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Photonic Band Gap
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A system of polaritons interacting with a two-level atom placed within a frequency dispersive
medium is proven to be integrable and diagonalized exactly by the Bethe ansatz method, despite
a nonlocal effective polariton-polariton coupling. Its spectrum consists of bound many-polariton
complexes (quantum solitons) and exhibits unusual features due to the existence of the polaritonic
gap. Only solitons containing an even number of polaritons (“even” solitons) propagate within
the gap, while an “odd” soliton is pinned to the atom and forms a many-polariton—atom bound
state. [S0031-9007(96)00570-4]

PACS numbers: 71.36.+c, 42.50.—p, 78.20.—e

In the present paper we study a quantum threesolitons containing an even number of polaritons (“even”
dimensional system of polaritons interacting with asolitons) propagate within the gap. A soliton with an odd
two-level atom placed within a frequency dispersivenumber of polaritons (“odd” soliton) is pinned to the atom
medium (DM). In contrast to photonic-band-gap (PBG)and forms a many-polariton—atom bound state, in which
materials [1], a frequency gap in a DM is caused bythe radiation and the medium polarization are localized in
photon coupling to a medium excitation, e.g., an excitonthe vicinity of the atom.
optical phonon, etc. [2]. But the model Hamiltonian The Hamiltonian of the field- medium+ atom system
under consideration [see Eq. (3)] has quite a generdias the form
structure and can also be derived in the case of PBG

. 1
materials. The information about the polariton spectrum H = w12<0" + 5)
is contained in the atomic form factat(e) and the
integration contourC. The obtained results are valid n ] d {L E2(r) + H2
for arbitrary z(e) and C; therefore, they can also be r 877[ ) ()]

applied to the case of PBG materials. In other words, we 1
study here quantum electrodynamics of a two-level atom + E[PZ(I‘) + m(Z)QZQZ(l’)]}
placed within a medium whose spectrum of elementary 0
electromagnetic excitations exhibits essential deviations ]
) . 0 . + d - E(r) — d - E(0), 1
from the linear vacuum law in the vicinity of the atomic evn rQ ) ©) (1)
transition frequency. where the first three terms represent the Hamiltonians of

In empty space, the standard Dicke and Bloch-Maxwelthe atom, the radiation, and the medium, while the fourth
models [3] describing a photons atoms system are inte- and fifth terms represent the medium-field and atom-field
grable and diagonalized exactly [4] by means of the Betheouplings, respectively. The operat@&sandH describe
ansatz technique [5]. In a dispersive medium a polaritonthe radiation field. The operato¥(r) andP(r) are the
atom coupling imonlocaland leads to an effectiveonlo-  operators of the displacement and the momentum of the
cal polariton-polariton coupling. Therefore, integrability medium, respectively. The medium is treated here as a
of a polaritons+ atom system is very questionable andcontinuous set of charge harmonic oscillators, each with
requires a thorough analysis. frequency (), chargee, and massm,. Here n is the

To diagonalize the model Hamiltonian, we introducedensity of the number of oscillators, add= de(oc* +
auxiliary particles and show that the many-particle scat-o~) is the atomic dipole operator, whetkis the matrix
tering process is factorized into two-particle ones. Theelement of the dipole operatae,is the unit vector along
two-polariton factorization of a many-polariton scatter-z axis, ando’ = (%, 0", 0%); o* = o* * ic”’ are the
ing is hiddenand manifested only in the limit of large spin operators. For the sake of simplicity, we do not
interpolariton separations. Imposing the periodic boundaccount here for a possible degeneration of atomic levels,
ary conditions on the many-polariton wave function, weand we treat the atom as a quantum two-level system [3]
derive the Bethe ansatz equations, which completelwith the transition frequency,.
determine the spectrum of the system. Their “string” Because of the spherical symmetry of the problem, the
solutions (bound many-polariton complexes or quantuniHamiltonian (1) can be reduced to a one-dimensional form
solitons) exhibit some nontrivial features due to the ex{4,5]. Indeed, let us choose the system of coordinates with
istence of the gap in the one-polariton spectrum. Onlythe origin at the point of the atom’s position and expand
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field and medium variables in terms of spherical harmonic Their full spectrum consists of both the continuous
vectors [6]. In the electrodipole approximation only the spectrum with eigenenergy lying outside the gap,
electrodipole harmonic of the radiation field is coupled tof(e|A) = 27z(A)é(e — A) + /¥ z(€)g(A)/(e — A —

the atom. Therefore, omitting all the higher harmonicsi0), g(A) = /¥ 2?(V)/[w, — A — Z(V)], 2 =
uncoupled to the atom, we arrive at the following one-y [.(de/2m)z*(e)/(e — A — i0), and the discrete

dimensional form of the model Hamiltonian: mode, f4(e|lA) = [y z(e)ga(A)/(e — A), Z24(A) =
1 dk y [c(de/2m)z*(€)/(e — A). The eigenenergyA ly-
H = w12<o-Z + E) + Z—{kc+(k)c(k) ing within the gap is found as a root of the equation
0_ . A — wpp + 24(A) = 0. The valueg,(A) is determined
+ Qb (k)bk) + VEA [T (k)b(k) from the normalization condition(A|A) = 1. The

discrete mode corresponds to the polariton-atom bound
+ b (k)e(k)] — JyR) [c(k)ot + ot ()], state predicted in the case of PBG materials in Ref. [8].
2 The existence of the bound state, in which the polariton

