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Fault-Tolerant Error Correction with Efficient Quantum Codes
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We exhibit a simple, systematic procedure for detecting and correcting errors using any of the
recently reported quantum error-correcting codes. The procedure is shown explicitly for a code in
which one qubit is mapped into five. The quantum networks obtained are fault tolerant, that is
they can function successfully even if errors occur during the error correction. Our construction
is derived using a recently introduced group-theoretic framework for unifying all known quantum
codes. [S0031-9007(96)01353-1]
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The past year has witnessed an astonishing rate
progress in the development of error-correction schem
for quantum memory and quantum computation. T
initial discovery [1] that a qubit, when suitably encode
in a block of qubits, can withstand a substantial deg
of interaction with the environment without degradatio
of its quantum state has been followed by myriad con
butions which have identified many new coding schem
[2–13], considered their application in proposed e
perimental implementations of quantum computati
[14–16], and established the relationship of quant
error-correcting codes to the preservation of quant
entanglement in a noisy environment [17]. The mo
recent work has unified all the known quantum cod
within a group-theoretic framework [18].

Throughout the developments of the past year, th
has been a hope that these quantum error-correcting c
would permit quantum computation to be done fault to
erantly. Such an outcome was not guaranteed; in c
sical computation, the existence of error-correction co
does not by itself ensure that logic can be performed us
noisy gates. However, one of us has recently establis
a complete protocol for performing fault-tolerant quantu
computation [19]. The protocol guarantees that, if the lo
of fidelity of the quantum state between the operation
one quantum gate and the next, due to both decohere
and inaccuracy in the quantum-gate operation, isp, then
the number of steps of quantum computation which c
be completed successfully isOssspa expsbypcdddd (for some
positive constantsa, b, and c), a scaling law which ap-
pears very favorable for the ultimate physical impleme
tation of large-scale quantum computation.

This fault-tolerant protocol lays down specific rule
for how to use the previously discovered quantum err
correction codes. The class of codes first discovered
Calderbank and Shor [2] and Steane [3] conform to th
rules, and can be used fault tolerantly; however, it h
not been clear that the more efficient quantum cod
which have been discovered more recently (see, e
[18]) could be utilized in a fault-tolerant computation. I
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this note we establish that errors in all known quantum
error-correcting codes can be corrected in the necessa
fault-tolerant way. We first show explicitly how this
is done in one of the simplest efficient quantum code
one which encodes a single qubit into five [4,17]. This
result gives some interesting insights into the relationsh
between the different presentations of this code whic
have recently appeared in the literature, and it shows th
it is actually necessary to use these different presentatio
to produce the fault-tolerant implementation of the error
correction procedure. We then show, using the recent
developed group-theoretic framework for the quantum
codes, that the protocol developed for the five-bit cod
can be generalized to permit all known codes to be use
for error correction in a fault-tolerant way.

We begin with a short review of the five-qubit error-
correcting code as presented in [17]. Using this code, a
arbitrary qubitjjl ­ aj0l 1 bj1l is represented by the
five-qubit statejjl ­ ajc0l 1 bjc1l, where one choice
of the “code words” is the pair of basis states

jc0l ­ j00000l

1 j11000l 1 j01100l 1 j00110l 1 j00011l 1 j10001l

2 j10100l 2 j01010l 2 j00101l 2 j10010l 2 j01001l

2 j11110l 2 j01111l 2 j10111l 2 j11011l 2 j11101l

(1)

and

jc1l ­ j11111l

1 j00111l 1 j10011l 1 j11001l 1 j11100l 1 j01110l

2 j01011l 2 j10101l 2 j11010l 2 j01101l 2 j10110l

2 j00001l 2 j10000l 2 j01000l 2 j00100l 2 j00010l.

