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Black Hole Entropy from Loop Quantum Gravity
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We study the idea that the statistical entropygoverning thermal interactions of a black hole wit
its exterior is determined by the microstates of the hole having distinct effects on the exterior,
over which a hole in a given macroscopic configuration thermally fluctuates. We argue that
(macroscopically) Schwarzschild black hole this ensemble is formed by horizons with the same
We compute the number of states in this ensemble from first principles using nonperturbative
quantum gravity. We obtain a statistical entropy proportional to the area, as in the Bekenstein-Ha
formula. [S0031-9007(96)01421-4]

PACS numbers: 04.70.Dy, 04.60.Ds
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In this Letter, we present a derivation of the
Bekenstein-Hawking expression for the entropy [1
of a Schwarzschild black hole of surface areaA

S ­ cskyh̄GdA (1)
(c is a constant of the order of unity,G, k, and h̄ the
Newton, Boltzmann and Planck constants, and we p
the speed of light equal to 1) via a statistical mechanic
computation from a full theory of quantum gravity [2].
We use loop quantum gravity [3], and, in particular, w
make use of the spectrum of the area operator, recen
computed [4,5]. The loop approach to quantum gravity
now developed to the point where one may begin to try
within concrete physical problems, with the aim of gettin
some insights on the quantum physics of gravity, as w
as testing the approach itself.

Our strategy is based on the idea that the entropy of t
hole originates from the microstates of the horizon th
correspond to a given macroscopic configuration. As f
as we know this idea was first suggested in a seminal wo
by York [6]. York notices that the hole’s radiance implie
that the (macroscopic) event horizon is located slight
inside the quasistatic timelike limit surface, leaving a thi
shell between the two, which he proposes to interpret
the region over which the microscopic horizon fluctuate
He interprets these fluctuations as zero point quantu
fluctuations of the horizon’s quasinormal modes, and, b
identifying the thermal energy of these oscillations wit
the shell’s (“irreducible”) mass, he is able to recove
Hawking’s temperature. We take two essential ideas fro
York’s work: that the source of the hole entropy is in th
degrees of freedom associated with the fluctuations of t
shape of the (microscopic) horizon, and that the quasiloc
measure of mass energy governing energetic exchan
between the horizon and its surroundings can be tak
as the Christodoulou-Ruffini [7] “irreducible mass”MCR.
Using this, our aim here is to replace York’s perturbativ
semiclassical approach with a direct calculation withi
nonperturbative quantum gravity.

The relevance of horizon’s surface degrees of freedo
for the entropy has been recently explored from variou
0031-9007y96y77(16)y3288(4)$10.00
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perspectives [8]. (See also [9] for an attempt to us
the “membrane paradigm” [10]: interactions of a black
hole with its surroundings can be described in term
of a fictitious physical membrane located close to th
horizon.) An approach strictly related to ours has bee
suggested in Ref. [11], where it is argued that a physic
split of a gauge system gives rise to boundary degre
of freedom, since the boundary breaks the gauge grou
Using this idea the Bekenstein-Hawking formula can b
derived, by counting boundary states, in 3D gravity. In
general relativity, the broken component of the gaug
group includes diffeomorphisms that move the surfac
and the boundary degrees of freedom can probably
viewed as fluctuations of the horizon.

In this Letter, we present a general discussion suppo
ing York’s idea that the hole’s entropy is determined b
an ensemble of microstates of the horizon, and that th
ensemble is formed by the geometries of the horizon wi
the sameMCR. Then we compute the number of these
geometries in the loop representation.

Consider a physical system containing a nonrotatin
and noncharged black hole (say, a collapsed star)
well as other physical components such as dust, gas,
radiation, which we denote collectively as “matter.” We
are interested in the statistical thermodynamics of suc
a system. Due to Einstein’s equations, the microscop
time-dependent inhomogeneities of the matter distributio
generate time-dependent “microscopic” inhomogeneitie
in the gravitational field as well. In most physical
problems, one can safely disregard these minute ripples
the geometry. However, in a statistical-thermodynamic
treatment, minute fluctuations should not be disregarde
they are the source of the thermal behavior.

