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We exhibit a simple, systematic procedure for detecting and correcting errors using any of the
recently reported quantum error-correcting codes. The procedure is shown explicitly for a code in
which one qubit is mapped into five. The quantum networks obtained are fault tolerant, that is,
they can function successfully even if errors occur during the error correction. Our construction
is derived using a recently introduced group-theoretic framework for unifying all known quantum
codes. [S0031-9007(96)01353-1]

PACS numbers: 89.80.+h, 03.65.Bz, 89.70.+c

The past year has withessed an astonishing rate dfiis note we establish that errors in all known quantum
progress in the development of error-correction schemesrror-correcting codes can be corrected in the necessary
for quantum memory and quantum computation. Thdault-tolerant way. We first show explicitly how this
initial discovery [1] that a qubit, when suitably encodedis done in one of the simplest efficient quantum codes,
in a block of qubits, can withstand a substantial degre@ne which encodes a single qubit into five [4,17]. This
of interaction with the environment without degradationresult gives some interesting insights into the relationship
of its quantum state has been followed by myriad contri-between the different presentations of this code which
butions which have identified many new coding schemesave recently appeared in the literature, and it shows that
[2—13], considered their application in proposed ex-itis actually necessary to use these different presentations
perimental implementations of quantum computationto produce the fault-tolerant implementation of the error-
[14-16], and established the relationship of quantuntorrection procedure. We then show, using the recently
error-correcting codes to the preservation of quantuntdeveloped group-theoretic framework for the quantum
entanglement in a noisy environment [17]. The mostcodes, that the protocol developed for the five-bit code
recent work has unified all the known quantum codesan be generalized to permit all known codes to be used
within a group-theoretic framework [18]. for error correction in a fault-tolerant way.

Throughout the developments of the past year, there We begin with a short review of the five-qubit error-
has been a hope that these quantum error-correcting codesrrecting code as presented in [17]. Using this code, an
would permit quantum computation to be done fault tol-arbitrary qubit|¢) = «|0) + B|1) is represented by the
erantly. Such an outcome was not guaranteed; in cladive-qubit state|£) = alco) + Blci), where one choice
sical computation, the existence of error-correction codesf the “code words” is the pair of basis states
does not by itself ensure that logic can be performed using,. .y — [00000)
noisy gates. However, one of us has recently established

a complete protocol for performing fault-tolerant quantum + [11000) + [01100) + [00110) + [00011) + [10001)
computation [19]. The protocol guarantees that, if the loss —[10100) — [01010) — |00101) — [10010) — |01001)
of fidelity of the quantum state between the operation of

one quantum gate and the next, due to both decoherence ~ — [11110) = |01111) = |10111) — |11011) — |11101)
and inaccuracy in the quantum-gate operatiorp,ishen 1)

the number of steps of quantum computation which can
o a c and

be completed successfully @(p* explb/p©)) (for some

positive constants, b, andc), a scaling law which ap- lc) = [11111)

pears very favorable for the ultimate physical implemen- +100111) + [10011) + [11001) + |11100) + |01110)
tation of large-scale quantum computation.

This fault-tolerant protocol lays down specific rules —[01011) — [10101) — [11010) — |01101) — [10110)
for how to use the previously discovered quantum error- — 100001 — |10000) — |01000) — [00100) — [00010).
correction codes. The class of codes first discovered by
Calderbank and Shor [2] and Steane [3] conform to these )

rules, and can be used fault tolerantly; however, it ha’®When encoded in this way, the qubit can survive an
not been clear that the more efficient quantum codesteraction with the environment suffered by any one of
which have been discovered more recently (see, e.gthe five qubits. For purposes of error correction, it is
[18]) could be utilized in a fault-tolerant computation. In sufficient to take the error caused by the environment to
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be of three different types [5,17]: hitmay suffer a bit-flip To explain how the network of Fig. 1 works, we note
error, represented by the operalracting on coded state that the code of Egs. (1) and (2) can be presented in
|£); it may suffer a conditional phase-shift errdt;), orit  an infinite number of ways, all related by a change
may suffer both simultaneouslyy). (We use the notation of basis of any one of the five qubits. Even if we
of Refs. [11,18].) The right-hand column of Table | confine ourselves to bases in which the superpositions
lists the 16 possible error processegincluding the no- all involve equal amplitudes as in Egs. (1) and (2),
error case? = I). During error correction, the erroneous the number of alternative presentations is very large.
state P|£) is subjected to some quantum-computationOne important class of presentations is symmetric under
operations (one- and two-bit quantum gates [20]) so thatyclic permutation of the five qubits, as in the example
measurements on some of the qubits will reveal thegiven above. We will define a particular symmetric
identity of the error proces®, without disturbing the presentation,S, as the one in whicH0) is coded as
superposition of code words. When the error process ifo) + |c1), and|1) is coded agco) — |c1).

