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We investigate the breakdown of BCS superconductivity inultrasmall metallic grains as a function
of particle size (characterized by the mean spacingd between discrete electronic eigenstates), and t
parity (P ­ even/odd) of the number of electrons on the island. Assuming equally spaced levels
solve the parity-dependent BCS gap equation for the pairing parameterDPsd, T d. The T ­ 0 critical
level spacingdc,P , the critical temperatureTc,Psdd (at whichDP ­ 0), and the condensation energyEP

are parity dependent, and all are so much smaller in the odd than the even case that this should m
itself in current experiments. [S0031-9007(96)01329-4]

PACS numbers: 74.20.Fg, 74.80.Bj, 74.80.Fp
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The study of the properties of ultrasmall metallic
particles has witnessed a dramatic development during
last year: Using an ingenious new fabrication techniqu
Black, Ralph, and Tinkham (BRT) [1] have constructed
single-electron transistor (SET) whose island, a single n
scale Al grain, is more than 4 orders of magnitude small
in volume (estimated radii betweenr , 2.5 and 13 nm)
than that of conventional SETs. Thus a new energ
scale, the average level spacingd ­ 1yNs´Fd between
discrete electronic levels, enters the problem: Both t
free-electron estimate ofd . 2p2h̄2ymkFV and direct
observation (discrete steps in theI-V curve) give values
of d ranging from 0.02 to 0.3 meV, the latter being
much larger than the smallest accessible temperatu
s.30 mKd and on the order of the bulk superconductin
gap (Db ­ 0.18 meV for Al).

The eigenenergies of the larger grains (r . 5 nm) stud-
ied by BRT revealed the presence of a gap2V ¿ d
between the lowest two states of a grain with an even nu
ber of electrons (parityP ­ e), but its absence for an odd
grain (P ­ o). BRT convincingly interpreted this as evi-
dence for superconductivity: In an even grain, all excite
states involve at least two BCS quasiparticles and hen
lie at least2V above the BCS ground state; in contras
in an odd grainall states have at least one quasiparticl
and hence no significant gap between ground and exci
states. (Remarkably, the excitation spectra of many sh
model nuclei whose outer-shell valence nucleons expe
ence an attractive short-range interaction show exactly t
same feature [2], namely, the presence or absence of a
nificant gap2V ¿ d for all even or odd isotopes of a given
nucleus, respectively, which was explained [2,3] usin
BCS techniques.) However, smaller particles (r , 5 nm)
showed no such evidence for superconductivity.

These experiments invite reconsideration of an old b
fundamental question:What is the lower size limit for the
existence of superconductivity in small grains?Anderson
addressed this question already in 1959 [4] and argu
that “superconductivity would no longer be possible” i
the level spacingd becomes larger than the bulk gapDb,
0031-9007y96y77(15)y3189(4)$10.00
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for reasons explained below. This answer—althoug
in general, correct—is not yet quite complete, since
does not addressparity effects. Even in “large” super-
conducting islands (withd ø Db) experiments [5] have
demonstrated the dramatic impact of parity onI-V charac-
teristics; moreover, theory [6,7] predicts an even-odd d
ference for thesuperconducting pairing parameter itse
of De 2 Do ­ dy2 at T ­ 0. Though the latter difference
is immeasurably small in large islands, it should certain
become significant in ultrasmall grains. Moreover, sin
the crossover temperature at which parity effects beco
observable [5], namely,Tcr ­ Dby ln Neff (where in the
d ø Db limit Neff ­

p
8pTDbyd), becomes of orderDb

when d . Db , parity effects should survive to tempera
tures as high asTc itself. HenceTc,Psdd as function ofd
should be parity dependent too.

In this Letter we address these issues by study
parity effects in the pairing parameterDPsd, T d for
general d. In particular, we calculateDPsd, 0d and
Tc,Psdd by solving the BCS gap equation (derived usin
parity-projected mean-field theory (MFT) [6,7]) atT ­
0 and DP ­ 0, respectively, for the case of equall
spaced single-particle levels. We findTc,osddyTc,esdd ,

1 and a remarkably small ratio of critical level spacing
dc,oydc,e ­ 1y4 at T ­ 0. Our results are completely
compatible with BRT’s observations. Moreover, th
predicted parity effects should manifest themselves
their latest experiments which have variable gate volta
allowing them to change the number parity of a give
grain at will.

