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Two types of exact solutions of the MHD equilibrium equations are presented. The equilibria
exhibit neither continuous nor mirror symmetry. The configurations are infinitely extended along a
straight axis with surfaces of constant pressure closed around the axis. The cross sections are elliptic
for equilibria of the first type. For the second type they are elliptic only close to the axis. Field
and current lines turn around the axis and extend from minus to plus infinity in the axial direction.
In these limits the configurations become singular. The rotational transform and the local shear are
discussed. [S0031-9007(96)01351-8]

PACS numbers: 52.30.Bt, 52.55.Dy, 52.55.Hc

The most promising way to stably confine a plasma sufstant) the Bernoulli function-(p + v?/2), respectively
ficiently long in order to achieve thermonuclear fusion is(see, e.g., [1]).
magnetic confinement in a toroidal configuration. Two To find 3D solutions of Egs. (1) is, however, notoriously
such configurations have been investigated especially cardificult. This is because Egs. (1) represent a system of
fully. In the tokamak a toroidal magnetic field generatedpartial differential equations of mixed elliptic-hyperbolic
by external coils together with an externally driven toroidaltype, for which there is no general theory on existence and
current sustain an, in principle, axially symmetric equi-uniqueness of solutions. Only with additional assumptions
librium. The discrete set of coils, however, leads to ancan the problem be rendered tractable. For plane, axial,
unavoidable “rippling” of the magnetic field and thus to or helical symmetry Egs. (1) can be reduced to a single
a certain amount of nonsymmetry. A stellarator, in con-quasilinear elliptic equation for which an elaborate exis-
trast, is an inherently three-dimensional (3D) configuratiortence theory as well as many explicit solutions are known
far from axisymmetry, whose magnetic field is generated2—4]. The axisymmetric case, for example, is governed
completely by external coils. In both configurations theby the well-known Grad-Shafranov equation [5].
magnetic field lines twist around the axis with finite pitch. Discrete symmetries seem to facilitate the problem too.
The equilibria are supposed to be well described by thén [6] equilibria with a purely toroidal magnetic field,

equations of ideal MHD, which is mirror symmetric with respect to a poloidal plane
have been considered. In that particular case the so-called
JjXB=VpP, B iteration [7] was proved to converge for low plasma

. pressure. The pertinent pressure surfaces, however, are
j = VxB, (1) not poloidally closed in general.
V-B=0 If symmetries are no longer present in the system,
’ numerical work shows that magnetic surfaces tend to
where B, j, and P denote the magnetic field, current disrupt and magnetic islands and ergodic regions appear
density, and pressure, respectively. in Poincaré plots of the field lines (see, e.g., [8]). A well-
Knowledge of analytic nonsymmetric toroidal equilib- defined smooth pressure function may not be expected
ria, if they exist, would bring many benefits; the existencein these cases. This view is corroborated by theoretical
problem would be settled; analytic equilibria would be atanalysis of Egs. (1) for nonaxisymmetric equilibria with
hand to do quick parameter studies; wave propagation, fdield line shear [3,9]. It indicates that finite jumps in the
diagnostic and heating purposes, could be studied on @ressure distribution and the formation of current sheets at
safe basis; the effect of small chaotic regions on transpogach rational surface are to be expected generically. Grad
would lose its urgency; and numerical equilibrium codesconjectured for that reason that nonsymmetric equilibria
could be tested. in the sense of classical solutions do not exist at all [9].
Note that Egs. (1) describe yet another situation of It is due to these intricacies that the present-day avail-
physical interest, viz. steady flow of an inviscid, incom- able exact results on existence and nonexistence of equi-
pressible fluid of unit density. In that ca® j, andP libria refer to quite special configurationdNonexistence
denote the velocity field, its vorticity, and (up to a con- of configurations with purely poloidal magnetic fields, for
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example, has been investigated in [10,11]. Other nonex- The surfaces of constant pressure are closed surfaces,
istence results refer to the isodynamic [12] or the “quasicomposed of ellipses nested around thaxis. At fixed
helical” stellarator [13]. P their width, axis ratio, and orientation varies along the
As to theexistenceof 3D equilibria all results [14—17] z axis.
refer to straight-axis configurations (with the exception of In component notation the magnetic field is
the mirror-symmetric configuration mentioned above). If k
such configurations are poloidally closed and periodic in Bx = —h[b(z)x + c(z)y] — —[d'(z)x + b'(2)y],
the axial direction, they are still topologically equivalent 2
to a torus. The solutions obtained in [14-16] are of B, = —hla(z)x + b(z)y] — —[b'(2)x + ' (2)y],
this type, in the sense that free functions along the axis K
- : . k (8)
can be chosen to be periodic. The field lines, however, p _— Zlalz) + c(2)],
are confined there to planes orthogonal to the axis. The K
solutions in [17], on the other hand, have field lines purelywhered/(z) = da(z)/dz, etc. The contribution fronf
along the axis. Thus, in neither of these cases do the fielid a purely poloidal field which was derived as a solution
lines twist around the axis with a finite slope. of Egs. (1) previously in [16]. The axial component of
In contrast to these previous results, the equilibria prethe field is contributed by th& term only, which is
sented here are—to our knowledge—the first examplealso already a solution of Egs. (1). The fact that the
of analytic 3D equilibria with twisted field lines. They superposition of both solutions is again a solution is
demonstrate that field line twist need not be detrimental tmontrivial since Egs. (1) are nonlinear.
3D configurations as was suspected earlier [9]. In the limit z — *o the configuration becomes sin-
Two types of solutions of Egs. (1) were obtained. Ingular because the current density and the magnetic field
both cases the magnetic field has the representation grow without bounds. This squeezes the cross section of

