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The feasibility of shell-model calculations is radically extended by the quantum Monte Carlo
diagonalization method with various essential improvements. The major improvements are made in
the sampling for the generation of shell-model basis vectors, and in the restoration of symmetries such
as angular momentum and isospin. Consequently the level structure of low-lying states can be studied
with realistic interactions. After testing this method ¥ivig, we present first results for energy levels
and E2 properties of*Ge, indicating its large ang-soft deformation. [S0031-9007(96)01252-5]

PACS numbers: 21.60.Ka, 21.60.Cs, 24.10.Cn, 27.50.+e

The nuclear shell model has been successful in thenodel Hamiltonian consisting of single-particle energies
description of various aspects of nuclear structure, partland a two-body interaction can be written in the quadratic
because it is based on a minimum number of naturalorm of Ny one-body operator®,,:
assumptions. Although the direct diagonalization of the N,

Hamiltonian matrix in the full valence-nucleon Hilbert H = Z <Ea0a + 1 Vﬂ@i)_ (1)
space is desired, the dimension of such a space is too a=1 2

:cahgle i? Tat_ny Casﬁ_fﬁ P:je_Verltigg us fr(l?m t_perffr’:mi”g th&ve consider the imaginary time evolution opera-
ull calculations. e direct diagonalization has bee —BH i iraar ,—BH — TTV  ,—ABH
carried out up td®Cr [1]. Recently, in order to relax this ntvc\;rzerz AB iwtg/N]:/_t Sg;esépglying tlr:[éFII—Tubbar’d-

restriction drastically, stochastic approaches, for instancesi aionovich transformation at each time slice 8,9],
Lheeersmr}ﬁc-emsgg::egonlf fg(?trlogr(c?lz\fmgﬂ(s:t)a'r[ze[tg]ogn[g]:[hr:\r;ee_BH can be expressed as the integral of an operator,
. , - N, ~ABhK(G,) - .

. ) el € , over Ny X N, auxiliary fields o,
ﬂg&%ﬁes [4] have been well described by the SMMC[see Eq. (4) of Ref. [5]] CVith thg Gaussian weight factor
We have presented the quantum Monte Carlo diagona"lgg;ﬁ)ilt:)nei;(re(h(&zil’ins ﬁg,i/nzégabl;“” - The one-body

zation (QMCD) method [5] by utilizing the auxiliary field "

Monte Carlo technique as in the SMMC method, but

in a quite different way. In general, low-lying states

of nuclei are described to a good extent in terms of N

static and/or dynamic mean fields and their quctuations\.Nheres“ = *l(= ?—L’) if Vo < 0(>0). Inthe QMCD

The basic idea of the QMCD method is to diagonalizememOd’.by generating a new set of valuesdor {oa,}

the shell-model Hamiltonian, by using this property, _stochasncally according 1G:(a), @ new many-body state

in a subspace spanned by a small number of selectéd created as N

basis states obtained by stochastically generated one-body 5o .

fields. Thus, the ground state and several excited states | () o l_[ e~ APy ) 3)

can be obtained. The QMCD method has been applied n=l

to the interacting boson model [5,6]. In this Letter thewhere |¥©)) is an appropriate initial state. The Hamil-

QMCD method is revised considerably in various aspectfonian is diagonalized in the Hilbert subspace spanned by

S0 as to be capable of performing large-scale shell-mod¢his state and the basis states previously obtained. If this

calculations with realistic nuclear forces. As exampleshew state improves the result of the diagonalization suf-

Mg and **Ge are taken. In particula’*Ge is an ficiently well, this state is added to the basis states. The

N = Z proton-rich unstable nucleus manifestinggaoft  number of such basis states is referred to as the QMCD

structure, with a wide range of theoretical interpretationasis dimension, and is increased until reasonable conver-

(see Ref. [7]). Thus, the shell-model calculation can playgence is achieved.

a crucial role for clarifying the level structure, but so It is convenient to adopt basis states in the form of

far such attempts have been impossible due to the largglater determinant]\_, a}|-), whereN denotes the

dimension(~1 X 10°). number of valence nucleon$;-) is an inert spherical
We first sketch the QMCD process very briefly, refer-core, anda/ represents the nucleon creation operator

ring to relevant equations of Ref. [5]. More details onin a canonical single-particle state, which is a linear

certain basic points can be found in Ref. [5]. The shell-combination of the spherical bases. Note that,%f?)

