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Quantum Gap Solitons and Many-Polariton–Atom Bound States in Dispersive Medium and
Photonic Band Gap

Valery I. Rupasov* and M. Singh
Centre for Chemical Physics and Department of Physics, University of Western Ontario, London, Ontario, Canada N

(Received 18 December 1995; revised manuscript received 26 April 1996)

A system of polaritons interacting with a two-level atom placed within a frequency dispersive
medium is proven to be integrable and diagonalized exactly by the Bethe ansatz method, despite
a nonlocal effective polariton-polariton coupling. Its spectrum consists of bound many-polariton
complexes (quantum solitons) and exhibits unusual features due to the existence of the polaritonic
gap. Only solitons containing an even number of polaritons (“even” solitons) propagate within
the gap, while an “odd” soliton is pinned to the atom and forms a many-polariton–atom bound
state. [S0031-9007(96)00570-4]
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In the present paper we study a quantum thr
dimensional system of polaritons interacting with
two-level atom placed within a frequency dispers
medium (DM). In contrast to photonic-band-gap (PB
materials [1], a frequency gap in a DM is caused
photon coupling to a medium excitation, e.g., an excit
optical phonon, etc. [2]. But the model Hamiltonia
under consideration [see Eq. (3)] has quite a gen
structure and can also be derived in the case of P
materials. The information about the polariton spectr
is contained in the atomic form factorzsed and the
integration contourC. The obtained results are val
for arbitrary zsed and C; therefore, they can also b
applied to the case of PBG materials. In other words,
study here quantum electrodynamics of a two-level a
placed within a medium whose spectrum of element
electromagnetic excitations exhibits essential deviati
from the linear vacuum law in the vicinity of the atom
transition frequency.

In empty space, the standard Dicke and Bloch-Maxw
models [3] describing a photons1 atoms system are inte
grable and diagonalized exactly [4] by means of the Be
ansatz technique [5]. In a dispersive medium a polarit
atom coupling isnonlocaland leads to an effectivenonlo-
cal polariton-polariton coupling. Therefore, integrabili
of a polaritons1 atom system is very questionable a
requires a thorough analysis.

To diagonalize the model Hamiltonian, we introdu
auxiliary particles and show that the many-particle sc
tering process is factorized into two-particle ones. T
two-polariton factorization of a many-polariton scatte
ing is hidden and manifested only in the limit of larg
interpolariton separations. Imposing the periodic bou
ary conditions on the many-polariton wave function,
derive the Bethe ansatz equations, which comple
determine the spectrum of the system. Their “strin
solutions (bound many-polariton complexes or quant
solitons) exhibit some nontrivial features due to the
istence of the gap in the one-polariton spectrum. O
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solitons containing an even number of polaritons (“eve
solitons) propagate within the gap. A soliton with an o
number of polaritons (“odd” soliton) is pinned to the ato
and forms a many-polariton–atom bound state, in wh
the radiation and the medium polarization are localized
the vicinity of the atom.

The Hamiltonian of the field1 medium1 atom system
has the form

H ­ v12

µ
sz 1

1
2

∂
1

Z
dr

Ω
1

8p
fE2srd 1 H2srdg

1
1

2m0
fP2srd 1 m2

0V2Q2srdg
æ

1 e
p

n
Z

dr Qsrd ? Esrd 2 d ? Es0d, (1)

where the first three terms represent the Hamiltonians
the atom, the radiation, and the medium, while the fou
and fifth terms represent the medium-field and atom-fi
couplings, respectively. The operatorsE andH describe
the radiation field. The operatorsQsrd and Psrd are the
operators of the displacement and the momentum of
medium, respectively. The medium is treated here a
continuous set of charge harmonic oscillators, each w
frequencyV, chargee, and massm0. Here n is the
density of the number of oscillators, andd ­ dess1 1

s2d is the atomic dipole operator, whered is the matrix
element of the dipole operator,e is the unit vector along
z axis, andsi ­ ssx , sy , szd; s6 ­ sx 6 isy are the
spin operators. For the sake of simplicity, we do n
account here for a possible degeneration of atomic lev
and we treat the atom as a quantum two-level system
with the transition frequencyv12.

