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The feasibility of shell-model calculations is radically extended by the quantum Monte Carlo
diagonalization method with various essential improvements. The major improvements are made in
the sampling for the generation of shell-model basis vectors, and in the restoration of symmetries such
as angular momentum and isospin. Consequently the level structure of low-lying states can be studied
with realistic interactions. After testing this method on24Mg, we present first results for energy levels
andE2 properties of64Ge, indicating its large andg-soft deformation. [S0031-9007(96)01252-5]

PACS numbers: 21.60.Ka, 21.60.Cs, 24.10.Cn, 27.50.+e
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The nuclear shell model has been successful in
description of various aspects of nuclear structure, par
because it is based on a minimum number of natu
assumptions. Although the direct diagonalization of th
Hamiltonian matrix in the full valence-nucleon Hilber
space is desired, the dimension of such a space is
large in many cases, preventing us from performing t
full calculations. The direct diagonalization has bee
carried out up to48Cr [1]. Recently, in order to relax this
restriction drastically, stochastic approaches, for instan
the shell-model Monte Carlo (SMMC) method [2], hav
been investigated. In fact, ground-state [3] and therm
properties [4] have been well described by the SMM
method.

We have presented the quantum Monte Carlo diagon
zation (QMCD) method [5] by utilizing the auxiliary field
Monte Carlo technique as in the SMMC method, b
in a quite different way. In general, low-lying state
of nuclei are described to a good extent in terms
static and/or dynamic mean fields and their fluctuation
The basic idea of the QMCD method is to diagonaliz
the shell-model Hamiltonian, by using this propert
in a subspace spanned by a small number of selec
basis states obtained by stochastically generated one-b
fields. Thus, the ground state and several excited sta
can be obtained. The QMCD method has been appl
to the interacting boson model [5,6]. In this Letter th
QMCD method is revised considerably in various aspe
so as to be capable of performing large-scale shell-mo
calculations with realistic nuclear forces. As example
24Mg and 64Ge are taken. In particular,64Ge is an
N ­ Z proton-rich unstable nucleus manifesting ag-soft
structure, with a wide range of theoretical interpretatio
(see Ref. [7]). Thus, the shell-model calculation can pl
a crucial role for clarifying the level structure, but s
far such attempts have been impossible due to the la
dimensions,1 3 109d.

We first sketch the QMCD process very briefly, refe
ring to relevant equations of Ref. [5]. More details o
certain basic points can be found in Ref. [5]. The she
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model Hamiltonian consisting of single-particle energie
and a two-body interaction can be written in the quadra
form of Nf one-body operatorsOa :

H ­
NfX

a­1

µ
EaOa 1

1
2

VaO2
a

∂
. (1)

We consider the imaginary time evolution opera
tor e2bH with Nt slices: e2bH ­

QNt
n­1 e2DbH ,

where Db ­ byNt . By applying the Hubbard-
Stratonovich transformation at each time slice [8,9
e2bH can be expressed as the integral of an operatQNt

n­1 e2Dbhs $snd, over Nf 3 Nt auxiliary fields san

[see Eq. (4) of Ref. [5]] with the Gaussian weight facto
Gssd ­ exps2

P
a,n Dby2jVajs2

and. The one-body
Hamiltonianhs $snd is defined by

hs $snd ­
X
a

sEa 1 saVasandOa , (2)

wheresa ­ 61 s­ 6id if Va , 0 s.0d. In the QMCD
method, by generating a new set of values fors ­ hsanj
stochastically according toGssd, a new many-body state
is created as

jFssdl ~

NtY
n­1

e2Dbhs $sndjCs0dl , (3)

where jCs0dl is an appropriate initial state. The Hamil
tonian is diagonalized in the Hilbert subspace spanned
this state and the basis states previously obtained. If t
new state improves the result of the diagonalization su
ficiently well, this state is added to the basis states. T
number of such basis states is referred to as the QMC
basis dimension, and is increased until reasonable conv
gence is achieved.

It is convenient to adopt basis states in the form
Slater determinants:

QN
a­1 ay

aj2l, whereN denotes the
number of valence nucleons,j2l is an inert spherical
core, anday

a represents the nucleon creation operat
in a canonical single-particle statea, which is a linear
combination of the spherical bases. Note that, ifjCs0dl
© 1996 The American Physical Society 3315
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is a Slater determinant,jFssdl in Eq. (3) remains in the
form of a Slater determinant.

