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The role of theE < —mc? continuum and of correlation in the multiconfiguration Dirac-Fock
calculation of nondiagonal one-electron operators is described. Because of its importance and
symmetry which emphasize both effects, we study thes3S, — 152 'S, relativistic M1 transition
in two-electron ions. It is shown that both contributions have the same magnitude, and must be
included even at lowZ. These contributions improve significantly the agreement between theory
and experiment at al¥, reducing the disagreement for Nb fra27 to —1.8 times the experimental
error. [S0031-9007(96)01383-X]

PACS numbers: 32.70.Cs, 31.25.-v, 31.30.Jv

In the past few years much effort has been placed oand it was not at all clear on how to include them in
the understanding of the relativistic many-body problempractice. This has been settled recently as a method
in atoms. Both few-electron heavy ions and inner shelldias been proposed which enables one to identify and
of heavy atoms have been intensely studied. Becauge project out the spurious contributions from the<
the direct use of bound state QED (as was recently donemc? continuum in the MCDF case [9]. Yet, little
in [1,2]) is very often impractical for the evaluation of attention has been paid, so far, to the role of fe<
level energies in systems with more than one electron;-mc? continuum in the evaluation of quantity other than
approximate methods, based on an effective relativistienergy, such as transition probabilities.

Hamiltonian, have been developed, in which correlation The purpose of this Letter is to clarify this last point,
energy can be evaluated in the same way as in the nomiaking as an example thes2s3S; — 15215, relativistic
relativistic case. Multiconfiguration Dirac-Fock (MCDF) M1 transition. | report here a complete multiconfiguration
and relativistic many-body perturbation theory (RMBPT) Dirac-Fock calculation, in which correlation contribution
are the most widely used methods for that purpose. Folto the energy and the radial matrix element are taken into
lowing Brown and Ravenhall [3], Sucher [4] pointed out account, | discuss the effect of tilie< —mc? continuum,

in 1980 that the existence of the < —mc? continuum  and provide accurate transition rates for higlons.

did not easily allow one to generalize to the relativistic The relativistic M1 is of particular interest, because
case the nonrelativistic methods for energy calculations: Aorecise experiments are available for= Z = 54, and
proper form of the electron-electron interaction with pro-because the effects | want to discuss are enhanced; the
jection operators onto th€ > mc? continuum must be transition being completely of relativistic origin. Atomic
used, leading to the so called no-pair Hamiltoni&h™ =  numbers down t& = 2 are studied to show the interplay
S Hp(r) + Xic; V(Ir; — r;l), whereH), is aone-  between correlation and the < —mc?* continuum.

electron Dirac operator and is an operator representing ~ There is no explicit expression fox**, except at the
the electron-electron interactiol;; = A;;"V;;A;;", with ~ Pauli approximation [10]. In the MCDF method, the wave
function is usually obtained numerically through, e.g., fi-

Vi, = 1 _ere ai-e [coSw;jrij) — 1] nite difference methods, from an inhomogeneous integro-
Tij Tij Tij differential equation in which the inhomogeneous term
cogw;jrij) — 1 comes from exchange. There is thus no simple way to

+ (a; Vi) (e V) ——F—. (1) construct a projection operator. In Ref. [9] an approxi-