Thus, we havetwo descriptionsof a physical black
hole interacting with surrounding matter at finite tempera
ture: the macroscopic description, stationary and coar
grained, and the microscopic description, where individ
ual thermal fluctuations are not disregarded. Macroscop
cally, the noncharged nonrotating hole is describe
by a Schwarzschild metric with massm, and horizon
© 1996 The American Physical Society
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area A ­ 16pG2m2. Thus, in a thermal context, the
Schwarzschild metric represents the coarse-grain
description of a microscopically fluctuating geometr.
Microscopically, the gravitational field is describe
by some complicated time-dependent non-spherica
symmetric metric. We believe that taking time-depende
nonsymmetric microstates into account is essential fo
statistical understanding of the thermal behavior of bla
holes: Searching a statistical derivation of black ho
thermodynamics from properties of spherically symmet
metrics alone is like trying to derive the thermodynami
of an ideal gas in a spherical box from the spherica
symmetric motions of the molecules.

Consider a microstate of the system. Foliate spaceti
with a family of spacelike surfacesSt , labeled by a time
coordinatet. The intersectionht between the surfaceSt

and the boundary of the past of future null infinity define
the instantaneous (microscopic) configuration of the ev
horizon at timet. Thus, ht is a closed 2D surface im-
mersed inSt. For most times, this microscopic configu
ration of the event horizon is not spherically symmetri
Let us denote bygt the intrinsic geometry of the horizon
ht . Let M be the space of all possible geometries of a 2
surface. Ast changes, the (microscopic) geometry of th
horizon changes. Thus,gt wanders inM ast changes.

Consider a closed thermodynamical systemS ideally
split into two subsystemsS1 and S2. Let us ideally
isolate the subsystemS1. Call its energyE. Its entropy
SsEd, defined by the log of the number of microstates th
have energyE, governs the thermal behavior ofS1 in its
interactions withS2 (microcanonical). Let us apply this
idea to our system. We consider our system to be form
by two subsystems: the hole and the rest. We want
associate an entropyS to the hole, describing its therma
exchanges with the exterior.S must count the number
of microstates over which the hole would fluctuate in a
ideal situation in which no energy is exchanged betwe
the hole and its surroundings. The precise specificat
of this ensemble of microstates is crucial, and we no
discuss it in detail.

First, configurations of the hole itself, and not tha
of the surrounding geometry, should affect the hole
entropy. Next, the behavior of a system containing t
hole is not affected by the hole’s interior. The hol
interior, indeed, might be in one out of an infinit
number of states without distinguishable effects on t
outside. For instance, it might (in principle) be given b
a Kruskal-like spacetime, with another “universe” (sa
spatially compact, apart for the hole) with billions o
galaxies on the other side. This huge number of intern
states does not affect the interaction of the hole with
surroundings and it is therefore irrelevant here. Thu
we are interested only in configurations of the holethat
have (microscopically) distinct effects on the exterio.
From the exterior, the hole’s future behavior is full
determined by the geometry of its surface. Thus, t
ed
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entropy governing the thermal interactions of the ho
is determined by the state of the geometry on the hole
surface, namely, bygt .

Next, we have to determine the ensemble of the m
crostatesgt over which the hole would fluctuate unde
the ideal hypothesis of no energy exchange. The us
microcanonical ensemble is determined by fixing energ
Here, we must look for a notion of energy associated
the horizon’s surface, governing energetic exchanges w
the exterior. Following York, we take the Christodoulou
Ruffini quasilocal irreducible massMCR ­

p
Ay16pG2 as

the relevant energy in this context (hereA is the area of
ht), and we define the ensemble as the set ofgt in M

with the sameMCR, namely, with the same area. Ther
is a number of reasons supporting the choice of this e
semble. First,MCR is geometrically well defined, governs
the hole’s energy exchanges, and agrees with the mac
scopic black hole energy. Second, the ensemble must c
tain reversible paths only. In the classical theory the
conserve area (Hawking theorem [12]). Quantum theo
allows classically forbidden energy exchanges with the e
terior (Hawking radiance), but it is unlikely, we believe
that it would allow a nonreversible evolution of the hori
zon to become reversible without energy exchange with t
exterior. Third, we may reason backward and let the the
modynamics indicate to us the correct ensemble (which
how classical ensembles were first found). In this conte
it is perhaps worthwhile recalling that difficulties to rigor
ously justifying the choice of the ensemblea priori plague
conventional thermodynamics anyway.

