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We investigate quantum corrections to the moduli space for hypermultiplets for the type IIA st
near a conifold singularity. We find a unique quantum deformation based on symmetry argum
which is consistent with a recent conjecture. The correction can be interpreted as an infinite
coming from multiple wrappings of the Euclidean Dirichlet branes around the vanishing cy
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Nonperturbative aspects of string theory have been st
ied vigorously recently. These have been in both the fo
of solitonic objects as well as instanton corrections to va
ous physical quantities. An important class of such obje
is in the form of Dirichlet (D) branes or D-instantons [1,2]
Most applications to date involve D-branes as soliton
However, one can consider Euclideanp-branes wrapped
around nontrivial cycles of the compactification manifol
to obtain instanton corrections to various physical quan
ties. This aspect has been far less studied, however,
cept for the considerations of Euclidean membranes
and Euclidean fivebranes [4] in the context ofM-theory
compactifications.

In this paper, we study D-brane instanton correctio
to the hypermultiplet moduli space of type II string com
pactification on a Calabi-Yau (CY) threefold. (Our resul
also have a natural interpretation in the context ofM-theory
compactifications near a conifold singularity.) In particu
lar, we examine the moduli space near the conifold sing
larity where the nonperturbative aspects are expected to
crucial. In the type IIA string, the complex moduli of CY
threefold belong to the hypermultiplet, and the conifo
singularity is realized when there is a nontrivial 3-cycle i
CY whose period,

z ­
Z

V , (1)

is small. In the limitz ! 0, the classical hypermultiplet
moduli space develops a singularity, as we will expla
below.

Before describing the resolution of the conifold
singularity in the hypermultiplet moduli space, let us re
mind ourselves how a similar singularity was resolved
the vector multiplet moduli space. In the type IIB string
the complex moduli belong to the vector multiplet, and th
same limitz ! 0 generates a singularity in the classica
vector multiplet moduli space. In this case, howeve
we know that the moduli space will not be corrected b
quantum string effect, perturbative or nonperturbative.
0031-9007y96y77(16)y3296(3)$10.00
ud-
rm
ri-
cts
.
s.

d
ti-
ex-
[3]

ns
-

ts

-
u-
be

ld
n

in

-
in
,
e
l
r,
y
In

particular, the exact leading singular part of the metric fo
the vector multiplet moduli is given by

ds2 ­ 2 lnszzddzdz .

It was pointed out by Strominger [5] that a D3-brane
wrapping on the vanishing 3-cycle has a mass of orde
jzjyl, wherel is the string coupling, and that the conifold
singularity is a reflection of the fact that we ignore the
light solitonic particle arising from the D3-brane in string
perturbation theory. If we include it, the low energy
effective theory is regular even at the conifold point.

Now let us come back to the hypermultiplet mod-
uli space. Since the type IIA string does not have
D3-brane, there is no solitonic state which can becom
massless at the conifold. On the other hand, we ma
consider the Euclidean D2-brane which is wrappe
around the vanishing 3-cycle. The hypermultiple
moduli space is not protected against quantum co
rections, and the D2-brane instanton would have a
effect of order exps2jzjyld. It was conjectured in [3]
that the instanton effect should resolve the conifold
singularity. Recently, a precise form for this reso-
lution was conjectured in [6]. In this paper we show that
if we take into account various symmetries, there is
unique quantum deformation to the conifold singularity
in the classical moduli space and that this result agre
with the conjecture of [6]. Moreover, the modification
to the classical metric is exactly of the form expected fo
the multiply wrapped Euclidean D2-branes (or Euclidea
membranes ofM theory) around the vanishingS3. This
explicit result, which in effect sums up the contribution
of infinitely many D-instantons, may shed light on how to
sum up D-instantons in other cases as well.

Classical moduli space.—Let us consider the type
IIA string on a CY 3-fold M. If n ­ dimH2,1sMd,
the hypermultiplet moduli space is complexs2n 1 2d
dimensional;n of which come from the complex moduli
of M, sn 1 1d from the RR 3-form gauge potential, and
© 1996 The American Physical Society
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one from the dilaton and axionS. Since we are interested
in the universal behavior of the moduli space near th
conifold limit z ! 0, we will send the string coupling
constantl ! 0 while keepingjzjyl finite. In this limit
we may hope to extract a universal deformation of modu
space, including the important instanton effects of the ord
exps2jzjyld, which would be independent of how the
vanishing cycle is embedded in the rest of CY. Eve
though the hypermultiplet moduli space is quarternion
[7,8], in the limit we are considering the relevant piec
of the singularity is a hyper-Kähler manifold of rea
dimension 4. The complex moduliz is paired with two real
coordinatesx andt which are expectation values of the RR
3-form corresponding to the vanishing cycle and its dua
respectively. In the following, we will concentrate on the
subspace of moduli space spanned byz andst, xd.