@ijTij mation to such an operator is constructed by develop-

Here A;;" = A A is an operator projecting onto the ing the solution of thénhomogeneousitegrodifferential
positive energy states to avoid introducing unwanted paiequation on the basis set representing all the solutions
creation effectsr;; = (r; — r;) is the interelectronic dis- of the homogeneougquation. The expansion over the
tance,w;; the energy of the photon exchanged betweertomplete set of the homogeneous solutions will explicitly
the electrons, and; are Dirac matrices. The first term include the contribution of the negative continuum. Re-
in Eq. (1) represents the regular Coulomb interaction, thatricting the expansion to the solutions whose eigenvalues
second one is the magnetic (Gaunt) interaction, and the reate greater thar-mc? removes this negative continuum
is the retardation (in Coulomb gauge) [5,6]. contribution in the same way as in RMBPT calculations.
Whether the use of projection operators is necessary The use of the MCDF wave functions for the evalu-
or not in the MCDF case has been controversial [6—8]ation of nondiagonal operators such as the transition rates
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is not straightforward. The two available MCDF codespreted in QED as positive energy positrons, are not prop-
[11,12] are designed with the assumption that all spirerly taken into account, and lead to infinite perturbation
orbitals of identical symmetry in all configurations are or-contributions to the energy [Fig. 1(a)]. The useZf"?
thogonal. This does not lead to any problem when evalin the determination of the energy with the MCDF method
uating energies but makes it more difficult to use fully avoids spurious contributions due to diagrams such as the
relaxed wave functions when computing matrix elementone in Fig. 1(a). The situation is very different for pertur-
between two different states. The standard procedure isation correction to transition rates (or other one-electron
to use wave functions for the initial and final states, inoperators), as was noted already in a RMBPT calculation
which all spectator-electron orbitals are frozen. Thus thg18]. This can easily be understood from the diagram in
orthonormality of spin orbitals is preserved. The relativis-Fig. 1(b). In that case, th& < —mc? state is part of
tic M1 is a very interesting case in that respect, becausthe first order correction to the wave function (or, in other
it involves two orbitals of identical symmetryl{ and words, a piece of theeducedGreen'’s function). As the
2s). Using wave functions that are Slater determinantsM1 operator is a one-electron operator, the energy de-
the matrix elemen¢ls’2s’|(M1(r;) + M1(r,))|1s%) gives  nominator in that case is juft- — E,,, which never can-
2s'|M1|1s)(1s'[1s) — (1s'|M1]15)(2s'|1s) (primes de- cels out. Thus one should usg; to evaluate correlated
note initial state orbitals). If spin orbitals in the initial energies, and/;; to evaluate wave functions used in the
and final states are orthogonal, then this reduces to th&1 matrix element. In Ref. [18], the total contribution
usual matrix element. This happens, for example, if theof diagrams such as those in Fig. 1(b) is adding up to O.
2s' orbital has been calculated using the froderorbital ~ This is due to the specific potential used in this reference
in lieu of 1s/. Otherwise, the overlaf®s’|1s) is =1073.  for building unperturbed states. The present calculation
But the matrix elementls’|M1|1s) is much larger than proves that the effect of thE < —mc? continuum on the
(2s'|M1|1s), and the final value is=40% off if this term M1 rate is much larger with a fully self-consistent MCDF
is neglected. It agrees with the frozen core calculation tgotential than in the RMBPT case.
four significant figures otherwise. Since the Gaunt interaction is treated self-consistently,
For correlated wave functions there is no such alterd could not reach convergence for very large sets of
native: One must use full relaxation in both the initial configurations [9], and could not do calculations for=
and final states. Correlation orbitals (orbitals with effec-54, although techniques have been developed recently
tive occupations small compared to one) are very differento improve those problems when the Gaunt interaction
from occupied orbitals, because the exchange potentials not self-consistent [19]. However, th& 1 matrix
not the direct potential, dominates their behavior (particelement converges very fast when summing over angular
ularly when the Gaunt interaction is made self-consisteninomentum, and adding configurations involving osly
[9]). In that case, overlaps cannot be neglected, and argnd p electrons was enough to reach convergence again
MCDF calculation of an off-diagonal operator is mean-as described in Ref. [18]. This fact can be checked on
ingless if one does not properly include nonorthogonalitythe calculation with projection operators, for which all
contributions. | have written a code that can generate altonfigurations up to: = 5 and! = 4 are included. At
possible matrix elements between two arbitrary MCDF
wave functions following the formalism established by
Léwdin (1955) [13]. Because it leads to very large cal- D
culations for many-electron atoms, this formalism is sel-
dom used [14,15]. The two-electron system, however, can
be evaluated easily. The initial wave function is taken  E_
asls2s3S; + 3s4s3S, + --- + 4f5f 38, and the ground
state wave function aks? 'Sy + 25215y + - + 5g% 1S,