While the QMCD method outlined so far is applicab
to fermion systems, its capability is limited to simp
cases, for instance, a single-j model. Difficulties arise,
for example, due to finite single-particle energies. Thu
substantial further improvement of the method is requi
for realistic shell-model calculations. Such improveme
are that (i) the sampling scheme is modified, and
additional processes are included to restore symmetrie

We start with the sampling. In the original version
the QMCD method, a rather naive sampling is perform
[see Eq. (4) of Ref. [5]]. This sampling creates ma
unnecessary basis vectors in general, and, indeed,
actual sampling has to be modified for large-scale reali
shell-model calculations so that important basis vect
are generated still stochastically but more efficiently
considering the many-body dynamics.

The modification regarding the sampling consists
two parts. In the first part, the basis state genera
is refined so as to make use of the local Hartree-F
(HF) energy minima. In the QMCD calculation, one h
to generate good basis states (i.e., Slater determinan
deformed bases) which have (i) low values of diago
matrix elements and/or (ii) large off-diagonal matr
elements of the Hamiltonian. The point (i) can be fulfille
by using, asjCs0dl in Eq. (3), a deformed HF solution
within the present shell-model space. The QMCD proc
is comprised practically of several segments starting w
different initial states, which are HF states at differe
local minima. States around a minimum satisfy po
(ii) in most cases. We then rearrange the one-b
evolution process so that the basis states are sam
most frequently near the HF local minima, accelerat
the generation of state vectors having larger overlap w
eigenstates of interest.

The Hamiltonian is rewritten, by introducing the co
stantsca , as

H ­
X
a

∑
EaOa 1

1
2

VasOa 2 cad2 1 VacaOa

∏
,

(4)

where a constant term is omitted. After the HS transf
mation, the one-body Hamiltonian becomes

hs $snd ­
X
a

fsEa 1 VacadOa 1 saVasanOag , (5)

where thec-number2
P

a saVasanca is omitted since
it does not change the wave functions apart from
normalization. In this expression, the modified one-bo
term

P
a sEa 1 VacadOa includes effects coming from

the two-body interaction. Theca ’s are taken in such
a way that this term becomes the HF single-parti
Hamiltonian,hHF . With this hHF , the QMCD basis state
takes the form

jFssdl ~

NtY
n­1

e2DbshHF 1
P

a
sa VasanOad

jCs0dl . (6)
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Thus, we simply replace the single-particle energP
a EaOa by hHF . If jCs0dl is the HF state being

considered, the sampling arounds ­ 0 generates various
states around this HF state, including Tamm–Danco
type states to first order ins, and so on. This treatment
is possible for all HF local minima.

In cases of nonspherical nuclei, many Hartree-Fo
local minima appear in the search for the initial stat
By stochastically taking those local minima as the initia
states, it is possible to take into account a wider variety
configurations.

The second major improvement on the sampling is t
ordering of one-body fields according to their importanc
The QMCD method is a method for generating favorab
basis states for diagonalization, and there is no ne
to carry out the stochastic integration over all auxiliar
fields. In constructing the basis states, we start w
the most relevant part of the Hamiltonian, which yield
fewer auxiliary fields than the whole Hamiltonian. Th
calculation can then be performed more efficiently. Afte
certain basis states are obtained, we take an enlar
portion of the Hamiltonian, so that other terms of th
Hamiltonian can be properly included in constructing th
basis states. Eventually the completeness of the QMC
basis is guaranteed for the ground state by taking all fiel

In most cases, the auxiliary fields with large values
jVa j in Eq. (1) turn out to have quadrupole, hexadecapo
or monopole natures. Therefore it is reasonable to arran
all fields in descending order ofjVa j, and take them
starting from the largest one. In addition, for a fixe
initial statejCs0dl, the total strength of eachOa changes
due to the Pauli principle and to collective effects
Therefore we consider an excitation sum rule,

Sa ­ kCs0djOy
aOajCs0dl 2 jkCs0djOajCs0dlj2, (7)

and use it as a practical measure of importance of t
Oa ’s. The selection ofOa ’s according tojVa j and Sa

plays an essential role in the actual calculations.
Incorporating all of the above improvements, the sam

pling is made much more efficient. Note that this way o
sampling clearly differs from that of the SMMC.

We now come to the restoration of symmetries. We im
plement explicitly kinematic symmetries such as angul
momentum and isospin into the QMCD method, since t
restoration of such symmetries proceeds only very slow
for wave functions generated stochastically. In the pre
ous paper [6] we have presented theM-projection method
to restore the magnetic quantum number.

