of interference also leadselectron coupled to a noninteracting fermionic bath whose

to separate Dyson equations fqf; and G;; in terms  dispersion, together with the parameters associated with

of their respective effective cumulants. This in turnthe bosonic bath}, and F,, are determined from the

implies thatG,: = G:;G,G:i. xii = vixhxn, G =  self-consistency Egs. (5). In the remainder of this Letter,
P N AT Xij T XXX T we focus on theD = « Bethe lattice. This has the

— GG ' G O _
Gij — GiiGioGoGo;Gjj, and xij” = Xij = XiXioXo0  aqvantage that the bare density of states is bounded.

X X0 X Wf/lere Gij = Xpawns 1, G t1,Gri -+ For vo = 0, it was shown both analytically [3] and
X Gt Xij = paths Vi Xuh Vb XL © X, VL, numerically [15] that the density of states of the self-
and [i, 11, lp,...,1n, j] labels a non-self-retracing path congistent fermionic bath is nonsingular in the metallic
from site to site. It then follows that regime. We find this continues to be the case for finite
G,(]Q) = Gi; — GiGoj/G vo. This then allows an asymptotically exact analytic
© (3) analysis of our self-consstent prob_lem. .Note that_the
Xij = Xij — XioXxoj/Xo0- spectral function of the bosonic bath is arbitrary (and is in

fact non-Ohmic in the non-Fermi-liquid case; see below).

The asymptotically exact analysig is carried out by
€

From Eq. (3).(: n; ) = (n)© — (n;) is of order1/D.
Hence, in the larged limit, (AS)® also vanishes; only

5u(0) ) . writing the partition function ofHi,, in a kink-gas
((AS)*)c” survives, leading to representation. The procedure parallels what was detailed
off B B4 1 , , in Ref. [3]. We only note that the effect of the additional
ST == ]0 dr j; d7'liho (7)o (r = 7)eho(7') bosonic bath on the action of a particular history can be

. e P N n . treated by a time-dependent canonical transformation, for
() xo (7 = 1) g () ] So (4) the arbitrary form of the boson spectral functionThe
Here, go'(r — 7/) and x, '(r — 7/) are the Fourier resulting kink-gas action is

transforms of ;
L o, S(72n,...,71) = —2nIn(y) + Z(—l) h(tiv1 — 71)/éo
80 (lwn) = - Z tiOtOjGij (lwn)’ i

ij (5) i T — T
i ) = 3 wiowor i) 30 2en BT kG - )] )
” 1Jj
whereiw, andiv, are the fermionic and bosonic Matsub- Here, [7,,...,71], for n = 1,2,..., labels a sequence

ara frequencies, respectively. The Dyson equations of thef kink events along the imaginary time axis. The
lattice Hamiltonian implies tha@;; is determined by the fugacity is given byy = tp., where p. is the density
on-site self-energy along;;; is determined by the on-site of states of the self-consistent fermionic bath at the
effective cumulant, or, equivalently, the on-site part of theFermi energy. € = (1/2)(1 — (1/7) {tan” '[7p.(1 —
vertex function irreducible in terms of both the particle ng)V] + tan (7 p.nyV)})? is the stiffness constant.
hole bubble and the single; line. All these local quanti- The logarithmic interaction among the kinks is mediated
ties can be calculated directly in terms$5ff. Therefore, by the fermionic bath. h = EY&, is the symmetry
given ans°, we can calculate atl;;; and y;; and hence, breaking field. FinallyX(r) describes an additional long
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range interaction of the kinks induced by the bosonicWe specify the phase diagram in terms of the three-
bath. Because of the self-consistenkyy) is determined dimensional parameter space spanned by tpg, gv =
entirely by the full local susceptibility [1 — 2/@)tan (7 peV/2)], and g, = povo, Where p
2% 2 _ 2 8 is the bare density of states of the conduction electrons
9K (r)/97° = vox (7). (®)  at the Fermi energy. The Kosterlitz-Thouless transition
Anticipating the possibld /7 form for the local sus- at g, = 0 describes the charge Kondo effect [18]. The
ceptibility, we first solve the kink-gas action (7) with critical Va_luegf,rlt corresponds to an attractiies'it such
B ’—a that p Vit = —(2/m)tar{(~/2 — 1)7/2]. Whengy <
K(r) = Al(e/¢0)™ " = 11/2 — @) ©) ¢t e, —V < V§", the solution is a Fermi liquid with
for a fixed a value. We will consider the case with the usual form for the local density susceptibility,

vanishing renormalized symmetry breaking fietd, We _ * N2 *
have der?ved the renorma)llization)g/group (R(g3) equations for x(1) = (/A7) for 7> 1/A% (11)
a close to 2, where A* denotes the charge Kondo energy scale,
which acts as the renormalized Fermi energy. Ws
dy/dIng = y[1 — (e + A/2)], approachesV,. from the Fermi liquid side,A* van-
de/dIn & = —4ey?, ishes in the Kosterlitz-Thouless fashiod* = (p.)~!