Since the RR charges carried by D-branes are quantiz
the moduli space must be periodic in the RR 3-formsx
and t. We normalize them so that each has period
Moreover, there is a monodromy action onH3sMd as z
goes around the conifold point, and this mixesst, xd !

st 1 x, xd. Thus the moduli space geometry near th
conifold is described by the elliptic fibration

tszd ­
1

2pi
ln z . (2)

This is similar to the situation of the stringy cosmic string
[9]. In fact, at weak coupling, the leading singularity in the
classical moduli space metric computed using the res
of [8] agrees with that of [9]. The Kähler form for the
classical metric is given by

k ­ ≠≠

µ
sz 2 z d2

2sS 1 Sdt2

∂
1 t2dzdz , (3)

wherez ­ t 1 tx andt2 ­ Imtszd. The metric has a
Us1dt 3 Us1dx translational invariance int andx. This is
to be expected since there is no perturbative string sta
which carries the RR charges. SinceS 1 S is the dilaton
from the NS-NS sector,S 1 S , 1yl2, wherel is the
string coupling constant (for a precise definition of th
string coupling constant in the present context see [10
In the following, we will use1yl2 in place ofS 1 S.

The metric of the classical moduli space discusse
above is singular at the conifold pointz ­ 0 as shown
in [9]. In the neighborhood ofz ­ 0, however, we
expect large instanton effects due to Euclidean D2-bran
wrapping the vanishing 3-cycle. It has been conjecture
in [3] that such effects would resolve the singularity a
z ­ 0. In [6], based on some field theory consideration
it was conjectured more precisely that the exact correct
metric is the unique hyper-Kähler metric where the Kähle
class of the elliptic fiber isl2. In the following, we will
derivethe form of the corrected metric based on symmet
considerations for Euclidean membranes wrapped arou
vanishing cycle and the assumption of resolution of th
singularity [3] and find agreement with the conjectur
in [6]. This also leads us to an explicit realization o
the metric for which the classical part and quantum
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corrections can be identified. Moreover, the quantum
corrections can be naturally reinterpreted as D-instanto
contributions to the metric.

Quantum moduli space.—In order to exhibit the sym-
metries of the metric [3], it is convenient to rewrite it as

ds2 ­
l2

t2
fdt 1 tszddxg fdt 1 tszddxg 1 t2dzdz .

Note that the metric hasUs1dt 3 Us1dx symmetries
corresponding to the translations int and x, as we
explained above. One then recognizes that it takes th
form of the ansatz [11,12] for a self-dual metric:

ds2 ­ l2fV 21sdt 2 A ? dyd2 1 Vdy2g , (4)

with y ­ sx, zyl, zyld and

V ­ t2 ­
1

4p
ln

µ
1
zz

∂
,

Ax ­ 2t1 ­
i

4p
ln

µ
z
z

∂
, Az ­ 0, Az ­ 0 .

This metric is singular atz ­ 0. Moreover, we are taking
t andx to be periodic with period 1.

Now let us discuss how the quantum corrections coul
modify the metric, paying attention to the fate of the
Us1dt 3 Us1dx translational invariance. Since the vari-
ablex corresponds to the expectation value of RR 3-form
on the vanishing cycle, the D2-instanton wrapping on i
would break the translational invariance in thex direction.
In particular, if we consider a Euclidean 2-brane wrappe
m times aroundS3, it couples to the RR expectation value
on it and gives us a factor of exps2pimxd. Note that this is
still consistent with the periodicity ofx, i.e., theUs1dx has
been broken toZ. On the other hand,t couples to a cycle
dual to the vanishingS3, and its translational invariance
will not be broken, as we are considering a limit where the
dual period is not vanishing and thus is irrelevant in the
leading order asl ! 0. (Note that if we had been consid-
ering a case where the dual cycle also has vanishing peri
the translation int would also be broken. This should be
interesting to study.) Thus it is appropriate to work in the
ansatz (4).