Because of the spherical symmetry of the problem,
Hamiltonian (1) can be reduced to a one-dimensional fo
[4,5]. Indeed, let us choose the system of coordinates w
the origin at the point of the atom’s position and expa
© 1996 The American Physical Society



VOLUME 77, NUMBER 2 P H Y S I C A L R E V I E W L E T T E R S 8 JULY 1996

nic
e
to

ics
e-

he
d
the

the
ns
l-

i
ble

lly

pe

th
tio

he
ite

us

n

und
8].
ton
a

n
nd

the

ike
us
field and medium variables in terms of spherical harmo
vectors [6]. In the electrodipole approximation only th
electrodipole harmonic of the radiation field is coupled
the atom. Therefore, omitting all the higher harmon
uncoupled to the atom, we arrive at the following on
dimensional form of the model Hamiltonian:

H ­ v12

µ
sz 1

1
2

∂
1

Z `

0

dk
2p

hkc1skdcskd

1 Vb1skdbskd 1
p

kD fc1skdbskd

1 b1skdcskdg 2

q
gskd fcskds1 1 s2c1skdgj,

(2)
where D ­ pe2nym0V, gskd ­ 4k3d2y3, while the
Bose operatorscskd and bskd describe the field and
medium electrodipole harmonics, respectively. T
terms c1b1 (cb), which create (annihilate) both fiel
and medium excitations simultaneously, as well as
analogous terms (c1s1 and cs2) in the atom-field
coupling operator, are omitted in accordance with
Heitler-London [2] and the resonance [3] approximatio

The field-medium part of the Hamiltonian is diagona
ized in terms of polariton operatorspaskd corresponding
to the lower (a ­ 2) and upper (a ­ 1) polariton
branches, respectively [2,7]. For our purposes,
is more convenient to introduce the energy varia
e, k ­ esV 2 edysV 2 D 2 ed, and the polariton
operators psed on the “energy scale,”pssseaskdddd ­
hfe1skd 2 e2skdgyfjV 2 D 2 easkdjgj1y2paskd, where
e6skd ­ s1y2d fsV 1 kd 6

p
sV 2 kd2 1 4kD g are the

polariton spectra. Then, the model Hamiltonian fina
takes the form

H ­ v12

µ
sz 1

1
2

∂
1

Z
C

de

2p
he p1sedpsed

2
p

g zsed fpseds1 1 s2p1sedgj, (3)

where the atomic form factorzsed ­ sV 2 ed2yfsV 2

D 2 ed2 1 k2g reflects the growth of the polariton-atom
coupling and the density of polariton states near the up
edge of the lower polariton branch. The constantk

is introduced to account for relaxation processes in
medium. In accordance with the resonance approxima
we extended the integration over the energye in the lower
limit to 2`. Because of the existence of the gap t
integration contour in Eq. (3) consists of two semi-infin
intervals,C ­ s2`, V 2 Dg

S
fV, `d.

One-particle eigenstates of the model,

jll ­

∑
gslds1 1

Z
C

de

2p
fsejldp1sed

∏
j0l, (4)

are found from the Schrödinger equation

se 2 ldfsejld 2
p

g zsedgsld ­ 0,

sl 2 v12dgsld 1
p

g
Z

C

de

2p
zsedfsejld ­ 0 .
.

t

r

e
n

Their full spectrum consists of both the continuo
spectrum with eigenenergyl lying outside the gap,
fsejld ­ 2pzslddse 2 ld 1

p
g zsedgsldyse 2 l 2

i0d, gsld ­
p

g z2sldyfv12 2 l 2 Ssldg, Ssld ­
g

R
Csdey2pdz2sedyse 2 l 2 i0d, and the discrete

mode, fdsejLd ­
p

g zsedgdsLdyse 2 Ld, SdsLd ­
g

R
Csdey2pdz2sedyse 2 Ld. The eigenenergyL ly-

ing within the gap is found as a root of the equatio
L 2 v12 1 SdsLd ­ 0. The valuegdsLd is determined
from the normalization conditionkLjLl ­ 1. The
discrete mode corresponds to the polariton-atom bo
state predicted in the case of PBG materials in Ref. [
The existence of the bound state, in which the polari
field is localized in the vicinity of the atom, leads to
significant suppression of the spontaneous emission.

For what follows it is convenient to rewrite Eq. (4) i
terms of the Fourier transform of polariton operators a
wave functions,

jll ­

∑
gslds1 1

Z `

2`
dt cstjldp1std

∏
j0l,

cstjld ­
Z

C

de

2p
fsejldeiet .