(2)

When encoded in this way, the qubit can survive a
interaction with the environment suffered by any one o
the five qubits. For purposes of error correction, it is
sufficient to take the error caused by the environment t
© 1996 The American Physical Society
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be of three different types [5,17]: biti may suffer a bit-flip
error, represented by the operatorXi acting on coded state
jjl; it may suffer a conditional phase-shift error (Zi), or it
may suffer both simultaneously (Yi). (We use the notation
of Refs. [11,18].) The right-hand column of Table
lists the 16 possible error processesP (including the no-
error caseP ­ I). During error correction, the erroneou
state Pjjl is subjected to some quantum-computatio
operations (one- and two-bit quantum gates [20]) so th
measurements on some of the qubits will reveal t
identity of the error processP, without disturbing the
superposition of code words. When the error process
determined, the effect ofP can be undone, returning the
qubit to its undisturbed statejjl.

It has now been shown by a number of autho
[4,14,17] that there exist various quantum circuits whic
perform the necessary error correction on the five-b
coded state. However, none of them perform this err
correction fault tolerantly (unlike the network of Fig. 1
which can operate fault tolerantly). We call a quantu
error-correcting network fault tolerant if it can recove
from errorsduring the operation of the network. Previou
constructions are not fault tolerant because they use tw
bit quantum gates involving pairs of qubits within th
coded state. If an error occurs on one of these qub
before or during the operation of this two-bit gate, th
error will, in general, propagate to both of the qubit
and to yet others if additional two-bit operations ar
performed. In the five-bit code, two errors are alread
more than can be recovered from, so such two-bit ga
must be avoided. The network of Fig. 1 avoids them b
using only two-bit gates which connect the coded bits
ancilla bits a, so that, with small modifications, it can
be made perfectly fault tolerant. These modifications a
described briefly in [19] and given in detail in [21].

TABLE I. The four measurement outcomes in the faul
tolerant error correction, and the error processP revealed
by each.

M3 M4 M0 M1 P

0 0 0 0 I
0 0 0 1 Z4

0 0 1 0 X1

0 0 1 1 Z3

0 1 0 0 X3

0 1 0 1 X0

0 1 1 0 Z2

0 1 1 1 Y3

1 0 0 0 Z0

1 0 0 1 X2

1 0 1 0 X4

1 0 1 1 Y4

1 1 0 0 Z1

1 1 0 1 Y0

1 1 1 0 Y1

1 1 1 1 Y2
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To explain how the network of Fig. 1 works, we no
that the code of Eqs. (1) and (2) can be presented
an infinite number of ways, all related by a chan
of basis of any one of the five qubits. Even if w
confine ourselves to bases in which the superpositi
all involve equal amplitudes as in Eqs. (1) and (2
the number of alternative presentations is very lar
One important class of presentations is symmetric un
cyclic permutation of the five qubits, as in the examp
given above. We will define a particular symmetr
presentation,S, as the one in whichj0l is coded as
jc0l 1 jc1l, andj1l is coded asjc0l 2 jc1l.

Another class of presentation has been given in
work of Laflammeet al. [4]. Their presentation is ob-
tained by starting with presentationS and applying the

one-bit rotationR ­ 1y
p

2s 1 1
1 21 d to qubits 0 and 1 (we

number the qubits 0–4 as in Fig. 1). In this presentati
the code words are

jc0
0l ­ j00010l 1 j00101l 2 j01011l 1 j01100l

1 j10001l 2 j10110l 2 j11000l 2 j11111l, (3)

and

jc0
1l ­ j00000l 2 j00111l 1 j01001l 1 j01110l

1 j10011l 1 j10100l 1 j11010l 2 j11101l. (4)

We will call this presentationL3; except for a trivial
relabeling of the qubits, this is exactly the one given
[4]. The reason for the subscript is that, since theL3

presentation isnot symmetric under cyclic permutation
there are five distinct onesL024. The particular label 3
is used for this example because of an important prop
which this presentation possesses: all the basis state
both the code words in Eqs. (3) and (4) have even pa
for the group of four qubits 0, 1, 2, and 4. Thus,
convenient label for this presentation is the qubit whi
is left out of this parity. Since an error can change th
parity, we can learn one bit of information about the err
process by collecting up this parity into the ancilla qubita
(done by the first four quantumXOR gates in Fig. 1), and
performing measurementM3 on a.