determined, the effect aP can be undone, returning the  Another class of presentation has been given in the
qubit to its undisturbed sta{&). work of Laflammeet al.[4]. Their presentation is ob-

It has now been shown by a number of authorstained by starting with presentatia$ and applying the
[4,14,17] that there exist various quantum circuits Whichone-bit rotationR = 1/\/5(1 1 ) to qubits 0 and 1 (we
perform the necessary error correction on the five-bit , 1 -1 i i
coded state. However, none of them perform this erropumber the qubits 0—4 as in Fig. 1). In this presentation,
correction fault tolerantly (unlike the network of Fig. 1 the code words are
which can operate fault tolerantly). We call a quantum|¢/) = [00010) + |[00101) — [01011) + |01100)
error-correcting network fault tolerant if it can recover
from errorsduring the operation of the network. Previous +[10001) — [10110) — [11000) — [11111), (3)
constructions are not fault tolerant because they use twasnd
bit quantum gates involving pairs of qubits within the
coded state. If an error occurs on one of these qubitgg) = 100000) — [00111) + [01001) + [01110)
before or during the operation of this two-bit gate, the + 110011) + [10100) + [11010) — [11101). (4)
error will, in general, propagate to both of the qubits, . . . ] -
and to yet others if additional two-bit operations are'Ve W'I.I call this presentationl;; except for a trl_V|aI .
performed. In the five-bit code, two errors are alread)/elabe“ng of the qubits, this is ‘?Xa9t'y the one given in
more than can be recovered from, so such two-bit gategd']' The reason for the subscript is that, since the

must be avoided. The network of Fig. 1 avoids them bypresentatlon Inot symmetric under CyC|IC permutation,

using only two-bit gates which connect the coded bits tothere are five distinct onek,—. The particular label 3

ancilla bits ¢, so that, with small modifications, it can '° used for this example because of an important property

be made perfectly fault tolerant. These modifications ar hiﬁhhthis réresentglti(_)n é)oss?s?)sesaaa(tll)trlle basis states of
- - - : ; o oth the code words in Egs. an ave even parity
described briefly in [19] and given in detail in [21]. for the group of four qubits 0, 1, 2, and 4. Thus, a

_ convenient label for this presentation is the qubit which
TABLE I. The four .measurement outcomes in the fault- is left out of this parity_ Since an error can Change this
tolerant error correction, and the error procelsrevealed parity, we can learn one bit of information about the error

by each. process by collecting up this parity into the ancilla qubit
M; M, My M, P (done by the first four quanturor gates in Fig. 1), and
0 0 0 0 I} performing measurememM ona.

0 0 0 1 Zy

0 0 1 0 X, s L L L L S

0 0 1 1 A 1® — R : 1 g

0 1 0 0 X3 ® ® U+
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0 1 1 0 Z, ; ® ®-u-
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1 0 0 1 X REISZANZA AN Za N ZA ZA S Ze s Z S ZASZASZA s Z i N P ZASme s P (M}

1 0 1 0 X, M M Mo M

1 0 1 1 Y, FIG. 1. Quantum network to correct for one-bit errors in
1 1 0 0 Z the five-bit code in theS presentation. Four different code
1 1 0 1 Yo presentationd.; 4 are used in the different stages of error
1 1 1 0 Y, detection. By a simple modification of the ancilla spacend

1 1 1 1 Y by appropriate repetitions of the syndrome computation, this

error-correction network can be made fault tolerant.
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The remainder of the quantum circuit in Fig. 1 is notation of [18],X(11000)Z(00101); a 1 in theith place
self-explanatory. By passing in succession into threén the X list means thak; is included in the operation, a
additional bases, those corresponding to the code preseh-in the Z list means tha¥; is included, and a 1 in both
tations L4, Ly, and Ly, three additional parity bits may lists means that; is included.
be obtained in measuremenit, My, andM,;. (In stan- Each such generator @f gives a prescription for one
dard coding theory terminology, the outcome of these foustage of fault-tolerant error correction, as follows: First,
measurements is called tkeror syndrome. As Table| a change of basis involving just one-bit operations is
indicates, these measurements uniquely distinguish the gperformed, in order to place the generator in the form
ror processP. This error can then be undone by returningX (000, . ..,0)Z(z,z223, . . ., z,) Wherez; = 0 or 1 (i.e., so
the code to the original basis and selecting the appropri- that the generator contains ory factors). The one-bit
ate one-bit operatioly. rotation required for théth qubit is easily determined: if