The model.—In BRT’s experiments, the charging en
ergy EC ­ e2y2Ctotal of an ultrasmall grain is by far the
largest energy scale in the problem (withEC . 4 meV ¿
Db), so that fluctuations in particle number are strong
suppressed. Therefore in this Letter we consider a co
pletely isolated grain, which should be described using
canonical ensemble with a prescribed number of electr
n ­ 2m 1 p, wherep ­ s0, 1d for P ­ se, od (the labels
p, P, and alson will be used interchangeably as parit
labels below). We adopt a model Hamiltonian having t
© 1996 The American Physical Society 3189
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standard reduced BCS form

Ĥ ­
X
js

´0
jc

y
jscjs 2 ld

X
ij

0
c

y
i1c

y
i2cj2cj1 . (1)

Here c
y
js creates an electron in the particle-in-a-bo

like, independent-electron statejjsl, where the state
jj1l and jj2l are degenerate, time-reversed partn
whose energiesh´0

j j are considered as a given set
phenomenological parameters. The integerj is a discrete
quantum number. For a givenn ­ 2m 1 p, we take
j ­ 0 to describe the first energy level whose occupat
in the T ­ 0 Fermi seajFl is not 2 butp, so thatj ­
2m, . . . , `. Finally, the dimensionless coupling consta
l21 ­ lns2vcyD̃d is regarded as a phenomenologic
parameter determined by the valueD̃ ; Ds0, 0d of the
effective gap (measured atd ø D̃) and some cut-off
frequencyvc.

Pair-mixing.—At this point it seems appropriate t
briefly address the question of what is meant by
“existence of superconductivity” in ultrasmall grains.
deserves special attention, firstly because the usual M
definition l d

P
jkcj2cj1l for the BCS pairing paramete

D gives zero in a canonical ensemble, and secon
because most of the standard criteria, e.g., a gap follo
by a continuous excitation spectrum, zero resistivity, a
the Meissner effect, are not applicable here.

Now the microscopic reason for all of these (larg
sample) phenomena is, of course, theexistence of a pair-
correlated ground state.The essence of its correlation
is what we shall callpair-mixing across´F , namely,
the partial population of some time-reversed pairs
statessjj1l, jj2ld abové F s j . 0d (with amplitudeyj ;
kcy

j1c
y
j2cj2cj1l1y2 . 0) by partially depopulating som

pairs of states beloẃ F s j , 0d (with amplitude uj ;
kcj2cj1c

y
j1c

y
j2l1y2 . 0). This creates phase space for p

scattering (which is Pauli blocked in the normal grou
state) and hence allows the BCS interaction to lower
ground state energy.

Although BCS showed that a brilliantly simple wa
of calculating theuj and yj is to use grand-canonica
methods, pair-mixing, of course, can and does also o
in a fixed-n system. Indeed, this pair-mixing can read
be characterized by a “generalized” pairing parameter
is equal to the conventionalld

P
jkcj2cj1l in BCS’s

grand-canonical mean-field treatment, but (in contras
the latter expression) is meaningful in a fixed-n system
too, namely,l d

P
j ujyj . An experimental signature o

this pair-mixing is the energy cost needed to add
remove single electrons that perturb these correlat
(i.e., that “break pairs”). Since BRT quite unambiguou
measured such energy costs in their larger grains
seems reasonable to regard these as “superconduc
in the sense of having apair-correlated ground state tha
measurably exhibits pair-mixing.

The notion of pair-mixing also provides a simp
way to understand why superconductivity ceases to e
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in sufficiently small samples. If the level spacing be
comes sufficiently large (d . D̃), pair-mixing costs a pro-
hibitive amount of kinetic energy and hence ceases
occur. The task at hand is to describe this breakdow
(semi)quantitatively, while keeping track of parity effects

Canonical and parity projection.—Since in practice it
is so much easier to calculateuj , yj grand-canonically
than canonically, the latter is seldom attempted. A
alternative [6,7] is to employ an auxiliary parity-projected
grand-canonical partition function,

ZG
P smd ; TrG 1

2 f1 6 s21dN̂ ge2bsĤ2mN̂d, (2)