h(&n) = Z(Ea + SaVaUal1)0a s (2)

0031-900796/77(16)/3315(4)$10.00 © 1996 The American Physical Society 3315



VOLUME 77, NUMBER 16 PHYSICAL REVIEW LETTERS 14 ©TOBER 1996

is a Slater determinant® (o)) in Eq. (3) remains in the Thus, we simply replace the single-particle energy
form of a Slater determinant. > . EqO, by hyp. If |¥©) is the HF state being
While the QMCD method outlined so far is applicable considered, the sampling arouad= 0 generates various
to fermion systems, its capability is limited to simple states around this HF state, including Tamm-Dancoff-
cases, for instance, a singlemodel. Difficulties arise, type states to first order ior, and so on. This treatment
for example, due to finite single-particle energies. Thus, @ possible for all HF local minima.
substantial further improvement of the method is required In cases of nonspherical nuclei, many Hartree-Fock
for realistic shell-model calculations. Such improvementdocal minima appear in the search for the initial state.
are that (i) the sampling scheme is modified, and (ii)By stochastically taking those local minima as the initial
additional processes are included to restore symmetries. states, it is possible to take into account a wider variety of
We start with the sampling. In the original version of configurations.
the QMCD method, a rather naive sampling is performed The second major improvement on the sampling is the
[see Eq. (4) of Ref. [5]]. This sampling creates manyordering of one-body fields according to their importance.
unnecessary basis vectors in general, and, indeed, tAdhe QMCD method is a method for generating favorable
actual sampling has to be modified for large-scale realistibasis states for diagonalization, and there is no need
shell-model calculations so that important basis vectorso carry out the stochastic integration over all auxiliary
are generated still stochastically but more efficiently byfields. In constructing the basis states, we start with
considering the many-body dynamics. the most relevant part of the Hamiltonian, which yields
The modification regarding the sampling consists offewer auxiliary fields than the whole Hamiltonian. The
two parts. In the first part, the basis state generatioralculation can then be performed more efficiently. After
is refined so as to make use of the local Hartree-Fockertain basis states are obtained, we take an enlarged
(HF) energy minima. In the QMCD calculation, one hasportion of the Hamiltonian, so that other terms of the
to generate good basis states (i.e., Slater determinants amiltonian can be properly included in constructing the
deformed bases) which have (i) low values of diagonabasis states. Eventually the completeness of the QMCD
matrix elements and/or (ii) large off-diagonal matrix basis is guaranteed for the ground state by taking all fields.
elements of the Hamiltonian. The point (i) can be fulfiled In most cases, the auxiliary fields with large values of
by using, as|¥©) in Eq. (3), a deformed HF solution |V,|in Eq. (1) turn out to have quadrupole, hexadecapole,
within the present shell-model space. The QMCD proceser monopole natures. Therefore it is reasonable to arrange
is comprised practically of several segments starting withall fields in descending order dfV,|, and take them
different initial states, which are HF states at differentstarting from the largest one. In addition, for a fixed
local minima. States around a minimum satisfy pointinitial state|¥©), the total strength of eac, changes
(i) in most cases. We then rearrange the one-bodylue to the Pauli principle and to collective effects.
evolution process so that the basis states are samplddherefore we consider an excitation sum rule,
most frequently near the HF local minima, accelerating _ Ot O\ _ {/a1,(0) O\ |2
the generation of state vectors having larger overlap with Sa = (W10, 0.1¥T) = K¥TN0L W (7)

eigenstates of interest. and use it as a practical measure of importance of the
The Hamiltonian is rewritten, by introducing the con- O,’s. The selection of0,’s according to|V,| and S,
stantsc,, as plays an essential role in the actual calculations.
1 Incorporating all of the above improvements, the sam-
H = Z [Ea O, + ) V(04 — co)? + Vaca Oa}, pling is made much more efficient. Note that this way of
a

4) sampling clearly differs from that of the SMMC.

