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Binary Mixtures of Bose Condensates of Alkali Atoms
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We show that binary mixtures of Bose condensates of alkali atoms have a great variety of ground state
and vortex structures which can be accessed experimentally by varying the particle numbers of different
alkalis. We have constructed a simple algorithm to determine the density profiles of the mixtures within
Thomas-Fermi approximation. Many structures of the alkali binary contain a coexisting region, which
is the analog of the long soughie-*He interpenetrating superfluids in ultralow temperature physics.
[S0031-9007(96)01390-7]

PACS numbers: 03.75.Fi, 05.30.Jp

The search of Bose condensate in alkali atoms [1—3fhe mixture is that whemWV; ~ N, it generally contains
has a deep root in ultralow temperature physics. Since tha large coexisting region of 1 and 2. This is the analog
discovery of superfluidHe, the searches of the next ele- of the long soughtHe-*He superfluid mixture in ultralow
mental superfluid have been focusing on spin polarizeemperature physics.
hydrogen andHe-*He mixture. The former promises an-  Our results are obtained by minimizing the Gross-
other Bose superfluid besides the only known example dPiteavskii energyt (¥, V,) subject to the constraint of
“He, the latter, the first example of interpenetrating supereonstant particle numbers, i.e., by the condit&ki = 0,
fluids. The recent discoveries of alkali Bose condensatek = E(WV,V;) — w1 N1 — uN,, where (W, u;) are
[1-3] have in essence achieved the goal of the superfluithe order parameter and chemical potential of itheal-
hydrogen search. Since there are no intrinsic difficultiekali, i = 1,2. the energyis oftheforld =T + +U +
in loading more than one alkali element and having thenV, where T, U, and V are the kinetic energy, the po-
cooled in the same trap, it appears highly promising that intential energy of the magnetic trap, and the interaction
terpenetrating superfluids may be realized for the first timenergy between alkali atoms. The kinetic energy is
within the same experimental setting. T = [(Xicio(B2/2M) [V ? + LW VW VP, +

In this paper, we shall discuss binary mixtures of alkalil, Wi VW, ¥,V¥; + c.c), where/; and/, are complex
condensates. Such mixtures may consist of different alkazoefficients caused by backflow effects between different
lis such as’Rb-**Na, or different isotopes such 8&Rb-  alkalis. They are expected to be small in the dilute limit.
85Rb, or different hyperfine states of the same alkali suciThe trap potentials = Yi—12Ui(x)|¥;]?> are of the
as the fF =2,Mpr =2)and F = 1,Mp = 1) states of form [4]
8’Rb. We shall denote the two different alkalis as 1 and
2, and their particle numbers a5 andN,. Unlike single U (x) = 8iksBo (r2 + A22) = iM,-w?(rz + 2233,
component systems which are characterized by a single 212 2 '

scattering length, alkali binaries are characterized by thre 2 2 _ . : A
scattering lengthay, a,, anda;,, representing interactions E/Ilwl/(Mzwz) g1/ Whereh s the trap anisotropy;

. . ! and M; are theg factor and mass of thigh alkali, wup is
petween like and unlike a”‘?"s- At present, the SCatter'the Bohr magneton is the magnetic field at the center
ing lengths between many like alkali atoms are known

whereas those between unlike alkalis have not been me,Of the trap, and. is the length scale of the variations of the
. ; ; %agnetic field. For dilute Bose gases, since the scattering
sured. As we shall see, this moderate increase in ener

scales leads to a proliferation of ground state and vorte(\%tween both like and unlike alkali are dominated by
structures P 9 Lwave scattering, we have

In the following, we shall present (a) a simple algorithm ! s s 5 5
for determining the density profiles of the mixtures, (b) the V = Ef dx (Gi[W1[" + Go|Wal" + 2G oW [*|W2]),
evolution of the ground states and vortex states as a
function of Ni, N,. For length reasons, we shall limit where G; = 4wh%a;/M;, i = 1,2, G, = 2wh*a,/
ourselves to the vortex states where alkali 1 contaibsa /M M,.
vortex and alkali 2 is vortex free. Our algorithm, however, For large Ny, N, the minimization can be done with
can be applied to an arbitrary number of vortices in 1 andjreat accuracy in the Thomas-Fermi approximation (TFA)
2. As we shall see, the structure of the mixture dependf5], which ignores allV|¥;| terms inT. For vortex free
on the ratio ofg factors of the two alkalis and the ratios structures [denoted &80)], this amounts to setting =
of their interaction parameters. These ratios determin®. If alkali 1 has a2# vortex while alkali 2 is vortex
whether alkali 2 when added to an existing cloud of 1 willfree [denoted agvl)] (i.e., ¥ = |¥|¢/* and ¥, =
stay at its exterior or interior. Another general feature of|¥,|), TFA amounts to retaining only the centrifugal term
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|W,|2/r% in T. By rescalingz — z/A, the functionalk

within TFA takes the simple form

KZ[[—ﬂlpl—ﬂzpz

+ %(Glpf + Gng + 2Giap1p2)],

a function of (N, N,) because of (I). Although much of
our labor went into (I1) and (ll1), they are straightforward
(though lengthy) calculations once the densities profiles are
determined by the simpler but subtler step (1), which we
now discuss.

