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We show that binary mixtures of Bose condensates of alkali atoms have a great variety of ground
and vortex structures which can be accessed experimentally by varying the particle numbers of dif
alkalis. We have constructed a simple algorithm to determine the density profiles of the mixtures w
Thomas-Fermi approximation. Many structures of the alkali binary contain a coexisting region, w
is the analog of the long sought3He-4He interpenetrating superfluids in ultralow temperature physic
[S0031-9007(96)01390-7]

PACS numbers: 03.75.Fi, 05.30.Jp
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The search of Bose condensate in alkali atoms [1–
has a deep root in ultralow temperature physics. Since
discovery of superfluid3He, the searches of the next ele
mental superfluid have been focusing on spin polariz
hydrogen and3He-4He mixture. The former promises an
other Bose superfluid besides the only known example
4He, the latter, the first example of interpenetrating supe
fluids. The recent discoveries of alkali Bose condensa
[1–3] have in essence achieved the goal of the superfl
hydrogen search. Since there are no intrinsic difficulti
in loading more than one alkali element and having the
cooled in the same trap, it appears highly promising that
terpenetrating superfluids may be realized for the first tim
within the same experimental setting.

In this paper, we shall discuss binary mixtures of alka
condensates. Such mixtures may consist of different alk
lis such as87Rb-23Na, or different isotopes such as87Rb-
85Rb, or different hyperfine states of the same alkali su
as the (F ­ 2, MF ­ 2) and (F ­ 1, MF ­ 1) states of
87Rb. We shall denote the two different alkalis as 1 an
2, and their particle numbers asN1 andN2. Unlike single
component systems which are characterized by a sin
scattering length, alkali binaries are characterized by th
scattering lengthsa1, a2, anda12, representing interactions
between like and unlike alkalis. At present, the scatte
ing lengths between many like alkali atoms are know
whereas those between unlike alkalis have not been m
sured. As we shall see, this moderate increase in ene
scales leads to a proliferation of ground state and vort
structures.

In the following, we shall present (a) a simple algorithm
for determining the density profiles of the mixtures, (b) th
evolution of the ground states and vortex states as
function of N1, N2. For length reasons, we shall limit
ourselves to the vortex states where alkali 1 contains a2p

vortex and alkali 2 is vortex free. Our algorithm, howeve
can be applied to an arbitrary number of vortices in 1 a
2. As we shall see, the structure of the mixture depen
on the ratio ofg factors of the two alkalis and the ratios
of their interaction parameters. These ratios determ
whether alkali 2 when added to an existing cloud of 1 w
stay at its exterior or interior. Another general feature
0031-9007y96y77(16)y3276(4)$10.00
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the mixture is that whenN1 , N2, it generally contains
a large coexisting region of 1 and 2. This is the anal
of the long sought3He-4He superfluid mixture in ultralow
temperature physics.

Our results are obtained by minimizing the Gros
Piteavskii energyEsC1, C2d subject to the constraint of
constant particle numbers, i.e., by the conditiondK ­ 0,
K ; EsC1, C2d 2 m1N1 2 m2N2, where sCi , mid are
the order parameter and chemical potential of theith al-
kali, i ­ 1, 2. the energy is of the formE ­ T 1 1U 1

V , where T , U, and V are the kinetic energy, the po
tential energy of the magnetic trap, and the interacti
energy between alkali atoms. The kinetic energy
T ­

R
s
P

i­1,2sh̄2y2Mid j=Cij
2 1 z1C

p
1=C1C

p
2=C2 1

z2C
p
1=C1C2=C

p
2 1 c.c.d, wherez1 and z2 are complex

coefficients caused by backflow effects between differe
alkalis. They are expected to be small in the dilute lim
The trap potentialsU ­

P
i­1,2 Uisxd jCi j

2 are of the
form [4]

Uisxd ­
gimBB0

2L2
sr2 1 l2z2d ;

1
2

Miv
2
i sr2 1 l2z2d ,

M1v
2
1ysM2v

2
2d ­ g1yg2 wherel is the trap anisotropy,gi

andMi are theg factor and mass of theith alkali, mB is
the Bohr magneton,B0 is the magnetic field at the cente
of the trap, andL is the length scale of the variations of th
magnetic field. For dilute Bose gases, since the scatter
between both like and unlike alkali are dominated b
s-wave scattering, we have

V ­
1
2

Z
dx sG1jC1j

4 1 G2jC2j
4 1 2G12jC1j

2jC2j
2d ,

where Gi ­ 4p h̄2aiyMi, i ­ 1, 2; G12 ­ 2p h̄2a12yp
M1M2.
For largeN1, N2, the minimization can be done with

great accuracy in the Thomas-Fermi approximation (TF
[5], which ignores all=jCi j terms inT . For vortex free
structures [denoted assv0d], this amounts to settingT ­
0. If alkali 1 has a2p vortex while alkali 2 is vortex
free [denoted assv1d] (i.e., C1 ­ jC1jeif and C2 ­
jC2j), TFA amounts to retaining only the centrifugal term
© 1996 The American Physical Society
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jC1j
2yr2 in T . By rescalingz ! zyl, the functionalK

within TFA takes the simple form

K ­
Z

f 2 m̃1r1 2 m̃2r2

1
1
2 sG1r2

1 1 G2r2
2 1 2G12r1r2dg ,

ri ; jCi j
2,

m̃1 ­ m1szd 2
M1v

2
1r2

2
2

h̄2

2M1

p
r2

,

m̃2 ­ m2szd 2
M2v

2
2r2

2
,

(1)

wherep ­ 0 and1 for sv0d andsv1d states, respectively
andmiszd are defined asmiszd ; mi 2

1
2 Miv

2
i z2, i ­ 1, 2.

