
VOLUME 77, NUMBER 15 P H Y S I C A L R E V I E W L E T T E R S 7 OCTOBER 1996

any
Analytic Three-Dimensional Solutions of the Magnetohydrostatic Equations
with Twisted Field Lines

R. Kaiser
Universität Bayreuth, Lehrstuhl für Angewandte Mathematik, 95440 Bayreuth, Germany

A. Salat
Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, 85748 Garching bei München, Germ

(Received 12 April 1996)

Two types of exact solutions of the MHD equilibrium equations are presented. The equilibria
exhibit neither continuous nor mirror symmetry. The configurations are infinitely extended along a
straight axis with surfaces of constant pressure closed around the axis. The cross sections are elliptic
for equilibria of the first type. For the second type they are elliptic only close to the axis. Field
and current lines turn around the axis and extend from minus to plus infinity in the axial direction.
In these limits the configurations become singular. The rotational transform and the local shear are
discussed. [S0031-9007(96)01351-8]
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The most promising way to stably confine a plasma s
ficiently long in order to achieve thermonuclear fusion
magnetic confinement in a toroidal configuration. Tw
such configurations have been investigated especially c
fully. In the tokamak a toroidal magnetic field generate
by external coils together with an externally driven toroid
current sustain an, in principle, axially symmetric equ
librium. The discrete set of coils, however, leads to a
unavoidable “rippling” of the magnetic field and thus t
a certain amount of nonsymmetry. A stellarator, in co
trast, is an inherently three-dimensional (3D) configurati
far from axisymmetry, whose magnetic field is generat
completely by external coils. In both configurations th
magnetic field lines twist around the axis with finite pitch
The equilibria are supposed to be well described by t
equations of ideal MHD,

j3B  ===P ,

j  ===3B ,

=== ? B  0 ,

(1)

where B, j, and P denote the magnetic field, curren
density, and pressure, respectively.

Knowledge of analytic nonsymmetric toroidal equilib
ria, if they exist, would bring many benefits; the existen
problem would be settled; analytic equilibria would be
hand to do quick parameter studies; wave propagation,
diagnostic and heating purposes, could be studied o
safe basis; the effect of small chaotic regions on transp
would lose its urgency; and numerical equilibrium cod
could be tested.

Note that Eqs. (1) describe yet another situation
physical interest, viz. steady flow of an inviscid, incom
pressible fluid of unit density. In that caseB, j, and P
denote the velocity fieldv , its vorticity, and (up to a con-
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stant) the Bernoulli function2sp 1 y2y2d, respectively
(see, e.g., [1]).

To find 3D solutions of Eqs. (1) is, however, notoriously
difficult. This is because Eqs. (1) represent a system o
partial differential equations of mixed elliptic-hyperbolic
type, for which there is no general theory on existence an
uniqueness of solutions. Only with additional assumption
can the problem be rendered tractable. For plane, axia
or helical symmetry Eqs. (1) can be reduced to a singl
quasilinear elliptic equation for which an elaborate exis
tence theory as well as many explicit solutions are know
[2–4]. The axisymmetric case, for example, is governe
by the well-known Grad-Shafranov equation [5].

Discrete symmetries seem to facilitate the problem too
In [6] equilibria with a purely toroidal magnetic field,
which is mirror symmetric with respect to a poloidal plane
have been considered. In that particular case the so-call
b iteration [7] was proved to converge for low plasma
pressure. The pertinent pressure surfaces, however, a
not poloidally closed in general.

If symmetries are no longer present in the system
numerical work shows that magnetic surfaces tend t
disrupt and magnetic islands and ergodic regions appe
in Poincaré plots of the field lines (see, e.g., [8]). A well-
defined smooth pressure function may not be expecte
in these cases. This view is corroborated by theoretic
analysis of Eqs. (1) for nonaxisymmetric equilibria with
field line shear [3,9]. It indicates that finite jumps in the
pressure distribution and the formation of current sheets
each rational surface are to be expected generically. Gr
conjectured for that reason that nonsymmetric equilibri
in the sense of classical solutions do not exist at all [9].