We now come to the restoration of symmetries. We im-
where a constant term is omitted. After the HS tl’anSfOF-plement explicitly kinematic symmetries such as angular
mation, the one-body Hamiltonian becomes momentum and isospin into the QMCD method, since the

. restoration of such symmetries proceeds only very slowly
() = %.[(Ea + Vaca)Oa + 5aVaTanOal, (5)  for wave functions generated stochastically. In the previ-
where thec-number—>Y, s,V,0anc, is omitted since ?ouer?(?rirt[ﬁsg V%Zgﬁ;ﬁfgi;i?&ﬁ riﬁjerﬁrb(zrectlon method

It does_ not change. the wave functions apart from the Since a nucleus has rotational symmetry, the restoration
normalization. In this expression, the modlfleq one—bodymc the total angular momentum, denoted sis quite
:ﬁ(remtv%g-gf)é;irﬁgrcggt(i)oan m(fll_l;]ies,segfgtfaﬁg?'%g ;LOCT cru_cial._ In the QMCD method, we diag_onalize the Hamil-
hat this term bécome; the HF sinale-particl tonian in the laboratory fr_ame by using QMCD bases.
aavr\r/jiil)t/orgi:n N With this 5. the QMCD bagsis gtate St the QMCD bases contain all components (i.e., Slater
takes the for,mHF. HE: determinants) required for the coupling to a good angular
N, momentum, the diagonalization restores the rotational
|B(o)) o l—[ e—AB(hHF+Znsavaa'm,00)|q,(0)>‘ (6) symmetry. We accelerate this restoration process by con-
nel sidering rotated states expif,J,)exp—if.J;) |P (o))
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as candidates of new basis states. We have found that Table | shows the lowest three energy levels, where
the restoration of the angular momentum is remarkablyfhe QMCD results for 100, 400, and 800 basis dimen-
improved by taking only several values of the an@ls.  sions are listed together with the exact results. One finds
We refer to this method akdrive. In addition to this, the a remarkable agreement between the QMCD and exact
M projection [6] is carried out for all bases thus created. values. Note that the accuracy of these excitation ener-
We next discuss isospin. The isospin projection isgies is better than that of absolute energies. In fact, the
possible in the same way as therojection. Inthis Letter, deviations are less than 0.15 MeV with only 400 basis
however, since we consider only = Z nuclei, we keep states. Inthe same table, sevdtadltransition matrix ele-
good isospin in an alternative way. In the decompositiorments and quadrupole moments are compared with the
process, Eq. (1), all one-body operators can be chosen sxact values. It can be found that several in-band transi-
as to carry a definite isospifi = 0 or 1 for the isoscalar tion B(E2) values are reproduced well with only 100 basis
Hamiltonian. Since the isoscalar fields are dominant ovestates, and other matrix elements are also obtained with
the isovector ones, particularly, f@r = 0 states, we start 400 basis states. Thus the QMCD method turns out to
the QMCD basis generation process with the isoscaldbe useful, especially for the study of low-lying collective
fields. Thus, since the initial HF state h@s= 0, the states.
isospin is conserved at least until the isovector fields are We now proceed on to full pf shell calculations. We
activated. It appears that, IN = Z nuclei, one obtains have confirmed the feasibility of the QMCD method by
sufficiently good results by keeping only the isoscalarcomparing its results with the exact ones [1] f€r with
fields. ForT # 0 states, the isospin projection is definitely the KB3 interaction [11], as will be presented elsewhere.
needed, and results obtained with this procedure will bén this Letter, we discus¥Ge. Them-scheme dimension
presented elsewhere. of theM = 0 space is 1087 455 228, which is the second
As an example of realistic shell-model calculations,largest one for theVv = Z even-even pf shell nuclei. It
we first consider**Mg with the USD interaction [10]. is larger than the dimension fétCr by a factor of about
Figure 1 shows energies and expectation values of, 550, and the exact diagonalization is hopeless in the near
for six low-lying states as a function of the QMCD future. This nucleus is one of the proton-rich= Z
basis dimension compared with the exact values. In thisinstable nuclei, and experimental data [7] suggest that it is
case we start with five significant fields, and eventuallyy-soft. Thus, it is quite interesting to investigate whether
all 144 T = 0 one-body operators are activated. In thewe can reproduce such a structure by using a realistic
process ofJ-drive, three values fod, are employed. interaction, the validity of which has been examined at
For 800 QMCD bases, the ground-state energy becomdsast for the lower part of the pf shell. In this Letter,
—86.91 MeV, while the exact value is87.08 MeV. The we adopt the FPD6 interaction [12]. This interaction is
dimension of them-scheme shell-model basis for the derived by fitting experimental data in the mass range
ground state is 28503. Thus the number of bases i41-49, and is suggested to be suitable for describing
reduced by a factor of /B5 with a loss of accuracy of nuclei in the upper pf shell [13].
only 0.17 MeV in the total energy. The error due to the In Fig. 2, calculated low-lying spectra are com-
truncation of the Hilbert space (systematic error) does nopared with experimental data. It is remarkable that
exceed 200 keV in the ground-state energy in the presetiie calculated levels show a rather good agreement
calculations. with experiment without any adjustment. Thesoft
nature is also evident in the calculation. The calculated