[9,16,17]. E4
The results obtained with this procedure are in bet-
ter agreement with experiment Zt= 41 than a simple (A)

Dirac-Fock value (using the same transition energy). Yet,
they are still very inaccurate at lowér, recovering only  FIG. 1. (@) Second order perturbation contribution to the
half of the difference between the single configuration€n€rgy to be excluded by the projection operator. The energy
. . . denominator iSE, + E_ — E4 — Eg, with E_ < —mc?
Dirac-Fock va}lugs and experiment. A closer_analys.|s(negative energy continuum)E. > me? (positive energy
shows that this is due to the use of the no-pair Hamilcontinuum), E,, E; bound state energies. This denominator
tonian, i.e., the exclusion of thE < —mc? continuum can always be canceled out. Including a projection operator
from the correlated wave functions used for the evalusuppresses the matrix element, avoiding the problem. The
ation of the radialM1 matrix element. The MCDF Suppressed terms can only be evaluated using QED [1,2].

thod t be Vi d to d ll-ord r(b) Contribution to theM1 matrix element with intermediate
method must be viewed as a way 10 do an all-0rdelp " _,, .2 state. The area inside the dashed box corresponds

resummation of standard, i.e., non-QED perturbation theg the first order correction to the wave function (reduced
ory. In that sensef < —mc? states, which are reinter- Green’s function).
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TABLE |I. Relativistic M1 transition rate(s). DF: single configuration Dirac-Fock lifetime.
MCDF,,: MCDF lifetime evaluated with a no-pair Hamiltonian. /@F: variation relative to
DF lifetime. MCDF,+.-: MCDF lifetime evaluated without projection operators in the wave
function. %/np: variation relative to MCDF, lifetime. The same high precision energy is
used for all three calculations.

z DF MCDF,, %/DF MCDF, - %/np
2 1.288 x 10* 0.875 x 10* —47.2% 0.782 x 10* —11.8%
3 6.637 X 10! 5.603 x 10! —18.5% 5.058 X 10! —10.8%
6 2.367 X 1072 2.220 X 1072 —6.6% 2.103 X 1072 —=5.5%
7 4.439 X 1073 4205 X 1073 —5.6% 4.012 X 1073 —4.8%
10 9.935 X 107 9.584 X 107 —3.7% 9.270 X 107 —3.4%
12 1.467 X 107 1.424 X 107 —3.0% 1.385 X 107 —2.8%
16 7.372 X 1077 7.214 X 1077 —2.2% 7.059 X 1077 —2.2%
17 3.939 X 1077 3.860 X 1077 —2.1% 3.781 x 1077 —2.1%
18 2.183 X 1077 2.142 X 1077 —1.9% 2.100 X 1077 —2.0%
22 2.763 x 1078 2.720 X 1078 —1.6% 2.676 X 1078 —1.6%
23 1.749 X 1078 1.723 X 1078 -1.5% 1.697 X 1078 —1.6%
26 4.964 x 107° 4.899 X 107° —1.3% 4.833 X 107° —1.4%
35 2.342 X 10710 2.319 X 10710 —1.0% 2.298 X 10710 —0.9%
36 1.753 x 10710 1.736 X 10710 -1.0% 1.721 X 10710 —0.9%
41 4.589 x 107! 4.549 x 1071 —0.9% 4516 x 1071 —0.7%
47 1.117 x 1071 1.108 x 107! —0.8% 1.102 x 107! —0.6%
54 2.631 X 10712 2.613 X 10712 —0.7%
92 8.285 X 1071 8.245 X 1071 —0.5%
Z = 6, including higher! and levels up to: = 5 gives In this paper, | have shown that the MCDF method can