There are various requirements that the potentialV has
to satisfy, such as the following: (1) The metric is hyper-
Kähler if and only ifV andA obey

V 21DV ­ 0 , =V ­ === 3 A ,

where

D ­ ≠2
x 1 4l2≠z≠z .

The factorV 21 in the first equation means that we allow
delta-function singularities inDV . Thus we can think of
V as the electromagnetic scalar potential for a collectio
of charges in three dimensions. (2) For largez, when the
instanton effects are suppressed, the metric should redu
to the classical one:

V !
1

4p
ln

µ
1
zz

∂
sjzj ! `d .
3297
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(3) The metric should be periodic, but not translational
invariant, inx with the period 1. (4) Since the Calabi-Yau
geometry near the conifold is invariant under the pha
rotation of z and the Euclidean membranes only prob
the overall sizejzj of S3, the dzdz part of the moduli
space metric should be independent of the phase. T
means that the potentialV is a function ofx and jzj only.
(5) For a single conifold we assume the quantum met
has no singularity. This means, in particular, that th
singularities ofV must be such that they can be remove
by the appropriate coordinate transformation.

The conditions (1), (3), and (4) mean that we are to fi
the electromagnetic potentialV which is periodic inx and
axial symmetric in thez plane. The condition (2) says tha
the electric charges are distributed near the axisz ­ 0,
and its density per unit length inx is 1. The condition
(5) requires that these charges be quantized in the u
of 1 and that not two charges are at the same point.
particular, if we haveN charges at the same point, th
space will developC2yZN singularity. There is a unique
solution satisfying these conditions, and it is given by

V ­
1

4p

X̀
n­2`

√
1p

sx 2 nd2 1 zzyl2
2

1
jnj

!
1 const .

(5)

To exhibit the D-instanton effects, it is convenient t
take the Poisson resummation of this potential. We th
find

V ­
1

4p
ln

µ
m2

zz

∂
1

X
mfi0

1
2p

e2pimxK0

µ
2p

jmzj

l

∂
,

(6)

wherem is some constant andK0 is the modified Bessel
function, whose appearance is natural in the axia
symmetric potential problem. By construction, the metr
is regular atz ­ 0 and reduces to the classicalV ,

1
4p lns1yzzd for jzj ! `.

Interpretation.—When z is large, we can use the
asymptotic formula of the Bessel function to expand (
as

V ­
1

4p
ln

µ
m2

zz

∂
1

X
mfi0

exp

∑
22p

µ
jmzj

l

∂
2 imx

∏

3
X̀
n­0

Gs 1
2 1 nd

2
p

pn! Gs 1
2 2 nd

µ
l

4p jmzj

∂n11y2

. (7)

Notice that the correction to the classical ter
1

4p lns1yzzd is exponentially suppressed by the fac
tor expf22psjmzjyl 2 imxdg. This is exactly what we
expect for the instanton effect due to D2-branes wrapp
the vanishingS3. The D2-instanton configuration should
preserve one-half of the space-time supersymme
which means, in particular, that the volume form on th
membrane world volume is proportional to the holomo
phic 3-form V [3]. Thus 2pjmzjyl in the exponent is
nothing but the Born-Infeld action for them-instanton
3298
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(m times wrapping ofS3). Sincex is the integral of the
RR 3-form onS3, the second term2pimx in the exponent
describes the coupling of the D2-brane to the RR field.

Note that this result implies a number of things: First
of all, there is no perturbative correction to the leading
singularity of hypermultiplet moduli near the conifold
singularity. Second, perhaps, surprisingly,all instanton
numbers are present for the correction to the metric. Thi
is in contrast with the count of stable solitons in the
type IIB near the conifold where the multiply wrapped
state is not expected to be stable [5,13]. Third, for eac
D-instanton we have an infinite “perturbative” sum. It
would be interesting to connect this to perturbative string
computations around the D-instanton background. In thi
connection, the open topological string theory onT pS3

[14] may be relevant. (This suggestion arose during
conversations with C. Imbimbo and K. S. Narain.) It is
also surprising that the power of the couplingl is shifted
from an integer by1y2. This may be related to a precise
definition of the coupling constant [10].

Note that, if we consider the case ofN vanishing
3-cycles instead of 1, then our considerations naturally lea
to V ! NV . This space will haveC2yZN singularity.
This is in agreement with the conjecture in [6] and the
fact that the Euclidean membranes treat each vanishingS3

independently of each other.
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