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Force-Extension Relation and Plateau Modulus for Wormlike Chains
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We derive the linear force-extension relation of a wormlike chain of arbitrary stiffness including
entropy elasticity, bending, and thermodynamic buckling. From this we infer the plateau modulus
G° of an isotropic entangled solution of wormlike chains. The entanglement ldhgte expressed
in terms of the characteristic network parameters for three different scaling regimes in the entangled
phase. The entanglement transition and the concentration dependefites analyzed. Finally we
compare our findings with experimental data. [S0031-9007(96)00481-4]

PACS numbers: 61.25.Hq, 83.50.Fc, 87.15.Da

Recently there has been increasing interest in biologicalormlike chains The wormlike chain [11] is the mini-
material research [1]. The physical properties of colloidsmal model of an ideal (i.e., non-self-avoiding) polymer
liquid crystals, and macromolecular networks are of primeof arbitrary stiffness. In contrast to the fractal Gaussian
importance for the structure and function of biological en-chain model [5], which can serve only as an effective large
tities such as cells and muscles. On the other hand, biologscale model for rather flexible polymers, the wormlike
provides physicists with some of the most pertinent modethain model also faithfully reproduces the intrinsic stiff-
systems to test their theories of soft matter [2]. Amongness of real polymers. The polymer is represented as a
these systems we will concentrate on macromoleculadifferentiable space curvR; with its statistical properties
networks here. These networks may be assemblies of reldetermined by the effective free energy
tively flexible (DNA), semiflexible (actin), or rigid (micro- ]L <82RS 2

(58)

tubuli) molecules or complex compound systems as in the H({R,}) = = 5 (1)
case of the cytoskeleton of erythrocyte plasma membranes 2 ds
or in the glass body of the eye [3]. Especially the staticA central feature of this model is the inextensibility of
and dynamic rheological properties of actin networks aréhe chain leading to the rigid constraitiR,/ds| = 1,
crucial for an understanding of the mechanical stabilizawhich additionally has to be imposed on the contour.
tion and the motility of cells. Because of the mathematical complications resulting from
Solutions of flexible polymers at high concentration arethis constraint only a few of the statistical properties of the
known to exhibit spectacular features in both their mewormlike chain can be extracted analytically, the most
chanical response and molecular relaxation [4,5], whictprominent being the mean square end-to-end distance
are commonly attributed to the topological constraints duéR.) = L*fp(L/L,), with the Debye functiory(x) :=
to the uncrossability of the polymers (entanglement ef2(x — 1 + ¢~*)/x*. (The persistence length,, is re-
fects). For time scales shorter than a characteristic time lated to the bending modulus by « = L,kzT.) For
the response of a solution of high molecular weight polyHarge L/L, this reduces to the power laR?) = 2L,L
mers to a periodic perturbation is elastic over an extendedharacteristic of a random walk of step lengih,. Note
frequency interval (“rubber plateau”) and resembles that ofhat the model does not reproduce the swelling of real
a permanently cross-linked network or gel. Itis commonlyflexible coils, since the self-avoidance of the chain is
agreed that polymeric liquids form a temporary network,neglected in the above effective free energy, Eg. (1).
where entanglementglay a similar role as permanent Therefore, the model is restricted to solutions with mesh
cross-links in gels. There have been several attempts to dsize &, not much larger than the persistence length
rive this successful phenomenological concept from otheof the polymers, in which case self-avoidance effects can
characteristic parameters of a polymer solution and thusafely be neglected.
gain some understanding of the underlying microscopic As a first step towards an understanding of the macro-
mechanism [6,7]. Over the last few years experiments witlscopic viscoelastic properties of an entangled network of
actin [8,9] revealed that the above qualitative picture alsavormlike chains one has to understand the elastic proper-
holds for semiflexible polymers. However, the theoreti-ties of a single wormlike chain. The linear force-extension
cal understanding of entangled solutions of semiflexibleelation of a wormlike chain is obtained by the follow-
polymers is much less developed than in the flexible caseng argument. Consider a wormlike chain with one end
and experimental data are often interpreted within the theazslamped at fixed orientation at the origin. Apply a weak
retical framework established for flexible coils or rigid force fn (directed along the unit vectar) to the other
rods, respectively [9,10]. end [12]. The configurational distribution function is then
In this Letter we develop some basic concepts for a gemmodified by a Boltzmann factor ekpnR; /kzT). The
eral theory of rheology of isotropic entangled solutions ofextensionSR;, := n({R.); — (Ry)) in the direction of the
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applied force to first ordef is given by the linear exten- the thermal undulations vanishes, and ultimately there re-
sion coef‘l‘icientf{o1 = d8RL/df =0, main no more undulations to be bent or pulled out, hence
the divergence of, with 7~!. We take as the force co-