It is due to these intricacies that the present-day avai
able exact results on existence and nonexistence of eq
libria refer to quite special configurations.Nonexistence
of configurations with purely poloidal magnetic fields, for
© 1996 The American Physical Society 3133
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example, has been investigated in [10,11]. Other non
istence results refer to the isodynamic [12] or the “qua
helical” stellarator [13].

As to theexistenceof 3D equilibria all results [14–17]
refer to straight-axis configurations (with the exception
the mirror-symmetric configuration mentioned above).
such configurations are poloidally closed and periodic
the axial direction, they are still topologically equivale
to a torus. The solutions obtained in [14–16] are
this type, in the sense that free functions along the a
can be chosen to be periodic. The field lines, howev
are confined there to planes orthogonal to the axis.
solutions in [17], on the other hand, have field lines pur
along the axis. Thus, in neither of these cases do the
lines twist around the axis with a finite slope.

In contrast to these previous results, the equilibria p
sented here are—to our knowledge—the first examp
of analytic 3D equilibria with twisted field lines. The
demonstrate that field line twist need not be detrimenta
3D configurations as was suspected earlier [9].

Two types of solutions of Eqs. (1) were obtained.
both cases the magnetic field has the representation

Bsx, y, zd  ===3f Hsx, y, zd===zg

1 ===3===3f Ksx, y, zd===zg. (2)

For the first type the functionsH andK are given by

Hsx, y, zd 
2h
2

f aszd x2 1 2bszd x y 1 cszd y2 g,

Ksx, y, zd 
2k
2k

f aszd x2 1 2bszd x y 1 cszd y2 g,
(3)

while the pressureP is determined by

Ppsx, y, zd ; 2 2
P 2 P0

h2 1 k2

 faszd 1 cszd g faszd x2

1 2bszd x y 1 cszd y2g. (4)

Here,h andk are two arbitrary constants which determi
the weight of the contributions fromH and K , respec-
tively, to the magnetic field.P0 is the pressure on thez
axis. The functionsaszd, bszd, cszd are as follows:

aszd  a1ekz 1 a2e2kz ,

bszd  b1ekz 1 b2e2kz ,

cszd  c1ekz 1 c2e2kz ,

(5)

with arbitrary constantsk, a1, a2, c1, c2. The coefficients
b1, b2 are related to the other ones by

b2
1  a1c1, b2

2  a2 c2 . (6)

A consequence thereof is the relation

aszdcszd 2 b2szd  s
p

a1c2 2
p

a2c1d2  const $ 0 .

(7)

The functionsa, b, c can be normalized by setting th
constant in the equation above to 1.
3134
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The surfaces of constant pressure are closed surfac
composed of ellipses nested around thez axis. At fixed
P their width, axis ratio, and orientation varies along the
z axis.

In component notation the magnetic field is

Bx  2hfbszdx 1 cszdyg 2
k
k

fa0szdx 1 b0szdyg,

By  2hfaszdx 1 bszdyg 2
k
k

fb0szdx 1 c0szdyg,

Bz 
k
k

faszd 1 cszdg,
(8)

wherea0szd  daszdydz, etc. The contribution fromH
is a purely poloidal field which was derived as a solution
of Eqs. (1) previously in [16]. The axial component of
the field is contributed by theK term only, which is
also already a solution of Eqs. (1). The fact that th
superposition of both solutions is again a solution i
nontrivial since Eqs. (1) are nonlinear.

In the limit z ! 6` the configuration becomes sin-
gular because the current density and the magnetic fie
grow without bounds. This squeezes the cross section
each pressure surface down to a line of finite length. Fo
kz ¿ 1 the inclinationdyydx 

p
a1yc1 of the line is

evident fromPp ø sa1 1 c1d s
p

a1 x 1
p

c1 yd2 exp2kz.
The maximal extension of the line is given byx2 #

Ppc1ysa1 1 c1d, y2 # Ppa1ysa1 1 c1d. For kz ø 21
the situation is analogous, with the index 1 replaced by 2
Thus, the pressure surfaces consist of a middle region
finite thickness which gets progressively thinner toward
both sides, with inclinations determined asymptotically b
the coefficientsa1, a2, c1, c2.