only a 0.06% change. For lo#® the maximumn used reproduce very accurately the relativistié1 transition
in the set of configurations was 4. Fd&f = 18 the rate, provided that correlation is properly accounted for,
calculation had to be limited te = 3. However, in this using fully relaxed wave functions, evaluated with both
case, correlation plays a relatively smaller role. the Coulomb interaction and the magnetic interaction.
The results of these calculations are presented i®ne is then obliged to properly take into account the non-
Table I. The comparison between both calculations andrthogonality between spin orbitals. | have also shown
experiment is presented in Fig. 2, together with othethat theE < —mc? continuum plays a very special role
calculations, and in Table Il. The effect of correlation on
the radial part of the matrix element ranges from 47% at
Z =21to 0.5% atZ = 92. As can be seen in Table Il

and Fig. 2, the0.96% = 0.35% disagreement between 02 [ . ri)DF“P

the Dirac-Fock calculation and the experiment for Nb —— Drake

becomes0.1% when correlation to the matrix element o Lindroth
01t MCDF e'e’ | |

is included using MCDF wave functions evaluated with
projection operators. FA& = 6 the difference decreases
from 15 = 0.2% to 7.8% but is not canceled. In the
same way, afZ = 18, the difference between the RMBPT
value of [18] and the MCDF value decreases from
4.1 £ 0.2% to 2.3%. Most of the remaining difference

is recovered when removing the projection operators
from the wave function used to evaluate th& matrix
element (obviously, the energies must still be computed
with projection operators). For the same elements, the _
latter calculation give$.64 = 0.35% (Nb), 2.4 = 0.2% . L
(C), and 0.3 = 0.2% (Ar), respectively, which reduces 0 10 20 30 40 50 60
significantly the difference between calculation and the
most precise experiments to dd# = 6, 10,41,47). At
that stage, it should be noted that, if the magnetic part oflG. 2. Comparison between theory and experiment. All
the interaction (1) is not included in the evaluation of the:g';ﬁ)sn algﬁrarc]?lggcalyzjgeéoatshea [r)eFfe\:gLuc% %Féslgﬁg:}?gﬁg/”fé%ﬁ_‘
wave function, the tran.SItlon range changes by almost S%lated Dirac-Fock calculation using a no-pair Hamiltonian.
atZ = 6, thus destroying the agreement between theoryiCDF,, : same without the projection operator. Other cal-
and experiment. This has, however, little effect at high culations from Refs. [18,33-36].

(Z/10)x(Value-DF)/DF

Z
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TABLE 1l. Comparison between the different DF approximations used in this work and
experiment. Exp: experimental value. Prec.: experimental precision. Relative differences are
calculated using experimental values as a reference.

Z Exp. Ref. Prec. DF MCDf MCDF,+,-
2 0.909 x 10* [20] 30.0% 41.7% —3.8% —13.9%
3 5.860 X 10! [21] 22.0% 13.3% —4.4% —13.7%
6 2.509 X 1072 [22] 0.2% 15.0% 7.8% 2.1%
7 3.905 X 1073 [22] 6.4% 13.7% 7.7% 2.8%
10 9.050 X 107 [23] 1.7% 9.8% 5.9% 2.4%
12 1.361 X 1072 [24] 3.6% 7.8% 4.7% 1.8%
16 7.060 X 1077 [25] 12.2% 4.4% 2.2% 0.0%
17 3.540 x 1077 [25] 6.8% 11.3% 9.0% 6.8%
18 2.020 X 1077 [26] 5.9% 8.1% 6.0% 4.0%
22 2.580 X 1078 [26] 5.0% 7.1% 5.4% 3.7%
23 1.690 X 1078 [27] 4.1% 3.5% 2.0% 0.4%
26 4.800 X 107° [27] 12.5% 3.4% 2.1% 0.7%
35 2.241 x 10710 [28] 3.2% 4.5% 3.5% 2.5%
36 1.710 X 10710 [29] 1.3% 2.5% 1.5% 0.6%
41 4.545 x 1071 [30] 0.35% 0.95% 0.1% —0.64%
47 1.115 x 1071 [31] 1.8% 0.2% —0.6% —1.2%
54 2.554 X 10712 [32] 3.0% 3.0% 2.3%
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