(TrG denotes a grand-canonical trace), from which th
desired fixed-n partition functionZn can, in principle, be
exactly projected:Zn ­

Rp
2p

du
2p e2iunZG

P siuybd . Since
in practice, though, it is hard to perform the integra
exactly, we approximate it by its saddle-point value,Zn .
e2bmnnZG

P smnd, wheremn is fixed by

n ­ b21≠m ln ZG
P smdjm­mn f­ kN̂lP g . (3)

(Herek lP is taken in the parity-projected grand-canonica
ensemble ofZG

P .) This equation, the bracketed part o
which is the parity-projected version of a standard gran
canonical identity, illustrates the elementary fact tha
the saddle-point approximation produces nothing but th
grand-canonical description we had set out to improv
upon. Nevertheless, the above approach firstly illustrat
that the parity projection of Eq. (2), which is essentia
for extractingeyo differences, can be done exactly eve
when the fixed-n projection cannot; and secondly clarifies
that in a canonical ensemblemn is simply the saddle-point
value of an integration parameter, which, however, has
be determined with special care in ultrasmall grains, fo
which d is large.

Mean-field approximation.—We evaluateZG
P using

“naive mean-field theory” (our method is equivalent to
that used in [7]): Make the replacement

cj2cj1 ! hcj2cj1 2 kcj2cj1lPj 1 kcj2cj1lP (4)

in Ĥ 2 mnN̂ , neglect terms quadratic in the fluctuation
represented byh j and diagonalize, usinggnjs ­ unjcjs 2

synjc
y
j2s. One obtains the usual resultŝH 2 mnN̂ .

Cn 1
P

js Enjsg
y
njsgnjs , where Enjs ­ f´2

nj 1 D
2
Pg1y2,

´nj ; ´
0
j 2 mn, y

2
nj ­

1
2 s1 2 ´njyEnjd, and Cn ­ D

2
Py

ld 1
P

js2´njy
2
j 2 2DPujyjd. Moreover, since the

parity of electron number and quasiparticle number a
always the same, Eq. (2) can be rewritten [6] usin
quasiparticle-parity projection,ZG

P smnd ­
1
2 sZG

1 6 ZG
2d,

ZG
6smnd ­ e2bCn

Y
js

s1 6 e2bEnjs d . (5)

The usual MF self-consistency conditionDP ­ l d
P0

j 3

kcj2cj1lP takes the form

1
l

­ d
X

jjj,vcyd

1
2Enj

√
1 2

X
s

fnjs

!
, (6)
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njsgnjslP ­ 2b21≠Enjs

ln ZG
P smnd. This

description thus involves the usual BCS quasiparticles,
their number parity is restricted to beP; accordinglyfnjs

differs from the usual Fermi functionf0
js [6,7].

Determination ofmn.—Following [8], let us henceforth
consider the case of equal level spacing,´

0
j ­ j d 1 ´

0
0

(which seems reasonable for largen, due to level repul-
sion). Then Eq. (3), which fixesmn [6] and has the form
kN̂lP ­

P
jsfy2

nj 1 su2
nj 2 y

2
njdfnjsg, holds provided that

mn ­ ´
0
0 2

1
2 d dP,e, which confirms the seemingly obvi

ous: In the language ofjFl, mn lies exactly halfway be-
tween the last filled and first empty levels ifP ­ e, and
exactly on the singly occupied level ifP ­ o.

We are now ready to study the gap equation (6).
Gap equation atT ­ 0.—The quasiparticle occupatio

function reduces tofnjs ­
1
2 dj0dP,o at T ­ 0, as intu-

itively expected, because then the even or odd syst
have exactly zero or one quasiparticle, the latter in
lowest quasiparticle state, namely,j ­ 0. This eyo dif-
ference has a strong impact on theT ­ 0 gap equation: In
the odd case, thej ­ 0 level, for whichE21

nj is largest, is
absent, reflecting the fact that the odd quasiparticle in t
j ­ 0 state obstructs pair scattering involving this sta
To compensate this missing term,Do must therefore be-
come significantly smaller thanDe as soon asd is large
enough that a single term becomes significant relative
the complete sum.