30 T T
(b) TABLE I. Comparison between the QMCD and the exact

results for excitation energies (MeVB(E2) (e? fm*) and
quadrupole momentge fm?). The effective charges, +
e, = 1.78¢ are used [10].

A QMCD dimension
3 Observable 100 400 800 Exact
E.(2]) 1.50 1.54 1.53 151
E.(27) 4.33 4.23 4.18 4.12
E.(4]) 4.54 4.50 4.46 4.37
B(E2;2{ — 0f) 74.1 73.2 74.2 76.1
8 0 TToo 1000 1 10 100 1000  B(E22; —0p) 71 7.2 7.1 6.8
QMCD basis dimension QMCD basis dimension B(E2;2; —2) 121 16.8 16.2 16.6
B(E2;4f —2{) 103.8 102.6 102.0 101.1
FIG. 1. (a) Energies and (b) expectation valueg of/ of the B(E2:47 — 27) 1.8 0.4 0.5 0.5
lowest six states of*Mg plotted as a function of the QMCD 02) ~187  —184  —-179  —17.1
basis dimension, wittV, = 20 andAg = 0.07 (MeVv™1). The 0(27) 18.5 18.4 18.1 17.3
exact values are shown by symbols. Different symbols indicate 0(47) —21.1 —215 —21.2 —20.8

different angular momenta.
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A In summary, it has been shown that large-scale real-
4 4t istic shell-model calculations can be carried out by the
QMCD method. The QMCD method has been improved
2* considerably with respect to (1) the sampling of auxili-
ary fields based on the local energy minima, (2) the
selection of dominant fields, and (3) the explicit imple-
2 mentation of kinematic symmetry requirements. Several
low-lying states of large systems have been described in
. terms of small numbers of QMCD basis states with the
0 accuracy of several hundred keV in total energies. The
Exp. QMCD accuracy of excitation energies al? transition matrix

FIG. 2. Experimental and calculated energy levelsttge. ~ €/€ments is much better. Such capability of describing
The QMCD parameters aré, = 40 andAB = 0.06 (MeV ). low-lying states is the major advantage of the present
The arrows designatg2 transitions withB(E2)'s indicated by method over the SMMC method. The present results

their widths. demonstrate that the shell-model calculations with full va-
lence shell configurations have become feasible by the
QMCD method, shading light upon the structure of nu-
ratio of excitation energies df, to 2; is 1.9 and that clei even beyond the pf shell with more direct relation
of 47 to 27 is 2.6. Experimentally, these ratios are to the effective nucleon-nucleon interaction. The minus-
1.75 and 2.27, respectively. The relative magnitudes o$ign problem seems to be absent in the QMCD method,
B(E2) values are shown in Fig. 2. Witle, = 1.33¢  and, hence, any effective two-body interaction can be used
and e, = 0.64e, B(E2;2{ — 0)) =5 X 10%(e?> fm*)  asitis.
is obtained, which corresponds t@, ~ 0.28. The We acknowledge Professor B.A. Brown and Profes-
B(E2) values of the4] — 2] and 25 — 2{ tran- sor A. Poves for providing relevant two-body matrix
sitions are about 1.3 times larger than that ofelements. We are grateful to Dr. W. Bentz and Dr. A. Gel-
B(E2;2{ — 07), suggesting y-softness. We obtain berg for reading the manuscript. This work was supported
B(E2;25 — 07)/B(E2;25 — 2{) ~2 x 1073, which in part by Grant-in-Aid for Scientific Research on Prior-
is quite small similarly to the experimental value, sug-ity Areas (No. 05243102) from the Ministry of Education,
gesting y ~ 30° in triaxial deformation models [7]. Science and Culture. A part of this work was carried out
Calculated quadrupole moments appear to be smatin the VPP500 computer at RIKEN as a part of the Com-
(typically |Q| < 10e fm?), consistently withy-softness.  putational Nuclear Physics Project of RIKEN.
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