Constructingp, p, for givenu, w,.—Let[0],[1],[2],
[12] denote the vacuum, the single phase of 1, 2, and the

pi = Wil coexisting phase of 1 and 2, respectively. The densities of
o Miwir? m? p these phases are given by the stationary conditiors. of
1= pa(2) = 2 oM, 2 The vacuuni0] is given byp; = p, = 0. The stationary
2 5 (1) conditions of the other three phases are (wjih=
fo = pa(z) — M 0) [12] py = (Gofa — G12%2)/(61G2 — Gh), p2 =
2 Gz — G1)/(G1Gy — G); (1] p1r = 1/Gi, p2 =

wherep = 0 and1 for (v0) and(v1) states, respectively,
andu;(z) are defined ag;(z) = u; — %Miwizz2, i=1,2.
Our goal is to find the density profil€o;, p2) as a
function of particle numbewV,,N», (N; = [p;). This
is done by the following: (I) MinimizingK to find the
equilibrium densities; for given chemical potentigl;.
(Il) Use the relatioN; = [ p;) to obtainN; as a function
of w; [i.e., N; = N;(u1, m2)]- (1) Inverting the relation
to obtainu; = w;(N1, N2), which immediately givep; as

G/G>G/G;>0,/9;.

0; and [2] p2 = f12/G2, p1 = 0. The distribution of
these “phases” in th@ -, plane will be referred to the
distribution plot. A distribution plot for positiveG, is
shownin Figs. 1.1 and 1.2. The boundaries (or interfaces)
separating12] from [2] and[1] are denoted ak, and2,.
They are the surfaces of vanishipg and p,, described
by

1, : 2 = [G2/Gra] i, 2, 1 i2 = [Gr2/Gilinr .

(2)

G,/G,,>G,,/G,>9,/9,.
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FIG. 1.

(1.5)

(1.4)

1.1 and 1.2 show the typical distribution plots @, > 0, G,/G; > G1,/G; > 1. The “image pathsT(z) (dashed

lines) of the ground statév0) and the(vl) vortex are shown as dashed lines in these figures. The circle in 1.1 denotes the point
[m1(2), ma(z)]. The slope of the dotted line & /g,. In 1.2, the image path'(z) is shown for different values of (z, > z; > 0).

As z increases]'(z) slides down rigidly along the straight line with sloge/g;.

1.3 shows the interface@,,1,,2°) in 1.1

intersected by{I'(z)}. They are spherical surfaces as given by Egs. (2) and (1) with 0. 1.4 shows that boundary surfaces
(15,2,,1°,2°) cut by{I'(z)} in 1.2. They are given by Egs. (2) and (1) with= 1. Only one quadrant of the interface structure

is shown as it is cylindrical symmetric. Eliminating the portion of surfaces in 1.4 inconsistent with the order of intersections shown
in 1.2, we are left with the interfaces in 1.5, which is the structure of(the¢ vortex.
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The interfaces separating the vaculfrom [1] and[2] {1,,2,,1°,2°}) intersected by{I'(z)}. (iii) Eliminate all
are denoted aF’ and2°. They are described by equations portions of these boundary surfaces that are inconsistent
1°: @y =0)and R° : @, = 0). with the order of intersections generated in (). The
From Eq. (1), we note that a path in real space willremaining surfaces are the physical boundaries in the
induce an “image” ini -, space. For example, a radial mixture.
path on the horizontal plane with heightwill induce an To illustrate this algorithm, consider the vortex free
imagel'(z) in f&1-ft, plane ad'(z): mixture in Fig. 1.1. The image paths of this mixture
intersect phase boundari2s, 1,, and2°. From Egs. (2)
[ — w1 ()] (w1 /2) = [g1/g21[ 12 — ua(2)1/(Fw;/2) and (1), it is easily seen that these boundgry curves (or
+ ple1/2) (s — wa(2)] interfaces) are spherical surfaces separating the single
P81/ 82112 = palz component and coexisting regions as shown in Fig. 1.3.
X (hwi/2)} 7" Figure 1.3 is the structure of the mixture. For tfw)
vortex in Fig. 1.2, the family{I'(z)} intersects all four
For vortex free stategp = 0), I'(z) is a straight line phase boundaried(, 2,, 1°, 2°) in the order {,2,1°),
with slopeg,/g1 emerging from the pointu(z), w2(z)),  or2° alone. Displaying all four boundary surfaces using
which is shown as a dashed line and a circle in Fig. 1.1Egs. (2) and (1) (see Fig. 1.4) and eliminating all sections
For (v1) vortices,{I'(z)} is a family of curves shown in of these surfaces inconsistent with the order of intersection,
Fig. 1.2, withz, > z; > 0. The arrows on these paths we obtain the physical boundaries shown in Fig. 1.5.
indicate the direction of increasing As r varies from Determination of density profile as a function of par-
0 to =, I'(z) intersects the phase boundaries in a specifiticle numbersN;, N,.—Having determined the density
order. From the definition of;(z), it is easy to see that as profiles for given chemical potentigl, u,), we have fol-
|z| increases]'(z) slides down rigidly along the straight lowed steps (ll) and (Ill) mentioned above to construct
line with slopeg,/g. the phase diagrams for both ground stat&® and vor-
The above considerations suggest a simple algorithrtex stategv1) over the entire range of4, G», G2, and
for determining the structure of the mixture: (i) For given g;/g>). In general, the phase diagram depends on the
chemical potentialge, u,, draw the image path’(z)}  interaction ratiosG;/G1,, G12/G», and theg-factor ra-
on the distribution plot.I'(z) will intersect a set of phase tios g,/g;. The entire phase diagram is too rich to be
boundaries in a specific order. (ii) Using Egs. (2) and (1)displayed in the limited space here. Instead, we shall
construct in real space the set of boundary surfaces (i.eshow the evolution of the density profile as a function of
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FIG. 2. Case (a)Gi,G,,G12) = (9.604,17.78,12.52) X 1073 ergscm. 2.1(a) to 2.1(c) show the ground state structure of the
mixture for differentN,, N, for the caseG,/G» > G1»/G; > 1. The interfaces of these structures are shown in 2.2(a) to 2.2(c).