Since a nucleus has rotational symmetry, the restorat
of the total angular momentum, denoted asJ, is quite
crucial. In the QMCD method, we diagonalize the Hami
tonian in the laboratory frame by using QMCD base
If the QMCD bases contain all components (i.e., Slat
determinants) required for the coupling to a good angu
momentum, the diagonalization restores the rotation
symmetry. We accelerate this restoration process by c
sidering rotated states exps2iuyJyd exps2iuzJzd jFssdl
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as candidates of new basis states. We have found t
the restoration of the angular momentum is remarkab
improved by taking only several values of the angleu’s.
We refer to this method asJ-drive. In addition to this, the
M projection [6] is carried out for all bases thus created

We next discuss isospin. The isospin projection
possible in the same way as theJ projection. In this Letter,
however, since we consider onlyN ­ Z nuclei, we keep
good isospin in an alternative way. In the decompositio
process, Eq. (1), all one-body operators can be chosen
as to carry a definite isospinT ­ 0 or 1 for the isoscalar
Hamiltonian. Since the isoscalar fields are dominant ov
the isovector ones, particularly, forT ­ 0 states, we start
the QMCD basis generation process with the isosca
fields. Thus, since the initial HF state hasT ­ 0, the
isospin is conserved at least until the isovector fields a
activated. It appears that, inN ­ Z nuclei, one obtains
sufficiently good results by keeping only the isoscala
fields. ForT fi 0 states, the isospin projection is definitely
needed, and results obtained with this procedure will
presented elsewhere.

As an example of realistic shell-model calculations
we first consider24Mg with the USD interaction [10].
Figure 1 shows energies and expectation values ofJ ? J,
for six low-lying states as a function of the QMCD
basis dimension compared with the exact values. In th
case we start with five significant fields, and eventual
all 144 T ­ 0 one-body operators are activated. In th
process ofJ-drive, three values foruy are employed.
For 800 QMCD bases, the ground-state energy becom
286.91 MeV, while the exact value is287.08 MeV. The
dimension of them-scheme shell-model basis for the
ground state is 28 503. Thus the number of bases
reduced by a factor of 1y35 with a loss of accuracy of
only 0.17 MeV in the total energy. The error due to th
truncation of the Hilbert space (systematic error) does n
exceed 200 keV in the ground-state energy in the pres
calculations.

FIG. 1. (a) Energies and (b) expectation values ofJ ? J of the
lowest six states of24Mg plotted as a function of the QMCD
basis dimension, withNt ­ 20 andDb ­ 0.07 sMeV21d. The
exact values are shown by symbols. Different symbols indica
different angular momenta.
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Table I shows the lowest three energy levels, whe
the QMCD results for 100, 400, and 800 basis dime
sions are listed together with the exact results. One fin
a remarkable agreement between the QMCD and ex
values. Note that the accuracy of these excitation en
gies is better than that of absolute energies. In fact,
deviations are less than 0.15 MeV with only 400 bas
states. In the same table, severalE2 transition matrix ele-
ments and quadrupole moments are compared with
exact values. It can be found that several in-band tran
tion BsE2d values are reproduced well with only 100 bas
states, and other matrix elements are also obtained w
400 basis states. Thus the QMCD method turns out
be useful, especially for the study of low-lying collectiv
states.

We now proceed on to full pf shell calculations. W
have confirmed the feasibility of the QMCD method b
comparing its results with the exact ones [1] for48Cr with
the KB3 interaction [11], as will be presented elsewhe
In this Letter, we discuss64Ge. Them-scheme dimension
of theM ­ 0 space is 1 087 455 228, which is the secon
largest one for theN ­ Z even-even pf shell nuclei. It
is larger than the dimension for48Cr by a factor of about
550, and the exact diagonalization is hopeless in the n
future. This nucleus is one of the proton-richN ­ Z
unstable nuclei, and experimental data [7] suggest that
g-soft. Thus, it is quite interesting to investigate wheth
we can reproduce such a structure by using a realis
interaction, the validity of which has been examined
least for the lower part of the pf shell. In this Lette
we adopt the FPD6 interaction [12]. This interaction
derived by fitting experimental data in the mass ran
41–49, and is suggested to be suitable for describ
nuclei in the upper pf shell [13].