B — Vx[H each pressure surface down to a line of finite length. For
(v.7.2) = VX[ H (x5, 2)Vz] kz > 1 the inclinationdy/dx = Ja;/c, of the line is
+ VXVX[K(x,y,z)Vz]. (2)  evident fromP* = (a, + ¢;) (Jaix + Je1y)* exp2kz.
For the first type the functiond andK are given by The maximal extension of the line is given by =
—h P*ci/(a1 + c¢1), y* = P*ai/(a; + ¢1). For kz < —1
H(x,y,z) = > [a(z) x> + 2b(z)xy + c(2)y*], the situation is analogous, with the index 1 replaced by 2.
—k (3)  Thus, the pressure surfaces consist of a middle region of
K(x,y,z) = T [a(z)x*> + 2b(z2)xy + c(z)y?], finite thickness which gets progressively thinner towards

both sides, with inclinations determined asymptotically by

while the pressur® is determined by the coefficients:: . c1. ¢
1,42,C1,€2.

Pry,2) = — 2 P2 - P(; For_ the second type of solutions the functidiiand K
h* + k are given by
_ 2
= [a(z) + c(2) ][alz) x H(x,y,2) = “[a(z) cosix + c(z) cosAy],
2 9)
+2b(z)xy + c(z)y*]. (4) K(x,y,2) = 5= [a(z) cosix + c(z) cosAyl,
Here,h andk are two arbitrary constants which determine hile th @ is determined b
the weight of the contributions froni/ and K, respec- while the pressuré”1s determined by
tively, to the magnetic field.P, is the pressure on the « _ P—-P ,
axis. The functionsi(z), b(z), c(z) are as follows: Pr(x.y,2) = 2 (h% + k%)n? = a’(z) it Ax
a(z) = aje"* + aze™ ™%, + 2(1 — cosAx cosAy)
b(z) = b1e"* + bye %, 5)
: 2 + ¢X(z) sir? Ay. (10)

c(z) = c1e"* + cre™ %,

. . - Here A, with A> < «2, is an arbitrary constant angl is
with arbitrary constants, ay, az, c1, c2.  The coefficients  4fined byn = (1 — A2/x2)1/2. Equations (5)—(7) are
by, b, are related to the other ones by again valid, with the restriction; = b, = b(z) = 0. A

b? = aicy, b3 =ayc,. (6)  nontrivial solution is then possible fa, = ¢; = 0 only.
With the normalization mentioned there resultg) =
ai e’ = 1/c(z2).
a(z)e(z) — b*(z) = (Jaicz — Jazer)*> = const= 0. For |Ax|, |Ay| < 1, replacing simx, cosAx by Ax,

1 — (Ax)?/2, respectively, etc., the type-ll pressure (10)
(7)  takes on the same form as the type-l pressure (4) in the

The functionsa, b, ¢ can be normalized by setting the caseb(z) = 0. Close to the axis, therefore, the surfaces
constant in the equation above to 1. also consist of ellipses, with a major axis in theor y

A consequence thereof is the relation
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direction. Farther away, witl?* increasing from its on- The figure might also serve for a qualitative representation
axis value zero, they are progressively deformed into af a type-I equilibrium (with asymptotic inclinations of O
more rhomboidal shape. and 90). In Fig. 2, which is a (enlarged) continuation