To quantify this statement, it is convenient
rewrite Eq. (6) atT ­ 0 as follows: Writing E21

nj ­R
dvyp sE2

nj 1 v2d21, transferring the cut-offvc fromP
j to

R
dv, and performing thej sum (by contour

integration) gives

ln
2vc

D̃
­

Z vc

0

dv

EPv

∑
stanhpEPvydd122p 2

d dP,o

pEPv

∏
,

(7)
whereEPv ­ sv2 1 D

2
Pd1y2. Since, amusingly, forP ­

e Eq. (7) is identical in form (withd ! 2pT) to the well-
known gap equation for theT dependence of the bulk ga
[curve A in Fig. 1(a)], we haveDesd, 0d ­ DPs0, dy2pd.
In contrast, forDosd, 0d one easily finds from Eq. (7) tha
Dosd, 0d ­ D̃ 2 dy2 for dyD̃ ø 1, in agreement with
[6,7].

The full solutions of Eq. (7) forDPsdP , 0d, obtained
numerically and shown as curvesB and C in Fig. 1(a),
reveal thatDosd, 0d vanishes much sooner thanDesd, 0d.
The critical valuesdc,P at which DPsdc,P , 0d ­ 0 can be
found analytically by settingDP ­ T ­ 0 in Eq. (6):

dc,e

D̃
­ 2eg . 3.56 and

dc,o

D̃
­

1
2 eg . 0.890 . (8)

Critical temperature.—Although ultrasmall grains can
not undergo a sharp thermodynamic phase transition (
would requiren ! `), the quantityTc,Psdd, defined sim-
ply as the solution to theDP ! 0 limit of Eq. (6), is
another measure of how rapidly pair-mixing correlatio
break down as function of level spacing. Our nume
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FIG. 1. (a) CurveA gives the bulk gapDs0, Td; curvesB–
E give Dsd, T dPyD̃ as a function ofdyD̃ and TyD̃ for P ­ e
(B,D) and P ­ o (C, E). (b) Curvesa–d give, respectively,
sE MF

e , E var
e , E MF

o , E var
o dyD̃ as functions ofdyD̃. Here D̃ ­

Ds0, 0d.

cal results forTc,Psdd [9], shown as curvesD and E of
Fig. 1(a) forP ­ eyo, have the expected limits atd ­ 0
anddc,p , but behave unexpectedly in between.

Even.—In the even case,Tc,esdd is nonmonotonic,
initially increasing slightly before dropping to zero ver
rapidly asd ! dc,e. The intuitive reason for the initia
increase is that the difference between the actual
usual quasiparticle occupation functions isfnjs 2 f0

js , 0
for an even grain (becoming significant whend . D̃),
reflecting the fact that exciting quasiparticles two at
time is more difficult than one at a time. Therefo
the quasiparticle-induced breakdown of superconductiv
with increasingT will set in at slightly higherT if d . D̃.

Odd.—In the odd case, the critical level spacingdc,osT d
is nonmonotonic as a function of increasingT , first
increasing to a maximum before beginning to decre
toward dc,osTcd ­ 0. The intuitive reason for this is
that for 0 , Do ø T , d the oddj ­ 0 function fn0ssT d
becomes somewhat smaller than itsT ­ 0 value of 1

2 ,
because with increasingT some of the probability for
finding a quasiparticle in statej “leaks” from j ­ 0
to higher states withj fi 0, for which E21

nj , E21
n0 in

Eq. (6). Thus the dramatic blocking-of-pair-scatterin
effect of the odd quasiparticle becomes slightly le
dramatic asT is increased, so thatdc,o increases slightly.

An important general feature of our results is th
level discretenessalways reducesDPsd, 0d to be ,D̃

(thus contradicting Ref. [10], which was convincing
criticized in Ref. [8]). However, BRT’s experiment foun
an effective gap̃D that is larger by a factor of 1.5 to 2 tha
its bulk valueDb. Following the argumentation of [8] for
thin films, we can attribute this to presumed changes in
phonon spectrum in small samples, which can be mode
by using a constant value ofl larger (by a few percent)
than the usual bulk valuelb .