2 ~
7ol = [ dsf ds'(cosh, cod, ) — [ds(COSﬁ ) efficient f of a “general strand” of lengtlt in a random
fo P v network the average df;,' over all orientationg, [15],

@) 7= L fedL/L) T ©)
By 6, we denote the tilt angles of the tangents of the polyith £, (x) := (2x — 3 + 4e* — ¢~ 2)/3x2 (the exten-
mer contour with respect ta. The thermal average is gjon function). This result is also shown in Fig. 1. In the
to be taken under the constraint that the angjeat the it limit (1 < L,) it reduces tof = «/L3.
clamped end is kept fixed. Standard methods [11] yield Now, to relate the force-extension relation of the gen-
for fy, the dashed curves in Fig. 1. In general, EQ. (2)eral strand to the observed elastic modulus of a polymer
predicts a polymer of contour length to appear more petwork in the rubber plateau regime we proceed in close
floppy if L, = L than in the high temperature limi, —  anajogy to solid state physics. In the harmonic approxi-
0) and the low temperature limi., — =), when it con-  nation the elasticity tensd of a monatomic Bravais lat-
tracts to a little ball or becomes a rigid rod, respectively tice is written astij = — Z{R}RiD,-/(R)Rk/2V, with v
In the flexible limit, where the chain becomes an isotropiooeing the volume of the primitive celR the lattice vec-
random coil, all curves fall together and reproduce enyors “andD the matrix of second derivatives of the inter-
tropy elasticity. But for stiff chains, as a consequence oktion potential with respect to lattice displacements. For
the chain anisotropy, the force-extension relation dependgy, isotropic entangled polymer solution, we take the ana-
strongly on the value ofy. Obviously,6p = 0is an ex-  |oq of the primitive cell to be an entanglement voluiie
ceptional case. Whereas for all c_)th_eran@l@fhe ultimate  ang the analog of the primitive vectors to be the average
asymptotic form off, in the stiff limitis «/L°, aty = 0 gistance¢, between adjacent entanglements (in the em-
the force coefficient become =~ «>/ksTL*; i.e., itiS  pedding space). This scaling argument suggests that the
second order in the bending modulus and diverges at l0Wiorage modulus in the plateau regime should (up to a con-
Femperatures”. The Iattgr result was previously obtalr]ed stant factor depending on the strain geometry) be given by
in Ref. [13]. Note tha¥, is the.angle between the applied ;o0 ~ cefe£2. Here?, is the force coefficient of polymer
force and the average orientationkf; i.e., forfy = Othe  gections of lengtii, between adjacent entanglements and
force is parallel toR, on average. Especially fadf =0 . ~ y-! their concentration. (As far as self-avoidance
thg force is p.uII.lng or pressing on a rigid rod along its affects can be neglectel, and &, are related by the De-
axis. In this limit the above expansion of the Boltzmannbye function.) The situation may be visualized by external
factor breaks down, and we encounter the so-called Eulgpces acting on contour elements distributed with an av-
buckling instability; i.e., the force-extension relation be'erage spacing.. along the polymer. Inserting from
comes highly nonlinear, and the force coefficient in lin- Eq. (3) with L, substituted forZ into the formula forG®
ear response does not exist. This situation is well knowgy,e finally arrive at the following explicit expression for

fRL < kgT, the buckling instability is evaded by ther- chains.

