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Black Hole Entropy from Loop Quantum Gravity
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We study the idea that the statistical entraggverning thermal interactions of a black hole with
its exterioris determined by the microstates of the hole having distinct effects on the exterior, and
over which a hole in a given macroscopic configuration thermally fluctuates. We argue that for a
(macroscopically) Schwarzschild black hole this ensemble is formed by horizons with the same area.
We compute the number of states in this ensemble from first principles using nonperturbative loop
guantum gravity. We obtain a statistical entropy proportional to the area, as in the Bekenstein-Hawking
formula. [S0031-9007(96)01421-4]

PACS numbers: 04.70.Dy, 04.60.Ds

In this Letter, we present a derivation of the perspectives [8]. (See also [9] for an attempt to use
Bekenstein-Hawking expression for the entropy [1]the “membrane paradigm” [10]: interactions of a black
of a Schwarzschild black hole of surface area hole with its surroundings can be described in terms

S = c(k/hG)A (1) of a fictitious physical membrane located close to the

(c is a constant of the order of unityy, k, and  the  horizon.) An approach strictly related to ours has been
Newton, Boltzmann and Planck constants, and we pusuggested in Ref. [11], where it is argued that a physical
the speed of light equal to 1) via a statistical mechanicasplit of a gauge system gives rise to boundary degrees
computation from a full theory of quantum gravity [2]. of freedom, since the boundary breaks the gauge group.
We use loop quantum gravity [3], and, in particular, weUsing this idea the Bekenstein-Hawking formula can be

make use of the spectrum of the area operator, recentlyerived, by counting boundary states, in 3D gravity. In

computed [4,5]. The loop approach to quantum gravity igeneral relativity, the broken component of the gauge
now developed to the point where one may begin to try igroup includes diffeomorphisms that move the surface,
within concrete physical problems, with the aim of gettingand the boundary degrees of freedom can probably be
some insights on the quantum physics of gravity, as welviewed as fluctuations of the horizon.

as testing the approach itself. In this Letter, we present a general discussion support-

Our strategy is based on the idea that the entropy of thing York’s idea that the hole’s entropy is determined by
hole originates from the microstates of the horizon thaan ensemble of microstates of the horizon, and that this
correspond to a given macroscopic configuration. As faensemble is formed by the geometries of the horizon with
as we know this idea was first suggested in a seminal worthe sameMcr. Then we compute the number of these
by York [6]. York notices that the hole’s radiance implies geometries in the loop representation.
that the (macroscopic) event horizon is located slightly Consider a physical system containing a nonrotating
inside the quasistatic timelike limit surface, leaving a thinand noncharged black hole (say, a collapsed star) as
shell between the two, which he proposes to interpret agell as other physical components such as dust, gas, or
the region over which the microscopic horizon fluctuatesradiation, which we denote collectively as “matter.” We
He interprets these fluctuations as zero point quanturare interested in the statistical thermodynamics of such
fluctuations of the horizon’s quasinormal modes, and, by system. Due to Einstein’s equations, the microscopic
identifying the thermal energy of these oscillations withtime-dependent inhomogeneities of the matter distribution
the shell’s (“irreducible”) mass, he is able to recovergenerate time-dependent “microscopic” inhomogeneities
Hawking's temperature. We take two essential ideas fronin the gravitational field as well. In most physical
York’s work: that the source of the hole entropy is in theproblems, one can safely disregard these minute ripples of
degrees of freedom associated with the fluctuations of ththe geometry. However, in a statistical-thermodynamical
shape of the (microscopic) horizon, and that the quasilocdteatment, minute fluctuations should not be disregarded:
measure of mass energy governing energetic exchangtsey are the source of the thermal behavior.
between the horizon and its surroundings can be taken Thus, we havetwo descriptionsof a physical black
as the Christodoulou-Ruffini [7] “irreducible mas&fcg.  hole interacting with surrounding matter at finite tempera-
Using this, our aim here is to replace York’s perturbativeture: the macroscopic description, stationary and coarse
semiclassical approach with a direct calculation withingrained, and the microscopic description, where individ-
nonperturbative quantum gravity. ual thermal fluctuations are not disregarded. Macroscopi-