As presented, this error-correction network is not comX; = 0, do nothing; ifX; = 1 and Z; = 0, apply R to
pletely fault tolerant, because an error occurring on onghe i’ qubit; and ifX; = Z; = 1, applyR’, whereR’ =
of the a bits can be transmitted back to one of the code 1 i . .
qubits through the action of theoR gates. For instance, l/ﬁ(z’ 1)' After this change of basis, the nonzero
if a phase error occurs on the ancilla qubibetween the €lements of the nevZ bit string will be just those for
second and thirckor gates in Fig. 1, the back action of WhichX orZ were nonzero in the original basis. The next
the XOR gates results in two phase errors in the state oftep of the error correction is to collect up and measure
the code qubits, rendering them uncorrectable. Howevefhe parity of the bits with nonzero entries in tdestring,
as one of us has recen“y shown [19], the network may pdsIing the ancilla teChnlque discussed above. F|na”y, undo
made completely fault tolerant by replacing the single-bitthe basis transformation. Repeat this procedure for each
ancilla a by a set of four qubits, each of which is ini- generator ofG.
tialized to a “cat” statd0000) + |1111). If the targets It is guaranteed that this set of measurements will com-
of each of thexor gates are four different qubits in the pletely determine the error proceBs The measurement
cat state, then the parity of the measured state of the fo@ @ quantum state corresponding to one of the genera-
ancilla bits gives the same information as the measurdor matrices ofG gives the eigenvalue of the quantum
ments indicated in Fig. 1. However, the back action thastate with respect to that matrix, reducing the number of
makes the errors on the ancilladangerous is avoided. €igenspaces which the quantum state might lie in by a
The ancilla errors may still result in a mistake in the meafactor of 2. Thus, if the measurements are made for ev-
sured syndrome; we prevent this from adding errors t®fy matrix in a generator set for the subgroGp this
the coded state by repetition of the entire network and@uarantees that the complete set of eigenvalues for this
syndrome measurement, before the one-bit operdfi@m State with respect to the subgroup is known. This com-
performed [19]. Once the correct syndrome has been corplete set of eigenvalues places the quantum state uniquely
firmed, the correct/ may be applied [21]. in one of the eigenspaces. The error processest;,

The fact that the four measuremeMs 4, completely —andZ; permute these eigenspaces [18], so knowing which
distinguish the error process is no accident; it is guareigenspace a state belongs to is enough to uniquely de-
anteed by the group-theoretic structure of these codd€rmine the unitary transformatidii of Fig. 1 which will
[11,18]. In fact, the procedure devised above can be ger¢orrect the error. [ is also one of the unitary transfor-
eralized to give a fault-tolerant error-correction procedurgnationsX;, ¥;, or Z;.) The requirement that all the mea-
that covers every quantum code which is presently knowrgurements be simultaneously observable can be seen to be
all of which are derivable as eigenspaces of Abelian subthe physical justification for the requirement that all the
groups of a grougk [22]. generator matrices commute.

The groupE is obtained by taking all products of the = The number of gates this construction gives for error
X;, Y;, and Z; operators introduced above. Given ancorrection of a quantum code can be estimated. Suppose
Abelian subgrougs of E containing2¢ elements, the ma- it is applied to a quantum code mappikgqubits into
trices representing can be simultaneously diagonalized » qubits, correcting: errors. (Many such codes have
(because they commute with each other). This yi@itls now been tabulated [12,18].) The syndrome will contain
eigenspaces each of dimensiati ¢. Choosing any of » — k bits, and computing each bit of this syndrome
these eigenspaces gives a quantum code mappingg  requires at most XOR gates. Similarly, betweef and
qubits inton qubits, and the error correction properties ofn rotation gates will also be required before and after
this code can be derived from the combinatorial propertiethe computation of each of the bits of the syndrome.
of the subgroup’ [11,18]. The subgrou can be gen- Thus, the number of gates required by this technique
erated by an independent set@bf its elements, which for an n-qubit code is at mos2n(n — k + 1), and the
we call generators; again, these generators are products mfimber of ancilla bits needed is no greater than — k).
theX;, Y;, andZ; operators. For instance, one of the gen-The suitable use of this error-correction network will be
erators for the five-bit code in the presentation is, in the fault tolerant: up tor errors can occur during the error
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