In Fig. 2, calculated low-lying spectra are com
pared with experimental data. It is remarkable th
the calculated levels show a rather good agreem
with experiment without any adjustment. Theg-soft
nature is also evident in the calculation. The calculat

TABLE I. Comparison between the QMCD and the exa
results for excitation energies (MeV),BsE2d se2 fm4d and
quadrupole momentsse fm2d. The effective chargesep 1
en ­ 1.78e are used [10].

QMCD dimension
Observable 100 400 800 Exact

Exs21
1 d 1.50 1.54 1.53 1.51

Exs21
2 d 4.33 4.23 4.18 4.12

Exs41
1 d 4.54 4.50 4.46 4.37

BsE2; 21
1 ! 01

1 d 74.1 73.2 74.2 76.1
BsE2; 21

2 ! 01
1 d 7.1 7.2 7.1 6.8

BsE2; 21
2 ! 21

1 d 12.1 16.8 16.2 16.6
BsE2; 41

1 ! 21
1 d 103.8 102.6 102.0 101.1

BsE2; 41
1 ! 21

2 d 1.8 0.4 0.5 0.5
Qs21

1 d 218.7 218.4 217.9 217.1
Qs21

2 d 18.5 18.4 18.1 17.3
Qs41

1 d 221.1 221.5 221.2 220.8
3317
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FIG. 2. Experimental and calculated energy levels of64Ge.
The QMCD parameters areNt ­ 40 andDb ­ 0.06 sMeV21d.
The arrows designateE2 transitions withBsE2d’s indicated by
their widths.

ratio of excitation energies of21
2 to 21

1 is 1.9 and that
of 41

1 to 21
1 is 2.6. Experimentally, these ratios ar

1.75 and 2.27, respectively. The relative magnitudes
BsE2d values are shown in Fig. 2. Withep ­ 1.33e
and en ­ 0.64e, BsE2; 21

1 ! 01
1 d ­ 5 3 102se2 fm4d

is obtained, which corresponds tob2 , 0.28. The
BsE2d values of the 41

1 ! 21
1 and 21

2 ! 21
1 tran-

sitions are about 1.3 times larger than that
BsE2; 21

1 ! 01
1 d, suggesting g-softness. We obtain

BsE2; 21
2 ! 01

1 dyBsE2; 21
2 ! 21

1 d , 2 3 1023, which
is quite small similarly to the experimental value, sug
gesting g , 30± in triaxial deformation models [7].
Calculated quadrupole moments appear to be sm
(typically jQj , 10e fm2), consistently withg-softness.

The convergence of the results in Fig. 2 has be
examined by several calculations with different stochas
parameters. The typical deviation among different ca
culations (statistical error) is about 100 keV for the21

2
energy level, for instance. The discrepancy between t
oretical and experimental results comes partly from t
systematic and statistical errors in the present method,
partly from the interaction. The former one is being re
duced by improving the method.

Typical occupation numbers off7y2, p3y2, p1y2, and
f5y2 orbits are 15.1, 2.6, 0.8, and 5.5, respectively, f
low-lying states. We can see that more than six nucleo
are excited from thes f7y2d16 s p3y2d8 configuration, and
that evenf7y2 is active. One sees that all these fou
orbits are mixed. Because of the huge basis dimens
mentioned before, the conventional shell-model diagona
zation is impossible.

The QMCD method can generate, in principle, a
basis states which are needed to describe the ex
eigenstate. It is free of the assumption of some sp
cific collective coordinates as in the usual genera
coordinate method. In addition, we can take in
account various states around many different loc
energy minima, which is difficult in variational ap-
proaches with multi-Slater determinants or multi-HF
states.
3318
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In summary, it has been shown that large-scale re
istic shell-model calculations can be carried out by th
QMCD method. The QMCD method has been improve
considerably with respect to (1) the sampling of auxil
ary fields based on the local energy minima, (2) th
selection of dominant fields, and (3) the explicit imple
mentation of kinematic symmetry requirements. Seve
low-lying states of large systems have been described
terms of small numbers of QMCD basis states with th
accuracy of several hundred keV in total energies. T
accuracy of excitation energies andE2 transition matrix
elements is much better. Such capability of describi
low-lying states is the major advantage of the prese
method over the SMMC method. The present resu
demonstrate that the shell-model calculations with full v
lence shell configurations have become feasible by t
QMCD method, shading light upon the structure of nu
clei even beyond the pf shell with more direct relatio
to the effective nucleon-nucleon interaction. The minu
sign problem seems to be absent in the QMCD metho
and, hence, any effective two-body interaction can be us
as it is.
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