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Correlation and Negative Continuum Effects for the RelativisticM1 Transition
in Two-Electron Ions using the Multiconfiguration Dirac-Fock Method
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The role of theE , 2mc2 continuum and of correlation in the multiconfiguration Dirac-Fock
calculation of nondiagonal one-electron operators is described. Because of its importance and
symmetry which emphasize both effects, we study the1s2s 3S1 ! 1s2 1S0 relativistic M1 transition
in two-electron ions. It is shown that both contributions have the same magnitude, and must be
included even at lowZ. These contributions improve significantly the agreement between theory
and experiment at allZ, reducing the disagreement for Nb from2.7 to 21.8 times the experimental
error. [S0031-9007(96)01383-X]
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In the past few years much effort has been placed
the understanding of the relativistic many-body proble
in atoms. Both few-electron heavy ions and inner she
of heavy atoms have been intensely studied. Beca
the direct use of bound state QED (as was recently do
in [1,2]) is very often impractical for the evaluation o
level energies in systems with more than one electro
approximate methods, based on an effective relativis
Hamiltonian, have been developed, in which correlati
energy can be evaluated in the same way as in the n
relativistic case. Multiconfiguration Dirac-Fock (MCDF
and relativistic many-body perturbation theory (RMBPT
are the most widely used methods for that purpose. F
lowing Brown and Ravenhall [3], Sucher [4] pointed ou
in 1980 that the existence of theE , 2mc2 continuum
did not easily allow one to generalize to the relativist
case the nonrelativistic methods for energy calculations:
proper form of the electron-electron interaction with pro
jection operators onto theE . mc2 continuum must be
used, leading to the so called no-pair Hamiltonian,H np ­Pm
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Here L
11
ij ­ L

1
i L

1
j is an operator projecting onto the

positive energy states to avoid introducing unwanted p
creation effects,rij ­

°
ri 2 rj

¢
is the interelectronic dis-

tance,vij the energy of the photon exchanged betwe
the electrons, andai are Dirac matrices. The first term
in Eq. (1) represents the regular Coulomb interaction, t
second one is the magnetic (Gaunt) interaction, and the
is the retardation (in Coulomb gauge) [5,6].

Whether the use of projection operators is necess
or not in the MCDF case has been controversial [6–
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and it was not at all clear on how to include them in
practice. This has been settled recently as a meth
has been proposed which enables one to identify a
to project out the spurious contributions from theE ,

2mc2 continuum in the MCDF case [9]. Yet, little
attention has been paid, so far, to the role of theE ,

2mc2 continuum in the evaluation of quantity other than
energy, such as transition probabilities.

The purpose of this Letter is to clarify this last point
taking as an example the1s2s 3S1 ! 1s2 1S0 relativistic
M1 transition. I report here a complete multiconfiguration
Dirac-Fock calculation, in which correlation contribution
to the energy and the radial matrix element are taken in
account, I discuss the effect of theE , 2mc2 continuum,
and provide accurate transition rates for highZ ions.

The relativistic M1 is of particular interest, because
precise experiments are available for2 # Z # 54, and
because the effects I want to discuss are enhanced;
transition being completely of relativistic origin. Atomic
numbers down toZ ­ 2 are studied to show the interplay
between correlation and theE , 2mc2 continuum.

There is no explicit expression forL11, except at the
Pauli approximation [10]. In the MCDF method, the wave
function is usually obtained numerically through, e.g., fi
nite difference methods, from an inhomogeneous integr
differential equation in which the inhomogeneous term
comes from exchange. There is thus no simple way
construct a projection operator. In Ref. [9] an approxi
mation to such an operator is constructed by develo
ing the solution of theinhomogeneousintegrodifferential
equation on the basis set representing all the solutio
of the homogeneousequation. The expansion over the
complete set of the homogeneous solutions will explicitl
include the contribution of the negative continuum. Re
stricting the expansion to the solutions whose eigenvalu
are greater than2mc2 removes this negative continuum
contribution in the same way as in RMBPT calculations.