For the second type of solutions the functionsH andK
are given by

Hsx, y, zd 
hh

k faszd coslx 1 cszd coslyg,

Ksx, y, zd 
k

lk faszd coslx 1 cszd coslyg,
(9)

while the pressureP is determined by

Ppsx, y, zd ; 2 2
P 2 P0

sh2 1 k2dh2
 a2szd sin2 lx

1 2s 1 2 coslx cosly d

1 c2szd sin2 ly. (10)

Here l, with l2 # k2, is an arbitrary constant andh is
defined byh  s1 2 l2yk2d1y2. Equations (5)–(7) are
again valid, with the restrictionb1  b2  bszd  0. A
nontrivial solution is then possible fora2  c1  0 only.
With the normalization mentioned there resultsaszd 
a1 ekz  1ycszd.

For jlxj, jlyj ø 1, replacing sinlx, coslx by lx,
1 2 slxd2y2, respectively, etc., the type-II pressure (10
takes on the same form as the type-I pressure (4) in th
casebszd  0. Close to the axis, therefore, the surface
also consist of ellipses, with a major axis in thex or y



VOLUME 77, NUMBER 15 P H Y S I C A L R E V I E W L E T T E R S 7 OCTOBER 1996

a

e

u

n

s

e

f

s
).
n

e

ld
direction. Farther away, withPp increasing from its on-
axis value zero, they are progressively deformed into
more rhomboidal shape.

In the limit kz ¿ 1, the pressure surfaces (10) approx
mately take on the formcszdPpy4  aszd sin2slxy2d 1

cszd sin2slyy2d. This implies again that forkz ! ` the
pressure surfaces shrink down into a line, this time atx 
0 and with an extensiony2 # y2

`, where sin2sly`y2d 
Ppy4. For kz ø 21 the situation is analogous, with the
roles ofx andy interchanged.

The magnetic field of the type-II solution is

Bx  2hhcszd sinly 2 kaszd sinlx ,

By  2hhaszd sinlx 1 kcszd sinly ,

Bz  kl faszd coslx 1 cszd coslygyk .

(11)

Again, the contribution fromH is a purely poloidal field.
It was derived as a solution of Eqs. (1) in [14]. The axi
component of the field is contributed by theK term only
which, as an independent solution, was found in [17
Again, these two solutions can be superposed to giv
new solution of the nonlinear equilibrium problem.

The current density components for the type-II sol
tions are

jx  hk f2haszd sinlx 1 khcszd sinlyg,

jy  hk f1hcszd sinly 2 khaszd sinlxg,

jz  hlh faszd coslx 1 cszd coslyg.

(12)

If the perpendicular and the axial scale lengthsk and l

coincide,h, and therefore the current densityj, vanishes.
An example of a type-II solution is given in Fig. 1

It shows two nested pressure surfaces, withPp  0.7
(inner surface) andPp  2.0 (outer surface). Further
parameters arek 

p
2, l  1, and a1  1. The axial

region presented extends fromz  21.4 to z  11.4.

FIG. 1. Nested pressure surfaces of type-II MHD equilibri
Field lines rotate around the axis.
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The figure might also serve for a qualitative representatio
of a type-I equilibrium (with asymptotic inclinations of 0±

and 90±). In Fig. 2, which is a (enlarged) continuation
of the outer surface of Fig. 1 to the left, and extend
from z  24.4 to z  21.4, the asymptotic behavior for
z ! 2` is rather evident.