FIG. 1. Quantum network to correct for one-bit errors
the five-bit code in theS presentation. Four different cod
presentationsL3,4,0,1 are used in the different stages of err
detection. By a simple modification of the ancilla spacea, and
by appropriate repetitions of the syndrome computation, t
error-correction network can be made fault tolerant.
3261
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The remainder of the quantum circuit in Fig. 1 i
self-explanatory. By passing in succession into thr
additional bases, those corresponding to the code pres
tations L4, L0, and L1, three additional parity bits may
be obtained in measurementsM4, M0, andM1. (In stan-
dard coding theory terminology, the outcome of these fo
measurements is called theerror syndrome.) As Table I
indicates, these measurements uniquely distinguish the
ror processP. This error can then be undone by returnin
the code to the originalS basis and selecting the appropri
ate one-bit operationU.

As presented, this error-correction network is not com
pletely fault tolerant, because an error occurring on o
of the a bits can be transmitted back to one of the cod
qubits through the action of theXOR gates. For instance,
if a phase error occurs on the ancilla qubita between the
second and thirdXOR gates in Fig. 1, the back action o
the XOR gates results in two phase errors in the state
the code qubits, rendering them uncorrectable. Howev
as one of us has recently shown [19], the network may
made completely fault tolerant by replacing the single-b
ancilla a by a set of four qubits, each of which is ini-
tialized to a “cat” statej0000l 1 j1111l. If the targets
of each of theXOR gates are four different qubits in the
cat state, then the parity of the measured state of the f
ancilla bits gives the same information as the measu
ments indicated in Fig. 1. However, the back action th
makes the errors on the ancillaa dangerous is avoided.
The ancilla errors may still result in a mistake in the me
sured syndrome; we prevent this from adding errors
the coded state by repetition of the entire network a
syndrome measurement, before the one-bit operationU is
performed [19]. Once the correct syndrome has been c
firmed, the correctU may be applied [21].

The fact that the four measurementsM3,4,0,1 completely
distinguish the error process is no accident; it is gua
anteed by the group-theoretic structure of these cod
[11,18]. In fact, the procedure devised above can be g
eralized to give a fault-tolerant error-correction procedu
that covers every quantum code which is presently know
all of which are derivable as eigenspaces of Abelian su
groups of a groupE [22].

The groupE is obtained by taking all products of the
Xi , Yi, and Zi operators introduced above. Given a
Abelian subgroupG of E containing2g elements, the ma-
trices representingG can be simultaneously diagonalize
(because they commute with each other). This yields2g

eigenspaces each of dimension2n2g. Choosing any of
these eigenspaces gives a quantum code mappingn 2 g
qubits inton qubits, and the error correction properties o
this code can be derived from the combinatorial properti
of the subgroupG [11,18]. The subgroupG can be gen-
erated by an independent set ofg of its elements, which
we call generators; again, these generators are product
theXi , Yi, andZi operators. For instance, one of the gen
erators for the five-bit code in theS presentation is, in the
3262
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notation of [18],Xs11000dZs00101d; a 1 in theith place
in the X list means thatXi is included in the operation, a
1 in theZ list means thatZi is included, and a 1 in both
lists means thatYi is included.