mal undulations, and we find a linear contribution to the

force-extension relation (“thermodynamic buckling”). But G0 = ok fo(Le/Lp) _|cekgT (Lo » L),
with decreasing temperature the volume fracttg’L /« = cckpT fextLe/L,)  lcew/Le (Lo < Lp).
(stored thermal energy over bending energy) occupied by ! )

0

10

The entanglement length, is obviously the crucial
quantity in Eq. (4). In the literature several scaling ideas
[6] have been reported on holy and ¢, may be derived
from the known static properties of a flexible polymer
network. Note, however, that Eqg. (4) holds independently
of such considerations. For a homogeneously cross-linked
gel of semiflexible or rodlike polymers, can essentially
be identified with the mesh siz&, of the network. In
this case Eq. (4) predicts® « kc? in the stiff limit. We
N conjecture that for a wormlike chain of arbitrary stiffness
10' 10 one has to distinguish three different regimes. We will
L/L treat the limiting cases of scale invariant chain structure—

FIG. 1. The deformatiorsR, of a wormlike chain of given i.e., a virtually Gaussian or straight conformation, respec-

length L to leading order in the applied forgeas a function of ~ tively—in a very similar manner. The breaking of scale
the persistence length,. See explanation in the text. invariance due to Eg. (1) gives rise to an intermediate
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regime for chains with. = L,, which will be discussed L*(c) = 3+/3L%(c)/2, where¢ denotes the geometrical
subsequently. overlap concentratiodv = 3a?/2L>. The value of the
For a weakly bending contour we have from Eq. (1) theentanglement length and the contour length at the cusp
scaling relationRj* = 2L3/3L, for the transverse am- singularity are related by, = 2L*/3. The above results
plitudesR;" of the largest bending undulations. If thesehave some important consequences on the rheological
amplitudes are smaller than the mesh sfzeof the sur-  properties of semiflexible polymer solutions. Upon taking
rounding polymer network, i.e£2 > 2L3/3L,, then the the experimental value for the geometric constént=
bending undulations are not substantially perturbed and afe1 [16] of flexible polymers to be a universal quantity
supposed to be rather irrelevant to the question of entarfalso valid in the rod limit) one estimates that the criti-
glement. In this case we should thus be allowed to represal polymer length for the solution to show entanglement
sent the polymers as straight (but not rigid) “rods” in ourhas to be about 8 times the mesh size. Accordingly, the
deviation ofL,. In the opposite extremé., &, > L,)  critical concentration™ is predicted to be almost 2 orders
of a strongly coiled polymer conformation the polymer of magnitude larger than the overlap concentration
may be represented by a fractal curve (or a freely jointed™/¢ = 27C /4. In the intermediate concentration re-
chain of “blobs,” if screened self-avoidance is to be in-gime, ¢* > ¢ > ¢, there is already a significant overlap
cluded). We feel that the flexible case has been describedf the semiflexible polymers but no long-lived entangle-
successfully earlier [16] and will adapt this approach toments leading to a rubber plateau regime. In this disen-
straight rods now. It is based on the crucial observatioriangled phase the magnitude of the storage modulus is
that polymer ends are not contributing efficiently to long-supposed to show a linear concentration dependence.
lived entanglements. Namely, if entanglements would de- Finally we comment briefly on the intermediate case of
pend on dangling ends, they could not be long lived ag network of wormlike chains with a mesh sigg smaller
compared to unperturbed, free fluctuations of the polymethan the persistence length, and the amplitudes of the
and hence could not give rise to a rubber plateau. To bkrgest bending undulatiom . To distinguish it from the
specific, we assume that an entanglement requires a sufase discussed above, which could be called the “rodlike”
ficient number of non-end-neighboring polymer segmentsegime, we will address it as the “snakelike” regime. Itis
that on average restrict the lateral degrees of freedom of éharacterized by the property that all bending undulations
test chain. Consider a sphere of radiysaround such a with wavelength longer than a critical wavelength, the “de-
mean entanglement point. Then for a given monomer corflection length” [18]A = (3L, £2,/2)'/3, are perturbed by
centrationc and volume fractiorrv the excluded volume the network. For the snakelike regime we thus identify
in this “primitive cell of entanglement” of volum&, =  the entanglement lengtty’ for an infinitely long polymer
4m(£,/2)3/3 is given bycvV,. In order to achieve an with A. We expect the qualitative features of the entan-
entanglement one requires that a certain amount of polyglement transition derived above for the rodlike regime to
mer material,C 7(a/2)*L,, is contained in the test vol- hold also in the snakelike regime. The isotropic entangle-
ume. Herez denotes the lateral diameter of the polymer.mentvolumeV, = £ in Eq. (5) has now to be replaced by
The quantityC is a geometry factor which measures theV, = ngLif. The implicit dependence of, on L, again
amount of polymer material in the test volumekifpoly-  reflects the broken scale invariance in the snakelike regime.
mers cross the sphere around the test chain [17]. We d&Ve leave the problem of the crossover between the snake-
termineL, by equating the excluded volume (reduced bylike and the scale invariant cases for further investigation.
the contribution coming from free ends) with the volume Now we turn to the comparison of our results with