In Figs. 1 and 2 several field lines are also shown
as thick lines. h  5, k  1 is used for these orbits.
In polar coordinatesr , u, defined by x  r cosu, y 
r sinu, the field line equations are

du

dz


1
rBz

°
By cosu 2 Bx sinu

¢
(13)

and an analogous equation fordrydz.
The asymptotic behavior of the field lines can also b

discussed analytically. In the limitkz ¿ 1 the field line
twist turns out to vanish. All field lines eventually end up
at a heighty which depends on the starting point but does
not change withz anymore. Together withx  0 this
implies u  6py2, modulop. The analogous behavior
results forz ! 2`. In Fig. 2 this asymptotic behavior
of the field lines is also evident.

In toroidal geometry the rotational transformi, for un-
closed field lines, is defined asi  limf!` MsfdyNsfd,
wheref is some toroidal coordinate andMsfd, Nsfd are
the number of poloidal and toroidal turns, respectively, o
a field line around the axis. This limit is equivalent to
averaging over the total surface, and in consequencei and
the shears  diydV are constant on pressure surface
(V is a flux label of the surface, e.g., the pressure itself
Since the present equilibria, however, do not have a
axial periodicity this averaging property does not take
place, andi differs, in principle, from field line to
field line.

A natural definition of the rotational transformisx0d
in the present case would seem to be the limit of th
number of turns fromz  2` to 1` as a function of
the starting coordinatex0, with N  1. According to the
discussion ofuszd above, however,isx0d then takes on
only half-integer values,isx0d  6my2, with at most two
consecutive integer valuesm, for a given equilibrium.

FIG. 2. Continuation of the outer surface of Fig. 1 to the left.
Asymptotically, the surface becomes squeezed flat and the fie
lines approach a constant distance to the axis.
3135
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FIG. 3. Poloidal angleu of field lines for low pressure,Pp 
0.5 (solid lines), and high pressurePp  2 (dashed lines).
Starting values areu0  0 (lower pair) andu0  py2 (upper
pair). Difference between solid and dashed curves indica
field line shear.

A reasonable definition of the shear with thisi is not
possible.

Global definitions ofi, thus, do not seem appropriate
here. In many respects, however,local values of the field
line slopeu0  duydz are also relevant anyway.u0 not
only varies alongz and from field line to field line but, for
type-II solutions, also from pressure surface to pressu
surface. This is evident from Fig. 3 where the angleuszd
is plotted for two field lines for a type-II solution in the
region,z [ f20.5, 1.8g. The field lines start atu  0 and
u  py2, respectively. (These two values are select
for ease of identification.) The solid curves correspon
to Pp  0.5 and the dashed curves toPp  2.0, with
h, k, k, l, and a1 as in Figs. 1 and 2. The difference
between the solid and the dashed curves confirms
aforementioned existence of a “radial” derivative ofduydz
which could serve as a local substitute for the shear.

In type-I solutions the shear is absent:Bx , By are linear
in r, while Bz is independent ofr. In consequence,
the variabler completely drops out of Eq. (13). The
field line trajectories on different pressure surfaces are
equivalent.

For all toroidal MHD equilibria with closed field
lines the so-called current-closure condition [3] forF :H

dlyjBj has to hold, namely, thatF be the same
for all closed field lines on a fixed pressure surfac
Although the present equilibria are not topologicall
toroidal and the field lines are not closed, except f
k  0, it is nevertheless found thatF is constant on
P  const if the integration along the unclosed field line
is extended fromz  2` and1`. For type-I solutions
3136
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it is found that F  pfsa1 1 c1d sa2 1 c2dg20.5ys2jkjd
for k fi 0, and F  2pyjhj for k  0, i.e., F does
not even depend onP at all. For type-II solutions
there resultsF  Ks

p
Ppy4dysjkljd, for k fi 0, andF 

4Ks
p

Ppy4dysjhlhjd, for k  0, whereK is the complete
elliptic integral of the first kind.

The equilibria just described have, of course, t
serious drawback that toroidal curvature is missing a
that they are not even periodic in the axial direction. A
answer to the question whetherperiodic 3D equilibria
with straight axis and twisted field lines exist or not wou
be especially interesting since the potential for isla
formation and ergodization of field lines is then the sam
as in toroidal geometry, but complications from toroid
curvature are still absent.
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