The rather rapid drop ofDPsdd, once it happens,
could be the reason why BRT see a well-develop
3191
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gap D̃ even for d . D̃ but do not see any for thei
smallest grains. More importantly, Fig. 1(a) and Eq.
show that there is a large regime in whichDo ø De,
implying our main result: Pair-mixing correlations
vanish significantly sooner for odd than even grai
as their size is reduced. Since by tuning the gate
voltage BRT can study thesame grain in both its
even and odd states, they should be able to obs
the effects of Do ø De for a grain with appropriate
size in the measured excitation spectra, since these
governed by quasiparticle energies which certainly dep
on DP. Moreover, becauseDo drops linearly in d,
such effects should set in already atd , D̃, where the
quasiparticle excitation gap caused by pairing correlati
can still unambiguously be distinguished from ordina
level discreteness. A detailed analysis of the measu
spectra, which requires a complete understanding o
magnetic field dependence and goes beyond the scop
this paper, will be presented elsewhere [9].

Condensation energy.—How robust are our MFT-
based results? Since corrections to MFT are small [
only for dyD̃ ø 1, it is, for instance, doubtful that the
unexpected nonmonotonic subtleties ofTc,Psdd, though
intuitively plausible, have physical significance, since th
fall in the DP . 0 regime wheredyDP ¿ 1. To show
that, at least in the (experimentally accessible) regime
Tyd . 0, our main result is indeed robust against corre
tions to MFT, we shall now establish approximate low
and exact upper bounds on the exact, parity-depen
condensation energiesEPsdd ; PkGjHjGlP 2 kFjHjFl,
which are also a measure of the amount of pair-mix
correlations present. Because MFT neglects quan
fluctuations, which tend to raise the ground state ene
by weakening pair-mixing correlations, theT ­ 0 MF
expressions E

MF
P synjd ­ Cn 1 dP,oDo 2

P
j,0 2´j (Cn

given above) provide approximatelower bounds on
EP . (In the regimedyD̃ , 1, where only Gaussian
fluctuations matter, these bounds are rigorous [12]; w
dyD̃ . 1 and the E

MF
P approach zero, they become

less reliable as lower bounds because non-Gaus
fluctuations now matter too, but (because of the lat
pair-mixing correlations will be immeasurably wea
in this regime anyway.) On the other hand,upper
bounds onEP can be found variationally using th
trial ground statesjGle ­

Q
jsūnj 1 ȳnjc

y
j1c

y
j2dj0l and

jGlo ­ ḡ
y
0,s jGle, and minimizing the correspond

ing E
var
P , which can be written in the form [9,13

E
var
P ­ E

MF
P sȳnid 1 ldfdP,0ȳ

4
n0 1

P
jsus2jd 2 ȳ

4
njdg.

Figure 1(b), which givesEPyD̃ vs dyD̃, shows (as
expected) thatE MF

P sdc,Pd ­ 0 and E
var
P sd0

c,Pd ­ 0 with
d0

c,P , dc,P . Moreover, it confirms that our main result
robust against corrections to MFT, sincethe lower bound
on Eo lies significantly above the upper boundon Ee

(with dc,o significantly smaller thand0
c,e). The conclusion
3192
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thatdc,o , dc,e, in fact, even follows from the back-of-the
envelope estimateEP ­ 2D̃2ys2dd 1 D̃ dP,o (obtained
by using standard expressions from bulk BCS theory).

Finally, note that “empirical” support for the adequac
of our methods in the regimed . D̃ comes from nuclear
physics, where theT ­ 0 variational grand-canonical BCS
description of pairing interactions in shell model nucl
(with n , 100) has been remarkably successful [3] desp
the smallness ofn anddyD̃ ratios approaching 1.

In conclusion, we have investigated the influence
parity on the existence of superconducting (pair-mixin
correlations in ultrasmall grains. As a function of d
creasing grain size, these correlations break down in
odd grain significantly earlier than in an even grain, whi
should manifest itself in present experiments.

It is a pleasure to thank BRT for showing us the
preliminary results and to acknowledge discussions w
V. Ambegaokar, C. Bruder, B. Janko, H. Kroha, A. Rosc
G. Schön, and J. Siewert. This research was supporte
“SFB 195” of the Deutsche Forschungsgemeinschaft.

Note added.—After this paper had been submitted, w
learned that M. Tinkham had independently reached v
similar conclusions.
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