The polariton wave function in the auxiliaryt spacecstd
is not equal to the Fourier image of the functionfsed due
to the existence of the gap. Therefore, we introduce
auxiliary functionfsejld ­ z21sedfsejld, and represent
cstd in its terms,

cstjld ­
Z `

2`

dt ust 2 tdfstjld,

whereustd ­
R

Csdey2pdzsed expsietd. In the auxiliary
space, the Schrödinger equation,

s2i≠t 2 ldfstjld ­
p

g gslddstd,

describes an auxiliary particle scattering on the pointl
potential. Its solution corresponding to the continuo
spectrum is given by

fstjld ­
hsld 2 siy2dsgnstd

hsld 1 iy2
eilt ,

hsld ­
l 2 v12 1 S0sld

gz2sld
,

(5)

where sgnstd ­ s21, t , 0; 0, t ­ 0; 1, t . 0d,
S0sld ­ ReSsld.

Now we look forN-particle eigenstates in the form

jCN l ­

∑ Z `

2`
Cst1, . . . , tNd

NY
j­1

p1stjd dtj

1
Z `

2`
Jst1, . . . , tN21ds1

N21Y
j­1

3 p1stjddtj

∏
j0l,
339
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where theN-polariton wave functions are also express
in terms of auxiliary functions,

Cst1, . . . , tN d ­
Z `

2`
Fst1, . . . , tN d

Y
j

ustj 2 tjd dtj ,

Jst1, . . . , tN21d ­
Z `

2`
Gst1, . . . , tN21d

Y
j

ustj 2 tjd dtj .

In the two-particle case, the auxiliary functions obey
Schrödinger equation

s2i≠t1 2 i≠t2 2 Ed fFst1, t2d 1 Fst2, t1dg

­
p

g fdst1dGst2d 1 Gst1ddst2dg, (6a)
, i
at

,
th
)

,
v
a

ce

340
d

e

s2i≠t 1 v12 2 EdGstd

­
p

g
Z `

2`

dt0 yst0d fFst, t0d 1 Fst0, tdg, (6b)

where ystd ­
R

Csdey2pdz2sed exps2ietd. We look
for the solution of Eqs. (6) in the formFst1, t2d ­
Ast1, t2jl1, l2dfst1jl1dfst2jl2d, where E ­ l1 1 l2

is the eigenenergy. An unknown functionAst1 2 t2d de-
pending only on the difference of the particle coordinat
is introduced to describe the effective particle-partic
coupling caused by the particle-atom scattering. Putti
this expression into Eq. (6a), we find thatGstjl1, l2d ­
Astdfstjl1dgsl2d 1 As2tdgsl1dfstjl2d. Substituting
now the expressions forF andG into Eq. (6b), we obtain
the following equation for the functionAstd:
fstjl1dgsl2d
∑

2i
d

dt
Astd

∏
1 fstjl2dgsl1d

∑
2i

d
dt

As2td
∏

1
p

g gsl1dgsl2d fAstd 1 As2tdgdstd

1
p

g fstjl1d
Z `

2`

dt0 yst0dfst0jl2d fAstd 2 Ast 2 t0dg 1
p

g fstjl2d
Z `

2`

3dt0 yst0dfst0jl1d fAs2td 2 As2t 1 t0dg ­ 0 . (7)
n

e

-
In empty space,ystd ! dstd, and the integral terms in
Eq. (7) vanish. That immediately leads to the solution
which the functionAstd has only a discontinuous jump
the pointt ­ 0 [4]. In the case of a dispersive medium
we could expect a more complicated behavior of
function Astd, therefore, we look for a solution of Eq. (7
in the form

Astjl1, l2d ­ Bsl1, l2d 1 iCsl1, l2dsgnstd

1 Dstjl1, l2d,
whereDst ­ 0d ­ 0. Equation (7) gives both the rela
tionship between the parametersB andC,

Csl1, l2d ffs0jl1dgsl2d 2 fs0jl2dgsl1dg1

p
g gsl1dgsl2dBsl1, l2d ­ 0 , (8a)