The use of the MCDF wave functions for the evalu
ation of nondiagonal operators such as the transition rat
© 1996 The American Physical Society 3323
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is not straightforward. The two available MCDF cod
[11,12] are designed with the assumption that all s
orbitals of identical symmetry in all configurations are o
thogonal. This does not lead to any problem when ev
uating energies but makes it more difficult to use fu
relaxed wave functions when computing matrix eleme
between two different states. The standard procedur
to use wave functions for the initial and final states,
which all spectator-electron orbitals are frozen. Thus
orthonormality of spin orbitals is preserved. The relativ
tic M1 is a very interesting case in that respect, beca
it involves two orbitals of identical symmetry (1s and
2s). Using wave functions that are Slater determinan
the matrix elementk1s02s0jsssM1sr1d 1 M1sr2ddddj1s2l gives
k2s0jM1j1sl k1s0j1sl 2 k1s0jM1j1sl k2s0j1sl (primes de-
note initial state orbitals). If spin orbitals in the initia
and final states are orthogonal, then this reduces to
usual matrix element. This happens, for example, if
2s0 orbital has been calculated using the frozen1s orbital
in lieu of 1s0. Otherwise, the overlapk2s0j1sl is ø1023.
But the matrix elementk1s0jM1j1sl is much larger than
k2s0jM1j1sl, and the final value isø40% off if this term
is neglected. It agrees with the frozen core calculation
four significant figures otherwise.

For correlated wave functions there is no such alt
native: One must use full relaxation in both the initi
and final states. Correlation orbitals (orbitals with effe
tive occupations small compared to one) are very differ
from occupied orbitals, because the exchange poten
not the direct potential, dominates their behavior (par
ularly when the Gaunt interaction is made self-consist
[9]). In that case, overlaps cannot be neglected, and
MCDF calculation of an off-diagonal operator is mea
ingless if one does not properly include nonorthogona
contributions. I have written a code that can generate
possible matrix elements between two arbitrary MCD
wave functions following the formalism established
Löwdin (1955) [13]. Because it leads to very large c
culations for many-electron atoms, this formalism is s
dom used [14,15]. The two-electron system, however,
be evaluated easily. The initial wave function is tak
as1s2s 3S1 1 3s4s 3S1 1 · · · 1 4f5f 3S1 and the ground
state wave function as1s2 1S0 1 2s2 1S0 1 · · · 1 5g2 1S0

[9,16,17].
The results obtained with this procedure are in b

ter agreement with experiment atZ ­ 41 than a simple
Dirac-Fock value (using the same transition energy). Y
they are still very inaccurate at lowerZ, recovering only
half of the difference between the single configurati
Dirac-Fock values and experiment. A closer analy
shows that this is due to the use of the no-pair Ham
tonian, i.e., the exclusion of theE , 2mc2 continuum
from the correlated wave functions used for the eva
ation of the radialM1 matrix element. The MCDF
method must be viewed as a way to do an all-or
resummation of standard, i.e., non-QED perturbation t
ory. In that sense,E , 2mc2 states, which are reinter
3324
s
in
r-
al-
ly
ts
is

in
he
s-
se

ts,

l
the
he

to

r-
l

c-
nt

tial,
ic-
nt
ny
-

ity
all
F
y
l-
l-
an
n

t-

et,

n
is
il-

lu-

er
e-

preted in QED as positive energy positrons, are not pro
erly taken into account, and lead to infinite perturbatio
contributions to the energy [Fig. 1(a)]. The use ofH np

in the determination of the energy with the MCDF metho
avoids spurious contributions due to diagrams such as
one in Fig. 1(a). The situation is very different for pertur
bation correction to transition rates (or other one-electro
operators), as was noted already in a RMBPT calculatio
[18]. This can easily be understood from the diagram
Fig. 1(b). In that case, theE , 2mc2 state is part of
the first order correction to the wave function (or, in othe
words, a piece of thereducedGreen’s function). As the
M1 operator is a one-electron operator, the energy d
nominator in that case is justE2 2 E2s, which never can-
cels out. Thus one should useVij to evaluate correlated
energies, andVij to evaluate wave functions used in the
M1 matrix element. In Ref. [18], the total contribution
of diagrams such as those in Fig. 1(b) is adding up to
This is due to the specific potential used in this referen
for building unperturbed states. The present calculatio
proves that the effect of theE , 2mc2 continuum on the
M1 rate is much larger with a fully self-consistent MCDF
potential than in the RMBPT case.