) . ) field is localized in the vicinity of the atom, leads to a
where A = 7e‘n/moQ, y(k) =4k’d*/3, while the  gignificant suppression of the spontaneous emission.
Bose operatorsc(k) and b(k) describe the field and

- , ; ) For what follows it is convenient to rewrite Eq. (4) in
medium electrodipole harmonics, respectively.

) e i Theterms of the Fourier transform of polariton operators and
terms ¢*b™ (cb), which create (annihilate) both field \,4ve functions

and medium excitations simultaneously, as well as the
analogous termsc(o* and co™) in the atom-field _ + * +
coupling operator, are omitted in accordance with the 0= [g(/\)(r * f_m dr y(r|)p (T)}l(»’
Heitler-London [2] and the resonance [3] approximations. de _

The field-medium part of the Hamiltonian is diagonal-  ¢(7]A) = f — f(e|A)e' ™.
ized in terms of polariton operatoys, (k) corresponding c2m
to the lower ¢ = —) and upper ¢ = +) polariton  The polariton wave function in the auxiliaryspacey(r)
branches, respectively [2,7]. For our purposes, ifs not equal to the Fourier image of the functife) due
is more convenient to introduce the energy variableo the existence of the gap. Therefore, we introduce the
€, k=¢€(Q —€)/(Q — A —¢), and the polariton auxiliary function¢(e|A) = z~!(€)f(e|A), and represent

operators p(e) on the “energy scale,"p(e.(k)) =  y(7)inits terms,

{le+(k) — e-(O]/[1Q — A — e, (DI} 2p,(k), where .

e (k) = (1/2)[(Q + k) = J(Q — k)* + 4kA] are the S(rln) = f dt u(r — )b,
polariton spectra. Then, the model Hamiltonian finally —o

takes the form whereu(r) = [.(de/2m)z(e) explier). In the auxiliary

space, the Schrédinger equation,

(=id; = No(7|A) = /¥y g(V)8(7),

describes an auxiliary particle scattering on the pointlike
potential. Its solution corresponding to the continuous
Spectrum is given by

H=op(o + 5 )+ [C L lep (@ple)

—Vraelpleo” + o p (e}, 3)

where the atomic form factor(e) = (Q — €)?/[(Q —
A — €)> + k7] reflects the growth of the polariton-atom
coupling and the density of polariton states near the upp

edge of the lower polariton branch. The constant h(A) = (i/2)sgn(1) ;.
is introduced to account for relaxation processes in the ¢(rlr) = hA) + /2 e
medium. In accordance with the resonance approximation , 5)
we extended the integration over the eneegp the lower h(A) = A~ wp+ ) .
limit to —o. Because of the existence of the gap the yz2(A)
integration contour in Eq. (3) consists of two semi-infinite where sgn(r) = (=1,7 < 0;0,7 = 0;1,7 > 0),
intervals,C = (==, — ATU[Q, ). S/(A) = Re3(A).
One-particle eigenstates of the model, Now we look for N-particle eigenstates in the form

= ge” + [ 2 fep @ |10, @

are found from the Schrdédinger equation

o0 N
W) = U V(rr.o.oon) [ " (7)) d,
- v

(e = NF(El) = VT =(e)g(h) = 0. [ et I

j=1

(= we) + 7 [ S z(erteln —o. X p*(ry)dr; o)
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where theN-polariton wave functions are also expressed (=id, + w1 — E)G(7)
in terms of auxiliary functions, .
® = \/7[ dr’'v()[®(r,7") + ®(7', 71)], (6b)
W(ry,...,7n) = jl (I)(th---,fzv)l_'[u(fi — tj)dt), -

2 ! where v(r) = [.(de/2m)z*(e)exp(—ier). We look

J(T1, .. TN-1) = f_ G(tl,---,tzv—l)l__[u(’fj — tj)dtj.  for the solution of Egs. (6) in the formb(r|, ) =
J A(11, 72| A1, )b (11AD) B(72|X2), Where E = Ay + X

In the two-particle case, the auxiliary functions obey theiS the eigenenergy. An unknown functiditr, — 7,) de-