Our goal is to find the density profilesr1, r2d as a
function of particle numberN1, N2, sNi ­

R
rid. This

is done by the following: (I) MinimizingK to find the
equilibrium densitiesri for given chemical potentialmi .
(II) Use the relationsNi ­

R
rid to obtainNi as a function

of mi [i.e., Ni ­ Nism1, m2d]. (III) Inverting the relation
to obtainmi ­ misN1, N2d, which immediately givesri as
point

s
e
shown
FIG. 1. 1.1 and 1.2 show the typical distribution plots forG12 . 0, G2yG12 . G12yG1 . 1. The “image paths”Gszd (dashed
lines) of the ground statesv0d and thesv1d vortex are shown as dashed lines in these figures. The circle in 1.1 denotes the
fm1szd, m2szdg. The slope of the dotted line isg2yg1. In 1.2, the image pathGszd is shown for different values ofz sz2 . z1 . 0d.
As z increases,Gszd slides down rigidly along the straight line with slopeg2yg1. 1.3 shows the interfacess2o , 1o , 2o d in 1.1
intersected byhGszdj. They are spherical surfaces as given by Eqs. (2) and (1) withp ­ 0. 1.4 shows that boundary surface
s1o , 2o , 1o , 2o d cut by hGszdj in 1.2. They are given by Eqs. (2) and (1) withp ­ 1. Only one quadrant of the interface structur
is shown as it is cylindrical symmetric. Eliminating the portion of surfaces in 1.4 inconsistent with the order of intersections
in 1.2, we are left with the interfaces in 1.5, which is the structure of thesv1d vortex.
a function ofsN1, N2d because of (I). Although much o
our labor went into (II) and (III), they are straightforwar
(though lengthy) calculations once the densities profiles
determined by the simpler but subtler step (I), which w
now discuss.

Constructingr1, r2 for givenm1, m2.—Let f0g, f1g, f2g,
f12g denote the vacuum, the single phase of 1, 2, and
coexisting phase of 1 and 2, respectively. The densities
these phases are given by the stationary conditions ofK .
The vacuumf0g is given byr1 ­ r2 ­ 0. The stationary
conditions of the other three phases are (withri $

0) f12g r1 ­ sG2m̃1 2 G12m̃2dysG1G2 2 G2
12d, r2 ­

sG1m̃2 2 G12m̃1dysG1G2 2 G2
12d; f1g r1 ­ m̃1yG1, r2 ­

0; and f2g r2 ­ m̃2yG2, r1 ­ 0. The distribution of
these “phases” in thẽm1-m̃2 plane will be referred to the
distribution plot. A distribution plot for positiveG12 is
shown in Figs. 1.1 and 1.2. The boundaries (or interfac
separatingf12g from f2g andf1g are denoted as1o and2o .
They are the surfaces of vanishingr1 and r2, described
by

1o : m̃2 ­ fG2yG12gm̃1, 2o : m̃2 ­ fG12yG1gm̃1 .
(2)
3277
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The interfaces separating the vacuumf0g from f1g andf2g
are denoted as1o and2o . They are described by equation
(1o : m̃1 ­ 0) and (2o : m̃2 ­ 0).

From Eq. (1), we note that a path in real space w
induce an “image” inm̃1-m̃2 space. For example, a radia
path on the horizontal plane with heightz will induce an
imageGszd in m̃1-m̃2 plane asGszd:

fm̃1 2 m1szdg sh̄v1y2d ­ fg1yg2g fm̃2 2 m2szdgysh̄v1y2d
1 phsg1yg2d fm̃2 2 m2szdg
3 sh̄v1y2dj21.

For vortex free statessp ­ 0d, Gszd is a straight line
with slopeg2yg1 emerging from the pointsssm1szd, m2szdddd,
which is shown as a dashed line and a circle in Fig. 1.
For sv1d vortices,hGszdj is a family of curves shown in
Fig. 1.2, with z2 . z1 . 0. The arrows on these paths
indicate the direction of increasingr . As r varies from
0 to `, Gszd intersects the phase boundaries in a speci
order. From the definition ofmiszd, it is easy to see that as
jzj increases,Gszd slides down rigidly along the straight
line with slopeg2yg1.