Each such generator ofG gives a prescription for one
stage of fault-tolerant error correction, as follows: Firs
a change of basis involving just one-bit operations
performed, in order to place the generator in the form
Xs000, . . . , 0dZsz1z2z3, . . . , znd wherezi ­ 0 or 1 (i.e., so
that the generator contains onlyZi factors). The one-bit
rotation required for theith qubit is easily determined: if
Xi ­ 0, do nothing; if Xi ­ 1 and Zi ­ 0, apply R to
the ith qubit; and ifXi ­ Zi ­ 1, apply R0, whereR0 ­

1y
p

2 s 1 i
i 1 d. After this change of basis, the nonzero

elements of the newZ bit string will be just those for
which X or Z were nonzero in the original basis. The nex
step of the error correction is to collect up and measu
the parity of the bits with nonzero entries in theZ string,
using the ancilla technique discussed above. Finally, un
the basis transformation. Repeat this procedure for ea
generator ofG.

It is guaranteed that this set of measurements will com
pletely determine the error processP. The measurement
on a quantum state corresponding to one of the gene
tor matrices ofG gives the eigenvalue of the quantum
state with respect to that matrix, reducing the number
eigenspaces which the quantum state might lie in by
factor of 2. Thus, if the measurements are made for e
ery matrix in a generator set for the subgroupG, this
guarantees that the complete set of eigenvalues for t
state with respect to the subgroup is known. This com
plete set of eigenvalues places the quantum state uniqu
in one of the eigenspaces. The error processesXi , Yi ,
andZi permute these eigenspaces [18], so knowing whic
eigenspace a state belongs to is enough to uniquely
termine the unitary transformationU of Fig. 1 which will
correct the error. (U is also one of the unitary transfor-
mationsXi, Yi, or Zi .) The requirement that all the mea-
surements be simultaneously observable can be seen to
the physical justification for the requirement that all th
generator matrices commute.

The number of gates this construction gives for erro
correction of a quantum code can be estimated. Suppo
it is applied to a quantum code mappingk qubits into
n qubits, correctingt errors. (Many such codes have
now been tabulated [12,18].) The syndrome will contai
n 2 k bits, and computing each bit of this syndrome
requires at mostn XOR gates. Similarly, between0 and
n rotation gates will also be required before and afte
the computation of each of the bits of the syndrome
Thus, the number of gates required by this techniqu
for an n-qubit code is at most2nsn 2 k 1 1d, and the
number of ancilla bits needed is no greater thannsn 2 kd.
The suitable use of this error-correction network will b
fault tolerant: up tot errors can occur during the error
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correction process itself without irretrievably damagi
the state of thek coded qubits.

The class of quantum error-correcting codes given
[2,3] have generators which are either products only
Z’s or only of X ’s. This technique applied to these cod
thus reduces to first finding the parity of sets of qub
corresponding to the generators composed ofZ’s, next
applying the basis transformationR to each qubit, then
finding the parities corresponding to generators compo
of X ’s, and finally undoing the basis transformationR
on each qubit. This is exactly the prescription giv
by Steane [3]. For this class of codes, the correct
procedure for bit-flip (X) errors can be decoupled from
the treatment of phase (Z) errors. The bit-flip (X) errors
affect the eigenvalues of matrices which are a produc
Z’s, and vice versa. Each type of error can be though
classically (in the appropriate basis) and corrected us
classical techniques, as is emphasized in Steane [3].

To conclude, we have shown that the group-theore
structure of all the reported quantum error-correct
codes provides rules for designing very simple quant
networks to detect errors and restore the quantum sys
to its undisturbed state. These networks are superio
previously reported ones in that they can be implemen
in a fault-tolerant way. We note that our result do
not provide a complete solution for how to use t
most efficient quantum codes in fault-tolerant quant
computation, since this would require a fault-tolera
implementation of multibit gates on the coded qubits [1
Such fault-tolerant gate implementations are known
the nonoptimal codes of [2,3], but it is not yet clear th
they exist for all the codes derived from the groupE
(however, see [13]). Even without this, though, it is cle
that the procedures developed here may ultimately h
a variety of applications for quantum memory, quantu
communications, and quantum computation.

We would like to thank Rob Calderbank for helpf
discussions.
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