Since the Gaunt interaction is treated self-consistent
I could not reach convergence for very large sets
configurations [9], and could not do calculations forZ $

54, although techniques have been developed recen
to improve those problems when the Gaunt interactio
is not self-consistent [19]. However, theM1 matrix
element converges very fast when summing over angu
momentum, and adding configurations involving onlys
and p electrons was enough to reach convergence ag
as described in Ref. [18]. This fact can be checked o
the calculation with projection operators, for which al
configurations up ton ­ 5 and l ­ 4 are included. At

FIG. 1. (a) Second order perturbation contribution to th
energy to be excluded by the projection operator. The ener
denominator is E1 1 E2 2 EA 2 EB, with E2 , 2mc2

(negative energy continuum),E1 . mc2 (positive energy
continuum),EA, EB bound state energies. This denominato
can always be canceled out. Including a projection operat
suppresses the matrix element, avoiding the problem. T
suppressed terms can only be evaluated using QED [1,
(b) Contribution to theM1 matrix element with intermediate
E , 2mc2 state. The area inside the dashed box correspon
to the first order correction to the wave function (reduce
Green’s function).
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TABLE I. Relativistic M1 transition rate(s). DF: single configuration Dirac-Fock lifetime
MCDFnp: MCDF lifetime evaluated with a no-pair Hamiltonian. %yDF: variation relative to
DF lifetime. MCDFe1e2 : MCDF lifetime evaluated without projection operators in the wav
function. %ynp: variation relative to MCDFnp lifetime. The same high precision energy is
used for all three calculations.

Z DF MCDFnp %yDF MCDFe1e2 %ynp

2 1.288 3 104 0.875 3 104 247.2% 0.782 3 104 211.8%
3 6.637 3 101 5.603 3 101 218.5% 5.058 3 101 210.8%
6 2.367 3 1022 2.220 3 1022 26.6% 2.103 3 1022 25.5%
7 4.439 3 1023 4.205 3 1023 25.6% 4.012 3 1023 24.8%

10 9.935 3 1025 9.584 3 1025 23.7% 9.270 3 1025 23.4%
12 1.467 3 1025 1.424 3 1025 23.0% 1.385 3 1025 22.8%
16 7.372 3 1027 7.214 3 1027 22.2% 7.059 3 1027 22.2%
17 3.939 3 1027 3.860 3 1027 22.1% 3.781 3 1027 22.1%
18 2.183 3 1027 2.142 3 1027 21.9% 2.100 3 1027 22.0%
22 2.763 3 1028 2.720 3 1028 21.6% 2.676 3 1028 21.6%
23 1.749 3 1028 1.723 3 1028 21.5% 1.697 3 1028 21.6%
26 4.964 3 1029 4.899 3 1029 21.3% 4.833 3 1029 21.4%
35 2.342 3 10210 2.319 3 10210 21.0% 2.298 3 10210 20.9%
36 1.753 3 10210 1.736 3 10210 21.0% 1.721 3 10210 20.9%
41 4.589 3 10211 4.549 3 10211 20.9% 4.516 3 10211 20.7%
47 1.117 3 10211 1.108 3 10211 20.8% 1.102 3 10211 20.6%
54 2.631 3 10212 2.613 3 10212 20.7%
92 8.285 3 10215 8.245 3 10215 20.5%
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Z ­ 6, including higherl and levels up ton ­ 5 gives
only a 0.06% change. For lowZ the maximumn used
in the set of configurations was 4. ForZ $ 18 the
calculation had to be limited ton # 3. However, in this
case, correlation plays a relatively smaller role.