The above considerations suggest a simple algorith
for determining the structure of the mixture: (i) For given
chemical potentialsm1, m2, draw the image pathshGszdj
on the distribution plot.Gszd will intersect a set of phase
boundaries in a specific order. (ii) Using Eqs. (2) and (1
construct in real space the set of boundary surfaces (i
e
c).
he two
FIG. 2. Case (a):sG1, G2, G12d ­ s9.604, 17.78, 12.52d 3 10238 ergs cm3. 2.1(a) to 2.1(c) show the ground state structure of th
mixture for differentN1, N2 for the caseG2yG12 . G12yG1 . 1. The interfaces of these structures are shown in 2.2(a) to 2.2(
When a2p vortex is inserted into alkali 1, these interfaces change to those in 2.3(a) to 2.3(c). The narrow region between t
dotted lines in 2.2(a) is the coexistence regionf12g.
3278
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h1o , 2o , 1o , 2oj) intersected byhGszdj. (iii) Eliminate all
portions of these boundary surfaces that are inconsis
with the order of intersections generated in (i). T
remaining surfaces are the physical boundaries in
mixture.

To illustrate this algorithm, consider the vortex fre
mixture in Fig. 1.1. The image paths of this mixtu
intersect phase boundaries2o , 1o , and2o . From Eqs. (2)
and (1), it is easily seen that these boundary curves
interfaces) are spherical surfaces separating the si
component and coexisting regions as shown in Fig. 1
Figure 1.3 is the structure of the mixture. For thesv1d
vortex in Fig. 1.2, the familyhGszdj intersects all four
phase boundaries (1o , 2o , 1o , 2o) in the order (1o 2o1o ),
or 2o alone. Displaying all four boundary surfaces usi
Eqs. (2) and (1) (see Fig. 1.4) and eliminating all sectio
of these surfaces inconsistent with the order of intersect
we obtain the physical boundaries shown in Fig. 1.5.

Determination of density profile as a function of pa
ticle numbersN1, N2.—Having determined the densit
profiles for given chemical potentialsm1, m2d, we have fol-
lowed steps (II) and (III) mentioned above to constru
the phase diagrams for both ground statessv0d and vor-
tex statessv1d over the entire range of (G1, G2, G12, and
g1yg2). In general, the phase diagram depends on
interaction ratiosG1yG12, G12yG2, and theg-factor ra-
tios g2yg1. The entire phase diagram is too rich to b
displayed in the limited space here. Instead, we sh
show the evolution of the density profile as a function
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FIG. 3. Case (b):sG1, G2, G12d ­ s9.604, 17.78, 6.636d 3 10238 ergs cm3. 3.2(a) to 3.2(c) show the ground state structure of t
mixture for differentN1, N2 for the caseG2yG12 . 1 . G12yG1. The interfaces of these structures are shown in 3.2(a) to 3.2
The interfaces of thesv1d vortices with the sameN1, N2 are shown in 3.3(a) to 3.3(c).
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N1, N2 for the cases (a)G2yG12 . G12yG1 . g2yg1 and
(b) G2yG12 . g2yg1 . G12yG1.

We shall use the87Rb-23Na mixture as an example,
with Rb and Na denoted as 1 and 2, respectively. W
then have g2yg1 ­ 1, G1 ­ 9.604 3 10238 erg cm3,
G2 ­ 17.871 3 10238 erg cm3 [6]. The two cases (a)
and (b) we considered areG12 ­ 12.52 3 10238 erg cm3

and G12 ­ 6.636 3 10238 erg cm3, respectively. The
trap is taken to be isotropic (l ­ 1). In going through
steps (II) and (III), one also needs the trap frequenci
vi ; 2pfi. Takingf1 ­ 180 Hz, and using the relation
v1yv2 ­

p
g1M2yg2M1, we havef2 ­ 350.1 Hz.

The evolution of the density profiles of cases (a) an
(b) as a function ofN1, N2 are shown in Figs. 2 and 3.
The ground states of these cases are shown in Figs. 2.1
to 2.1(c), and Figs. 3.1(a) to 3.1(c), respectively. Fig
ure 2.1(a) shows that when atom 2 is added onto a lar
cloud of atom 1, it stays at the surface of the latter. On th
other hand, Fig. 2.1(c) shows that when atom 1 is add
onto a large cloud of 2, it enters into the interior of 2
directly. For case (b), Figs. 3.1(a) and 3.1(c) show th
one species always enters into the center of the other.
is also useful to look at the structure of the mixtures i
terms of the interfaces separating different phases. T
interfaces of the ground states in Figs. 2.1(a) to 2.1(c) a
those in Figs. 3.1(a) to 3.1(c) are shown in Figs. 2.2(
to 2.2(c) and Figs. 3.2(a) to 3.2(c), respectively. When
2p vortex is inserted in alkali 1 [i.e., thesv1d vortices],
these interfaces become those in Figs. 2.3(a) to 2.3
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and Figs. 3.3(a) to 3.3(c). From the structures shown
Figs. 2 and 3, one sees that many of them contain a la
region of coexisting phasef12g.

Our discussions above show that by varying the parti
numbers of the alkalis, one can go continuously fro
regimes of interpenetrating superfluids to those w
separated phases. The possibility of scanning throu
this continuum offers great opportunities to study coupl
macroscopic quantum phenomena of distinct Bose flui
and widen our horizon on superfluid phenomenon.
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