The relevance of horizon’s surface degrees of freedongally, the noncharged nonrotating hole is described
for the entropy has been recently explored from varioudy a Schwarzschild metric with mass, and horizon
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areaA = 16mG*m?. Thus, in a thermal context, the entropy governing the thermal interactions of the hole
Schwarzschild metric represents the coarse-graineds determined by the state of the geometry on the hole’s
description of a microscopically fluctuating geometry surface, namely, by;.
Microscopically, the gravitational field is described Next, we have to determine the ensemble of the mi-
by some complicated time-dependent non-sphericallyerostatesg, over which the hole would fluctuate under
symmetric metric. We believe that taking time-dependenthe ideal hypothesis of no energy exchange. The usual
nonsymmetric microstates into account is essential for anicrocanonical ensemble is determined by fixing energy.
statistical understanding of the thermal behavior of blackHere, we must look for a notion of energy associated to
holes: Searching a statistical derivation of black holethe horizon’s surface, governing energetic exchanges with
thermodynamics from properties of spherically symmetriche exterior. Following York, we take the Christodoulou-
metrics alone is like trying to derive the thermodynamicsRuffini quasilocal irreducible masdcr = \/A/167G2 as
of an ideal gas in a spherical box from the sphericallythe relevant energy in this context (hetes the area of
symmetric motions of the molecules. h:), and we define the ensemble as the seg,0in M
Consider a microstate of the system. Foliate spacetime@ith the sameV/cr, namely, with the same area. There
with a family of spacelike surfaces,, labeled by a time is a number of reasons supporting the choice of this en-
coordinater. The intersectior, between the surfack, semble. FirstMcr is geometrically well defined, governs
and the boundary of the past of future null infinity definesthe hole’s energy exchanges, and agrees with the macro-
the instantaneous (microscopic) configuration of the evergcopic black hole energy. Second, the ensemble must con-
horizon at timer. Thus, i, is a closed 2D surface im- tain reversible paths only. In the classical theory these
mersed in%,. For most times, this microscopic configu- conserve area (Hawking theorem [12]). Quantum theory
ration of the event horizon is not spherically symmetric.allows classically forbidden energy exchanges with the ex-
Let us denote by, the intrinsic geometry of the horizon terior (Hawking radiance), but it is unlikely, we believe,
h;. Let M be the space of all possible geometries of a 2Dxthat it would allow a nonreversible evolution of the hori-
surface. Ag changes, the (microscopic) geometry of thezon to become reversible without energy exchange with the
horizon changes. Thug, wanders in/M asr changes. exterior. Third, we may reason backward and let the ther-
Consider a closed thermodynamical systSnideally = modynamics indicate to us the correct ensemble (which is
split into two subsystemsS; and S,. Let usideally how classical ensembles were first found). In this context,
isolate the subsysterfi,. Call its energyE. Its entropy it is perhaps worthwhile recalling that difficulties to rigor-
S(E), defined by the log of the number of microstates thabusly justifying the choice of the ensemlagriori plague
have energye, governs the thermal behavior 6f in its  conventional thermodynamics anyway.
interactions withS, (microcanonical). Let us apply this A point to take into account (missed in an earlier stage
idea to our system. We consider our system to be formedf this work [13]) is that distinct physical regions on the
by two subsystems: the hole and the rest. We want tblack hole surface are distinguishable from each other for
associate an entropy to the hole, describing its thermal an external observer (observing the microstate). Indeed,
exchanges with the exteriorS must count the number consider initial data for the Einstein equations given in
of microstates over which the hole would fluctuate in anan asymptotically flat space containing a horizon. Con-
ideal situation in which no energy is exchanged betweesider data corresponding to a nonspherical localized de-
the hole and its surroundings. The precise specificatioformation of the horizon. Then the future evolution of
of this ensemble of microstates is crucial, and we nowthe field—say the radiation at future infinity—is affected
discuss it in detalil. by the location of the deformation on the event horizon.
First, configurations of the hole itself, and not thatThis fact seems to contradict diffeomorphism invariance,
of the surrounding geometry, should affect the hole’sbut it does not: The groug of the diffeomorphisms of
entropy. Next, the behavior of a system containing thehe horizon acts on the horizon geometry as well as on the
hole is not affected by the hole’s interior. The hole external geometry; we must factor away its action once,
interior, indeed, might be in one out of an infinite not twice. [If a groupG acts (freely) on a set and on a
number of states without distinguishable effects on theset B, then AGLB is isomorphic toA/G X B, and not to
outside. For instance, it might (in principle) be given byA/G X B/G, as one could naively expect [14].] There-
a Kruskal-like spacetime, with another “universe” (say,fore location on the horizorelative to the exterior geome-
spatially compact, apart for the hole) with billions of try is gauge invariant.
galaxies on the other side. This huge number of internal Summarizing, we are interested in counting the number
states does not affect the interaction of the hole with itsV(A) of states of the geometry, of a surfacer, of area
surroundings and it is therefore irrelevant here. ThusA, where different physical regions 6f are distinguished
we are interested only in configurations of the htilat from each other by the external geometry. (Notice
have (microscopically) distinct effects on the exterior that fluctuations widely away from uniformity—spherical
From the exterior, the hole’s future behavior is fully symmetry—are presumably negligible, as is common in
determined by the geometry of its surface. Thus, thestatistical mechanics.) The above discussion indicates
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then thatS(A) = kInN(A) is the entropy governing the counting the orderech-tuples of integersp such that
horizon’s thermal interactions with its surroundings. The(2) holds. (The first suggestion that this number may
“number” N(A) is meaningless in the classical theory.determine the black hole entropy is in [20].) More
As the entropy of the electromagnetic field in a cavity isprecisely, we are interested in the number of microstates
well defined only if we take quantum theory into account,(n-tuplesp) such that the right hand side of (2) is between
similarly we expect thatv(A) will be well defined in A andA + dA, whereA > dA > hG.
quantum gravity. The problem is thus to count the Let M = A/8#hG, and letN(M) be the number of
number of (orthogonal) quantum states of the geometrprderedn-tuplesp, with arbitraryn, such that
of a two dimensional surface, having total argathat is,
the dimension of thet eigenspace of the area operator. Z pilpi +2)=M. 3)
The problem is well defined, and can be translated into i=Ln
a direct computation, provided that a quantum theory ofirst, we overestimatev(M) by approximating the left
geometry is available [15]. hand side of (3) dropping the2 term under the square