and the equation forDstd,
fstjl1dgsl2d
∑

2i
d

dt
Dstjl1, l2d

∏
1 fstjl2dgsl1d

∑
2i

d
dt

Ds2tjl1, l2d
∏

1
p

g fstjl1d
Z `

2`
dt0 yst0dfst0jl2d

3 fDstjl1, l2d 2 Dst 2 t0jl1, l2dg 1
p

g fstjl2d
Z `

2`
dt0 yst0dfst0jl1d fDs2tjl1, l2d 2 Ds2t 1 t0jl1, l2dg

­ 2i
p

g Csl1, l2d
Z `

2`

dt0 yst0d ffstjl1dfst0jl2d 2 fstjl2dfst0jl1dg fsgnstd 2 sgnst 2 t0dg. (8b)
les

n
any-
cal
nly
The right-hand side of Eq. (8b) vanishes for anyt, and
hence,Dstd ; 0. Indeed, ift andt0 have the same sign
the term in the first brackets vanishes, while if they ha
different signs, the term in the second brackets equ
zero. ChoosingB ­ 1, we finally find

Ast1, t2jl1, l2d ­ 1 1
i

hsl1d 2 hsl2d
sgnst1 2 t2d.

(9)

The two-particle scattering matrix,Ssl1, l2d ­
fhsl1d 2 hsl2d 2 igyfhsl1d 2 hsl2d 1 ig, is the obvi-
ous solution of the Yang-Baxter equations [5]. Hen
e
ls

,

a many-particle scattering process of auxiliary partic
is factorized into two-particle ones, and theN-particle
auxiliary function has the following Bethe ansatz form:

Fst1, . . . , tN d ­
Y
j,l

Astj , tljlj , lld
NY

j­1

fstjjljd. (10)

The two-polariton factorization of the many-polarito
scattering and the Bethe ansatz construction of the m
polariton wave function are hidden due to the nonlo
coupling in the polariton system and become visible o
in the limit of large interpolariton separations.
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To find the spectrum of the system we have to p
the system in a finite “box” of sizeL and to impose
the periodic boundary conditions on the polariton wa
function. Then, we find the Bethe ansatz equations

eikslj dL hsljd 2 iy2

hsljd 1 iy2
­ 2

NY
l­1

hsljd 2 hslld 2 i

hsljd 2 hslld 1 i
,

E ­
NX

j­1

lj , (11)

whereksld ­ lsV 2 ldysV 2 D 2 ld is the polariton
wave vector describing the spatial behavior of the wa
functions. If one of the polaritons is bound to the ato
its “rapidity” hdsLd ­ 0.
I

an
te

e o
ive

ed
in
s

cs
d

or
t As L ! `, Eqs. (11), apart from real solutions, a
mit complex ones, in which “rapidities”hj ; hsljd are
grouped into “strings,”

hj ­ h0 1
i
2

sn 1 1 2 2jd, j ­ 1, . . . , n , (12)

whereh0 is a common real part, andn is the order of a
string. The parameterslj , corresponding to rapiditieshj

can be found from Eq. (12) and the analytical continuat
of Eq. (5) in the complexl plane,
hsld ­

Ω
fgz2sldg21fl 2 v12 1 Ssld 2 sigy2dz2sldg, Im l . 0 ,
fgz2sldg21fl 2 v12 1 Ssld 1 sigy2dz2sldg, Im l0 .
n

y

a

l
ian
t):

-
-
)

-

.

d.

).
i,
,

For hj lying far from the real axis, one getshj ,
slj 2 v12dyg, and the parameterslj are also grouped
into a string structure similar to Eq. (12),lj , l0 1

isgy2d sn 1 1 2 2jd.
Even stringssn ­ 2kd are obvious to exist for arbitrary

magnitude ofh0. In an odd stringsn ­ 2k 1 1d one of
the rapidities lies on the real axis,hsmd ­ h0. There-
fore, the corresponding one-particle functionfstjmd and,
hence, the many-particle function vanish form lying
within the gap. The only exception ism ­ L, whereL

is the eigenenergy of the discrete one-particle mode.
this case, one can build an odd string

hj ­
i
2

sn 1 1 2 2jd, n ­ 2k 1 1 , (13)

which is pinned to the atom and can be treated as a m
polariton generalization of the polariton-atom bound sta

The generalization of the obtained results to the cas
many atoms located in a small volume within a dispers
medium (the Dicke model) is given by the replacement

fstjld ) fDstjld ­
hDsld 2 isMy2dsgnstd

hDsld 1 iMy2
, (14)

wherehDsld ­ fl 2 v12 1 MS0sldgygz2sld, andM is
the number of atoms. The integrability of an extend
atomic system (the Bloch-Maxwell model) placed with
a dispersive medium is not so obvious and require
special study.
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