A point to take into account (missed in an earlier stag
of this work [13]) is that distinct physical regions on th
black hole surface are distinguishable from each other
an external observer (observing the microstate). Inde
consider initial data for the Einstein equations given
an asymptotically flat space containing a horizon. Co
sider data corresponding to a nonspherical localized d
formation of the horizon. Then the future evolution o
the field—say the radiation at future infinity—is affecte
by the location of the deformation on the event horizo
This fact seems to contradict diffeomorphism invarianc
but it does not: The groupG of the diffeomorphisms of
the horizon acts on the horizon geometry as well as on
external geometry; we must factor away its action onc
not twice. [If a groupG acts (freely) on a setA and on a
set B, then A3B

G is isomorphic toAyG 3 B, and not to
AyG 3 ByG, as one could naively expect [14].] There
fore location on the horizonrelative to the exterior geome-
try is gauge invariant.

Summarizing, we are interested in counting the numb
NsAd of states of the geometrygt of a surfaceht of area
A, where different physical regions ofht are distinguished
from each other by the external geometry. (Notic
that fluctuations widely away from uniformity—spherica
symmetry—are presumably negligible, as is common
statistical mechanics.) The above discussion indica
3289
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then thatSsAd ­ k ln NsAd is the entropy governing the
horizon’s thermal interactions with its surroundings. Th
“number” NsAd is meaningless in the classical theory
As the entropy of the electromagnetic field in a cavity
well defined only if we take quantum theory into accoun
similarly we expect thatNsAd will be well defined in
quantum gravity. The problem is thus to count th
number of (orthogonal) quantum states of the geome
of a two dimensional surface, having total areaA, that is,
the dimension of theA eigenspace of the area operato
The problem is well defined, and can be translated in
a direct computation, provided that a quantum theory
geometry is available [15].

In loop quantum gravity, the quantum states of th
gravitational field are represented bys knots [16]. See [5]
for a detailed recent introduction. Ans knot is an equiva-
lence class under diffeomorphisms of graphs immers
in space, carrying colors on their edges [correspon
ing to irreducible representations of SU(2)], and colo
on their vertices (corresponding to invariant couplings b
tween such representations). The relation betweens knots
and classical geometries was explored in [17].

If a surfaceS is given, its geometry is determined by
its intersections with thes knot. Intersections are of three
types: (a) an edge crosses the surface, (b) a vertex lies
the surface, and (c) a finite part of thes knot lies on the
surface. Intuitively, type (a) is the only “generic” case, an
we should disregard states of type (b) and (c). Ashtek
has suggested an argument for neglecting type (b) a
(c) intersections [18]: we wish to describe the geomet
of a fluctuating surfaceS as observed from the exterior,
and we expect the state of its geometry to be stable un
infinitesimal deformations ofS. We may thus consider
the surface as the limit of a sequence of surfacesSe , and
its state as the (Hilbert norm) limit of the states ofSe.
Clearly, states of type (b) and (c) cannot appear in th
way, and therefore we have to restrict our computation
states having intersections of type (a) only [19].

Given a quantum state and a surface, leti ­ 1, . . . , n
label type (a) intersections, andpi be the color of the edge
throughi. Thus, the quantum geometry of the surface
characterized by ann-tuple of n colors $p ­ sp1, . . . , pnd,
where n is arbitrary. In particular, it was shown in [4]
that the total area of the surfaceS is

A ­
X

i­1,n

8p h̄G
q

pispi 1 2d . (2)

Since physical points ofS are distinguished by the
external geometry, two sets of intersections attached to
external geometry in different ways define two states wi
(microscopically) distinct effects on the outside. (Th
permutation group of the intersections is the subgrou
of G acting nontrivially, and, as shown above, this i
not gauge.) Therefore, the quantum geometry on th
surface is determined by theordered n-tuples of integers
$p ­ sp1, . . . , pnd. Our task is reduced to the task o
3290
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counting the orderedn-tuples of integers$p such that
(2) holds. (The first suggestion that this number m
determine the black hole entropy is in [20].) Mor
precisely, we are interested in the number of microsta
(n-tuples $p) such that the right hand side of (2) is betwee
A andA 1 dA, whereA ¿ dA ¿ h̄G.