Schrodinger equation pending only on the difference of the particle coordinates
is introduced to describe the effective particle-particle
(—id;, — 07, — E)[P(71,72) + P(72,71)] coupling caused by the particle-atom scattering. Putting

this expression into Eq. (6a), we find thatr|A;, 1) =

= /vy [8(r1)G(m2) + G(11)d(m2)], (6a)  A(7)p(r]A1)g(Xy) + A(—7)g(A1)p(7]A2).  Substituting

now the expressions fab andG into Eq. (6b), we obtain
the following equation for the functioA(r):

¢(T|A1)guz)[—idiA<r>} " ¢(T|A2>g<A1>[—iiA<—r)} + U7 s [A) + A(—7)]5()
T dr

FT oI [ ar v oG AR - Al = ]+ YT o) [

Xdt'v(t ¢ (' |A)[A(—7) — A(—7 + 7))] = 0. (7)

In empty spacey(r) — 6(7), and the integral terms in whereD(r = 0) = 0. Equation (7) gives both the rela-
Eq. (7) vanish. That immediately leads to the solution, intionship between the parametétandC,
which the functionA(7) has only a discontinuous jump at

the pointr = 0 [4]. In the case of a dispersive medium, C(A1, 12)[#(01A1)g(A2) — ¢ (0lA2)g(A1)]+

we could expect a more complicated behavior of the

function A(7), therefore, we look for a solution of Eq. (7) VY 8(A1)g(A2)B(A1, A2) = 0, (8a)
in the form and the equation fab(7),

A(7|A1, A2) = B(A1, A2) + iC(Ay, A)sgn(T)

B8O | =i 45 D(rIh 1) |+ elaa)g)| = Dl 1) |+ 7 6Gelan) [ w0
X (DA, A2) = D(r = 7 A+ 7 Gela) [ drwe I ID(rlAr A2) = D=7 + 7A1, 22)]

= —i/y C(A1, 12) fim dr'v(r) [(rIA) @ (7'[02) — d(7IA) b (7 [A)][sgn(7) — sgn(r — 7')]. (8b)

The right-hand side of Eq. (8b) vanishes for anyand | a many-particle scattering process of auxiliary particles
hence,D(7) = 0. Indeed, ifr and7’ have the same sign, is factorized into two-particle ones, and tiéparticle
the term in the first brackets vanishes, while if they haveauxiliary function has the following Bethe ansatz form:
different signs, the term in the second brackets equals v

zero. Choosin@ = 1, we finally find (... 7y) = l_[A(Tj,Tzl/\j,)tz) l—[ o(7j1A). (10)
A(T1, T2l A1, A2) = 1

+ ;sgn(n - 7). J=! =
(A1) = h(A2) The two-polariton factorization of the many-polariton
(9) scattering and the Bethe ansatz construction of the many-
The two-particle scattering matrix,S(A;,A;) =  polariton wave function are hidden due to the nonlocal
[h(A1) — h(A2) — i]/[h(A1) — h(Xy) + i], is the obvi- coupling in the polariton system and become visible only

ous solution of the Yang-Baxter equations [5]. Hencejn the limit of large interpolariton separations.
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To find the spectrum of the system we have to put As L — o, Egs. (11), apart from real solutions, ad-
the system in a finite “box” of sizd. and to impose mit complex ones, in which “rapiditiesk; = h(A;) are
the periodic boundary conditions on the polariton wavegrouped into “strings,”
function. Then, we find the Bethe ansatz equations ;

o ) — i/2 _ﬁ hA) — hA) — i hj = hy + > (n +1—2j), j=1...,n, (12)

=1

h(A) +i/2 h(A;)) — h(A) + i’ wherehy is a common real part, and is the order of a
N string. The parameters;, corresponding to rapiditiels;
E= 21 Ajs (11)  can be found from Eq. (12) and the analytical continuation
=

: of Eqg. (5) in the complex plane,
wherek(A) = A(Q — A)/(QQ — A — A) is the polariton

wave vector describing the spatial behavior of the wave

functions. If one of the polaritons is bound to the atom,

its “rapidity” hy(A) = 0. |

B = {[ym)]-lm —on + I = (7/22W)] Im A >0,
[y22)] A — i + 3A) + (iy/2)z22(0)],  Im A0.

For h; lying far from the real axis, one gets; ~ | *On leave from Landau Institute for Theoretical
(Aj — w12)/y, and the parameters; are also grouped Physics and th(_e Institute of Spectroscopy, _Russian
into a string structure similar to Eq. (12); ~ A¢ + Academy of Sciences. Electronic address (internet):
i(y/2)(n + 1 — 2j). vrupasov@julian.uwo.ca and msingh@uwovax.uwo.ca
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