In the limit kz > 1, the pressure surfaces (10) approxi- of the outer surface of Fig. 1 to the left, and extends
mately take on the forme(z)P*/4 = a(z)sit(Ax/2) + fromz = —4.4 to z = —1.4, the asymptotic behavior for
c(z) sif(Ay/2). This implies again that fokz — « the 7 — — is rather evident.

pressure surfaces shrink down into a line, this time &t In Figs. 1 and 2 several field lines are also shown
0 and with an extension? < y2, where siA(Ay./2) = as thick lines. h = 5,k = 1 is used for these orbits.
P*/4. Forkz <« —1 the situation is analogous, with the In polar coordinates-, §, defined byx = rcos,y =
roles ofx andy interchanged. r sin@, the field line equations are
The magnetic field of the type-Il solution is 46 1
_ _ — = — (Bycos# — B,sind) (13)
B, = —hnc(z) sinly — ka(z) sinAx, dz rB,
) ) and an analogous equation fér/dz.
By = —hna(z) sinAx + ke(z) sindy,  (11) The asymptotic behavior of the field lines can also be

discussed analytically. In the limigz > 1 the field line

B: = kAla(z) cosAx + c(z) cosAyl/x. twist turns out tB(/) van?;h. All field lines eventually end up
Again, the contribution fron is a purely poloidal field. at a heighty which depends on the starting point but does
It was derived as a solution of Egs. (1) in [14]. The axialnot change withz anymore. Together withh = 0 this
component of the field is contributed by tiketerm only  implies # = +# /2, modulo7. The analogous behavior
which, as an independent solution, was found in [17]results for; — —o. In Fig. 2 this asymptotic behavior
Again, these two solutions can be superposed to give gf the field lines is also evident.

new solution of the nonlinear equilibrium problem. In toroidal geometry the rotational transformfor un-
. The current density components for the type-ll solu-closed field lines, is defined as= limg—o M($)/N(),
tions are where¢ is some toroidal coordinate and(¢), N(¢) are

the number of poloidal and toroidal turns, respectively, of
a field line around the axis. This limit is equivalent to
n[+he(z) sindy — knal(z) sinAx], (12) averaging over the total surface, and in consequercel
the shears = dv/dV are constant on pressure surfaces
j. = mAhla(z) cosAx + c(z) cosAy]. (v is a flux label of the surface, e.g., the pressure itself).
Since the present equilibria, however, do not have an
axial periodicity this averaging property does not take
place, and. differs, in principle, from field line to
field line.
A natural definition of the rotational transformix)
in the present case would seem to be the limit of the
number of turns fromy = —o to + as a function of
the starting coordinatey, with N = 1. According to the
discussion off(z) above, howeveri(xy) then takes on
only half-integer values,(xg) = *=m/2, with at most two
consecutive integer values, for a given equilibrium.

Jx = nk[—ha(z) sinix + knc(z) sinAy],

Jy

If the perpendicular and the axial scale lengthsind A
coincide,n, and therefore the current densjtyvanishes.
An example of a type-Il solution is given in Fig. 1.
It shows two nested pressure surfaces, with= 0.7
(inner surface) andP* = 2.0 (outer surface). Further
parameters are = V2, A =1, anda; = 1. The axial
region presented extends from= —1.4 to z = +1.4.
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FIG. 2. Continuation of the outer surface of Fig. 1 to the left.
FIG. 1. Nested pressure surfaces of type-ll MHD equilibria. Asymptotically, the surface becomes squeezed flat and the field
Field lines rotate around the axis. lines approach a constant distance to the axis.
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0 it is found thatF = 7[(a; + c1)(az + ¢2)]7%/(2]k])
for k # 0, and F = 27 /|h| for k =0, i.e., F does
not even depend orP at all. For type-ll solutions
there results” = K(/P*/4)/(lkA|), for k # 0, andF =
4K(/P*/4)/(lhAm]), for k = 0, whereK is the complete
elliptic integral of the first kind.

The equilibria just described have, of course, the
serious drawback that toroidal curvature is missing and
that they are not even periodic in the axial direction. An
answer to the question whetheeriodic 3D equilibria

05 05 1. 15 Z with straight axis and twisted field lines exist or not would
be especially interesting since the potential for island
FIG. 3. Poloidal angle of field lines for low pressure?” = formation and ergodization of field lines is then the same

%tsargisrlcgi?/z;liﬂgsS)érgnd h(;g(TovF\)nreerS;girrl)?*aidz (dasr}ezd (Jip:];esr)' as in toroidal geometry, but complications from toroidal
b = o = T .
pair). Difference between solid and dashed curves indicategurvature are still absent.

field line shear.
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