When a2# vortex is inserted into alkali 1, these interfaces change to those in 2.3(a) to 2.3(c). The narrow region between the two
dotted lines in 2.2(a) is the coexistence redid2].
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FIG. 3. Case (b)(G,G,,G12) = (9.604,17.78,6.636) X 10738 ergscm. 3.2(a) to 3.2(c) show the ground state structure of the
mixture for differentN,, N, for the caseG,/G, > 1 > G1,/G,. The interfaces of these structures are shown in 3.2(a) to 3.2(c).
The interfaces of thév1) vortices with the sam#&/;, N, are shown in 3.3(a) to 3.3(c).

N1, N, for the cases (al5,/G12 > G12/G, > g2/g1 and  and Figs. 3.3(a) to 3.3(c). From the structures shown in

(b) G2/G12 > g2/g1 > G12/G,. Figs. 2 and 3, one sees that many of them contain a large
We shall use thé’Rb->*Na mixture as an example, region of coexisting phadd2].

with Rb and Na denoted as 1 and 2, respectively. We Our discussions above show that by varying the particle

then have g,/g; =1, G; =9.604 X 107¥ ergcm?,  numbers of the alkalis, one can go continuously from

G, = 17.871 X 1073 ergcmi [6]. The two cases (a) regimes of interpenetrating superfluids to those with

and (b) we considered arg, = 12.52 X 1073® ergcn?  separated phases. The possibility of scanning through

and G, = 6.636 X 10738 ergcn?, respectively. The this continuum offers great opportunities to study coupled

trap is taken to be isotropicA(= 1). In going through macroscopic quantum phenomena of distinct Bose fluids,

steps (II) and (lll), one also needs the trap frequencieand widen our horizon on superfluid phenomenon.

w; = 2mf;. Takingf; = 180 Hz, and using the relation  T.L.H. would like to thank Greg Lafyatis and Nick

w1/ wy = \Jg1M>/g2 M, we havef, = 350.1 Hz. Bigelow for discussions. This work is supported in part
The evolution of the density profiles of cases (a) andoy NSF Grant No. DMR-9406936.

(b) as a function ofv;, N, are shown in Figs. 2 and 3.

The ground states of these cases are shown in Figs. 2.1(a)

to 2.1(c), and Figs. 3.1(a) to 3.1(c), respectively. Fig- [1] M.H. Anderson, J.R. Ensher, M.R. Mathews, C.E.
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directly. For case (b), Figs. 3.1(a) and 3.1(c) show that Druten, D.S. Durfee, D.M. Kurn, and W. Ketterle, Phys.
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is also useful to look at the structure of the mixtures in 14 S€¢ T.L. Ho and V.B. Shenoy, Phys. Rev. Lett,

. . . 2595 (1996), for a derivation of this form of potentials
terms of the interfaces separating different phases. The in current magnetic traps.

interfaces of the ground states in Figs. 2.1(a) to 2.1(c) and[5] M. Edwards and K. Burnett, Phys. Rev. A1 1382

those in Figs. 3.1(a) to 3.1(c) are shown in Figs. 2.2(a) (1995); G. Baym and C.J. Pethick, Phys. Rev. L@8,

to 2.2(c) and Figs. 3.2(a) to 3.2(c), respectively. Whena ¢ (1996).
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