The results of these calculations are presented
Table I. The comparison between both calculations a
experiment is presented in Fig. 2, together with oth
calculations, and in Table II. The effect of correlation o
the radial part of the matrix element ranges from 47%
Z ­ 2 to 0.5% atZ ­ 92. As can be seen in Table I
and Fig. 2, the0.96% 6 0.35% disagreement betwee
the Dirac-Fock calculation and the experiment for N
becomes0.1% when correlation to the matrix elemen
is included using MCDF wave functions evaluated wi
projection operators. ForZ ­ 6 the difference decrease
from 15 6 0.2% to 7.8% but is not canceled. In the
same way, atZ ­ 18, the difference between the RMBP
value of [18] and the MCDF value decreases fro
4.1 6 0.2% to 2.3%. Most of the remaining difference
is recovered when removing the projection operat
from the wave function used to evaluate theM1 matrix
element (obviously, the energies must still be compu
with projection operators). For the same elements,
latter calculation gives0.64 6 0.35% (Nb), 2.4 6 0.2%
(C), and 0.3 6 0.2% (Ar), respectively, which reduces
significantly the difference between calculation and t
most precise experiments to datesZ ­ 6, 10, 41, 47d. At
that stage, it should be noted that, if the magnetic par
the interaction (1) is not included in the evaluation of t
wave function, the transition range changes by almost
at Z ­ 6, thus destroying the agreement between the
and experiment. This has, however, little effect at highZ.
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In this paper, I have shown that the MCDF method ca
reproduce very accurately the relativisticM1 transition
rate, provided that correlation is properly accounted fo
using fully relaxed wave functions, evaluated with bot
the Coulomb interaction and the magnetic interactio
One is then obliged to properly take into account the no
orthogonality between spin orbitals. I have also show
that theE , 2mc2 continuum plays a very special role

FIG. 2. Comparison between theory and experiment. A
rates are normalized to the DF value. DF: single configu
ration Dirac-Fock used as a reference. MCDF: highly co
related Dirac-Fock calculation using a no-pair Hamiltonian
MCDFe1e2 : same without the projection operator. Other cal
culations from Refs. [18,33–36].
3325
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TABLE II. Comparison between the different DF approximations used in this work an
experiment. Exp: experimental value. Prec.: experimental precision. Relative differences
calculated using experimental values as a reference.

Z Exp. Ref. Prec. DF MCDFnp MCDFe1e2

2 0.909 3 104 [20] 30.0% 41.7% 23.8% 213.9%
3 5.860 3 101 [21] 22.0% 13.3% 24.4% 213.7%
6 2.509 3 1022 [22] 0.2% 15.0% 7.8% 2.1%
7 3.905 3 1023 [22] 6.4% 13.7% 7.7% 2.8%

10 9.050 3 1025 [23] 1.7% 9.8% 5.9% 2.4%
12 1.361 3 1025 [24] 3.6% 7.8% 4.7% 1.8%
16 7.060 3 1027 [25] 12.2% 4.4% 2.2% 0.0%
17 3.540 3 1027 [25] 6.8% 11.3% 9.0% 6.8%
18 2.020 3 1027 [26] 5.9% 8.1% 6.0% 4.0%
22 2.580 3 1028 [26] 5.0% 7.1% 5.4% 3.7%
23 1.690 3 1028 [27] 4.1% 3.5% 2.0% 0.4%
26 4.800 3 1029 [27] 12.5% 3.4% 2.1% 0.7%
35 2.241 3 10210 [28] 3.2% 4.5% 3.5% 2.5%
36 1.710 3 10210 [29] 1.3% 2.5% 1.5% 0.6%
41 4.545 3 10211 [30] 0.35% 0.95% 0.1% 20.64%
47 1.115 3 10211 [31] 1.8% 0.2% 20.6% 21.2%
54 2.554 3 10212 [32] 3.0% 3.0% 2.3%
o
,

B
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in the calculation, particularly at lowZ where it is the
least expected (this is also true of the magnetic inte
action). The discrepancy between theory and the m
precise experiments is significantly reduced. Residu
discrepancy remains at lowZ due to the relatively limited
size of the configuration set. AtZ ­ 41, the precision
of the experiment suggests that radiative correctio
to the transition rate, beyond the one included in th
transition energy, should be investigated to account for t
remaining discrepancy. The formalism and program us
for this calculation can be readily used to study forbidde
transitions, or transitions for which correlation is ver
important such as two-electron one-photon transition
in more complex ions or atoms. It must also be use
for other nondiagonal one-electron operators as those
hyperfine quenching or parity violation.
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