In loop quantum gravity, the quantum states of theroot. Thus, we want to compute the numbeér (M) of
gravitational field are represented §inots [16]. See [5] orderedn-tuples such that
for a detailed recent introduction. Agknot is an equiva-
lence class under diffeomorphisms of graphs immersed d pi=M. (4)
in space, carrying colors on their edges [correspond- i=lLn
ing to irreducible representations of SU(2)]' and C0|0rsThe problem is an exercise in combinatorics. It can be
on their vertices (corresponding to invariant couplings besolved, for instance, by noticing that {p1,. .., p.) is a
tween such representations). The relation betvederots ~ partition of M [that is, it solves (4)], thettpi, ..., p,, 1)
and classical geometries was explored in [17]. and (py,...,p, + 1) are partitions ofM + 1. Since

If a Surfacez is given, |ts geometry iS determined by all partitions of M + 1 can be obtained in this manner,
its intersections with the knot. Intersections are of three We haveN(M + 1) = 2N, (M). ThereforeN (M) =
types: (a) an edge crosses the surface, (b) a vertex lies 62", whereC is a constant. For larg¥,
thefsurface, and I(c) a firzit)e pa;]rt of ][beknot lies on the . INN4+(M) = (In2)M .
surface. Intuitively, type (a) is the only “generic” case, an : L
we should disregard states of type (b) and (c). Ashteka[r\leXt’ we underest|mate/(2M ) by approximating (3) as
has suggested an argument for neglecting type (b) an pi(pi +2)=(pi + 1? — 1= (p; +1). Thus, we
(c) intersections [18]: we wish to describe the geometr;}"”Sh to compute the numbey—(M) of orderedn-tuples
of a fluctuating surface. as observed from the exterior, such that
and we expect the state of its geometry to be stable under
infinitesimal deformations ok. We may thus consider
the surface as the limit of a sequence of surfatgsand

i=1,n
Namely, we have to count the partitions &f in parts

its state as the (Hilbert norm) limit of the states E’.I' .with two or more elements. This problem can be solved
Clearly, states of type (b) and (c) cannot appear in thl%y noticing that if (py.....p,) is one such partition

way, and therefore we have to restrict our computation tg : »
L . of M and (qi,...,q,) is one such partition oM — 1,
states having intersections of type (a) only [19]. then( ¥ 1) and( 2) are partitions of
Given a quantum state and a surface,ilet 1,...,n Pls--->Dn q1s--->49m> p

) . M + 1. All partitions of M + 1 in parts with two or
label type (a) intersections, apd be the color of the edge . o )
! . more elements can be obtained in this manner; therefore
throughi. Thus, the quantum geometry of the surface is

characterized by an-tuple ofn colors = ( : N_(M + 1) = N_(M) + N_-(M — 1). It follows that
, DYy P n P = APl Pndy N (M) = DaM + EaM, where D and E are constants
wherern is arbitrary. In particular, it was shown in [4]

. anda- are the two roots of the equatiert = a+ + 1.
that the total area of the surfageis For largeM the term with the highest root dominates

A= SWﬁG\/pi(pi +2). (2) INN_(M) = (Ina)M = In[(1 + ~/5)/2]M .

i=Ln By combining the information from the two estimates, we
Since physical points oft are distinguished by the conclude that Iv(M) = dM, where
external geometry, two sets of intersections attached to the
external geometry in different ways define two states with In[(1 ++/5)/2] <d <In2 or 048 <d <0.69.
(microscopically) distinct effects on the outside. (The(For another derivation, see [20].) Since the integers
permutation group of the intersections is the subgroug/ are equally spaced, our computation yields immedi-
of G acting nontrivially, and, as shown above, this isately the density of microstates. The numbéA) of
not gauge.) Therefore, the quantum geometry on thenicrostates with ared grows for largeA as InN(A) =
surface is determined by thredered ntuples of integers dA/87hG. This gives immediately the Bekenstein-
p = (p1,...,ps). Our task is reduced to the task of Hawking formula (1), with the constant of proportionality
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¢ =d/8w ~ 1/167. This is roughly4sr times smaller
than Hawking's value: = 1/4.

Several issues remain open. We have worked in the
simplified setting of a hole interacting with a given
geometry, instead of working within a fully generally
covariant statistical mechanics [21]. Also, it would be
nice to have a direct characterization of the event horizon
in the quantum theory: this could perhaps be given as
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