(10)  x exg—1/Vert — €]. For gy > gt e, —V >
— _ _ 2 - . \%4 8v Sy

dA/dIng = A2 — a) — 471, V™, the solution is a line of non-Fermi-liquids with the
dh/dIné = h(1 — 2y?), connected local density susceptibility

valid for smalls. The RG flowis given in Fig. 1. The flow x(1) = lp./7|%. (12)

in the y-e plane (the dotted lines) describes a Kosterlitz-1pe exponent is interaction dependent, increasing from
Thouless transition. It goes to a strong coupling fixedy o 2 as one moves away from the critical point [19,20].
point whene < €' = 1, and to a line of weak coupling  The intersite interactiom, modifies the phase diagram
fixed points whene > €. The flow in they-A plane i, several ways. Consider firgty > g$''. The line of
(the dashed lines) are those of the Ising model with a longyaq points of thevy = 0 problem becomes unstable. In
rangel/7* interaction [16,17]. There exists an unstableterms of the parameters appropriate for the kink-gas action
fixed point at(y®, A") = (V2 — «/2,2), which describes gq (7), the RG flow is towards an infinite value of the

a second order phase transition. Close tOthe origin, thegypling. Usually, one cannot specify the resulting fixed
separatrix has the form*? =~ 2[y/(2 — a)]""*. The  qints when a coupling constant flows towards infinity.
flow goes to a strong coupling fixed point far< A*?,  Remarkably, in our case we can determine the correlation
and to a weak coupling fixed point when> A*P. In f,nctions in the new fixed points due to the special feature
the language of the long range Ising model;= 2 is the  f the solution to the kink-gas action Egs. (7) and (9): the
lower critical range, and = 3/2 the upper critical range |4ca| susceptibility has an algebraic time dependence with
[16]. The RG flows in between these two planes (solidyy exponent identical to that of the rangeker) [21,20].
lines) interpolate between these two limits. There exist &he RG flow is towards another line of fixed points with
line of weak coupling fixed points with” = 0, A" = %, 51 infinite A*, a finite €*, and a vanishing hybridization

and a finitee”. _y*. The connected local susceptibility remains to have
These results can be used to solve our self-consisteite algebraicl /7" form, with the exponent* entirely

problem. We focus on the mixed valence regime only qetermined bye*.

For gv < gV/'', we are able to establish the existence

y of a phase transition as, is increased. First, the solution
must be a non-Fermi-liquid for sufficiently strong,.
Suppose that it is a Fermi liquid, with a renormalized
Fermi energyE*. Then the local susceptibility has a
long time (1/E*7)* dependence for longer thanl/E*.

At times up to1/E*, if the local susceptibility decays
slower thanl1/7%, then the corresponding(7) in this
intermediate time range has the form Eq. (9) with< 2
and A = v3A, whereA is the prefactor in the decay of
the local susceptibility. The scaling equations (10) imply
that, fore + A/2 > 1, the fugacity decreases in this time
range. If the local susceptibility decays faster tHam?,
one can still choose & sufficiently large such that the

FIG. 1. The RG flow of the kink-gas action Egs. (7) and (9) fugacity does not increase up to the time scal&™. In

for @ <~ 2 and vanishing renormalized symmetry breakingoth cases, at times beyordE*, the kink-gas action
field. corresponds to a Coulomb gas with a stiffness constant
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€ = e(& = 1/E*) + (vo/v/2E*)?* and a small fugacity Our results apply at temperatures above the ordering
y'. Whenvy becomes sulfficiently largée’, y') will liein ~ temperature.
the weak coupling side of the RG flow, makiij = 0. The extension to the spinful extended Hubbard model
Therefore, the Fermi liquid solution cannot occur. Theis straightforward. The form of the scaling equations
only self-consistent solution in this large, regime is implies that our results carry over to the charge sector
one similar to what we found for thg, > gi/'' case, of the spin-charge-separated intermediate phase.
characterized by a* = 0, a finite €*, and an infinite We thank V. Dobrosavljevic, A. Georges, and
A*. The local susceptibility has the form of Eq. (12), A. Sengupta for stimulating discussions. Q.S. was sup-
with @ < 2. Physically, the intersite density-density ported by an A.P. Sloan Fellowship, and by NSF Grant
interactions provide charge screening, which contributdNo. PHY94-07194 at ITP, UCSB.
to the orthogonality effect [4,14]. In the mixed valence Note added—After the completion of this work, we
regime, this orthogonality helps realize the weak couplindearned of the independent work of Kajueter and Kotliar
fixed point with incoherent charge excitations. [22] who constructed related mean field equations in
For sufficiently smallyg, on the other hand, the Fermi the context of a spinless one-band fermion model with
liquid solution is stable. This can be seen bywa semicircular density of states and found no numerical
expansion around the, = 0 solution. We replac&(r)  evidence for non-Fermi-liquids in that model.
in Eq. (7) by what we would get from Eqg. (8) with the
local susceptibilityy () of thewvy = 0 problem, Eq. (11).
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