Let M ­ Ay8p h̄G, and let NsMd be the number of
orderedn-tuples $p, with arbitraryn, such thatX

i­1,n

q
pispi 1 2d ­ M . (3)

First, we overestimateNsMd by approximating the left
hand side of (3) dropping the12 term under the square
root. Thus, we want to compute the numberN1sMd of
orderedn-tuples such thatX

i­1,n

pi ­ M . (4)

The problem is an exercise in combinatorics. It can
solved, for instance, by noticing that ifsp1, . . . , pnd is a
partition of M [that is, it solves (4)], thensp1, . . . , pn, 1d
and sp1, . . . , pn 1 1d are partitions ofM 1 1. Since
all partitions ofM 1 1 can be obtained in this manner
we haveN1sM 1 1d ­ 2N1sMd. ThereforeN1sMd ­
C2M , whereC is a constant. For largeM,

ln N1sMd ­ sln 2dM .

Next, we underestimateNsMd by approximating (3) asp
pispi 1 2d ­

p
spi 1 1d2 2 1 ø spi 1 1d. Thus, we

wish to compute the numberN2sMd of orderedn-tuples
such that X

i­1,n

spi 1 1d ­ M .

Namely, we have to count the partitions ofM in parts
with two or more elements. This problem can be solv
by noticing that if sp1, . . . , pnd is one such partition
of M and sq1, . . . , qmd is one such partition ofM 2 1,
thensp1, . . . , pn 1 1d andsq1, . . . , qm, 2d are partitions of
M 1 1. All partitions of M 1 1 in parts with two or
more elements can be obtained in this manner; theref
N2sM 1 1d ­ N2sMd 1 N2sM 2 1d. It follows that
N2sMd ­ DaM

1 1 EaM
2 , where D and E are constants

and a6 are the two roots of the equationa2
6 ­ a6 1 1.

For largeM the term with the highest root dominates

ln N2sMd ­ sln a1dM ­ lnfs1 1
p

5 dy2gM .

By combining the information from the two estimates, w
conclude that lnNsMd ­ dM, where

lnfs1 1
p

5 dy2g , d , ln 2 or 0.48 , d , 0.69 .

(For another derivation, see [20].) Since the intege
M are equally spaced, our computation yields immed
ately the density of microstates. The numberNsAd of
microstates with areaA grows for largeA as lnNsAd ­
dAy8p h̄G. This gives immediately the Bekenstein
Hawking formula (1), with the constant of proportionalit
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na,
c ­ dy8p , 1y16p. This is roughly4p times smaller
than Hawking’s valuec ­ 1y4.

Several issues remain open. We have worked in t
simplified setting of a hole interacting with a given
geometry, instead of working within a fully generally
covariant statistical mechanics [21]. Also, it would b
nice to have a direct characterization of the event horiz
in the quantum theory: this could perhaps be given
the boundary between the edges (and vertices) of (e
component of) the weave, whose modification does
does not affect expectation values of observables at fut
null infinity [22]. This approach might clarify the issue o
the type (b) and (c) intersections. Finally, the numeric
discrepancy with the Hawking’s value indicates tha
something is still poorly understood. Jacobson [23] h
suggested that finite renormalization effects of the Newt
constant might account for this discrepancy and has beg
to explore how the presence of matter might affect
In summary, we have argued that black hole entro
is determined by the dimensions of the eigenspaces
the area operator. Using loop quantum gravity, we ha
shown that this entropy is proportional to the area.

I thank Abhay Ashtekar, John Baez, Riccard
Capovilla, Ted Jacobson, Kirill Krasnov, Luis Lenher
Don Marolf, Slava Mukhanov, Ted Newman, Jorg
Pullin, Lee Smolin, Daniel Sudarski, and Ranjeet Tate f
important discussions.
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