of polymer material needed for an entanglement available experimental data. We suppose that the exis-
L 342L.C tence of a disentangled phase above the overlap concen-

cv(l - —e> = 39 . (5) trationc, as predicted by Eq. (5), is likely to explain some

L 2¢; discrepancies of the Doi-Edwards theory [5,19] for the ro-

The implicit equation Eq. (5) can be solved analytically intational diffusion of rigid rods in a semidilute solution
the random coil limit [16] and for a straight conformation. with experimental data [20]. The Doi-Edwards theory
For the latter we find is based on the assumption that for concentrations larger
L 1 _ 2772 than the overlap concentratianthere is a separation of
L, = —{1 - 23|n[—arCS|r<l — 2L; )” (6) time scales. One anticipates that each step of the rota-
tional diffusion process is determined by the constraint
where LY := a+/3C /2cv = JC &, is the entanglement that each rod is confined to remain within an angular
length in the limit of infinitely long molecules. Equa- rangeér/L during the time it takes a rod to diffuse a dis-
tion (6) describes an entanglement transition of the polytance equal to its length. The tube of radiis« 1/cL
mer solution characterized by a cusp singularity of theés assumed to impose a long-lived topological restriction
entanglement lengtlL, as a function of the polymer on the motion of the rods. However, as we have argued
length L or the volume fractiorcv. The phase bound- above, long-lived entanglements emerge only at a much
ary between the entangled and the disentangled regime liégher concentratioe™ = 27C ¢/4. This would explain
given by either of the two equatior$(L) = 27Cc(L)/4, why the onset of entanglement as defined by a marked
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increase in the rotational diffusion coefficient occurs at a [3] E. Sackmann, Macromol. Chem. Phyi€5, 7 (1994).
concentratiorc.,, fully 2 orders of magnitude above the [4] J.D. Ferry,Viscoelastic Properties of Polymeric Liquids

overlap concentration [20].

(Wiley, New York, 1980).

As an important practical application of the above ideas [5] M. Doi and S.F. Edwards,The Theory of Polymer

we already mentioned actin, a semiflexible macromolecule,
which is of major biological interest but is also an almos
ideal model system for physicists [21]. It is well suited
to test our ideas, because it is characterized by a large ra
tio L,/a (=10°) and thus by a broad semidilute regime,

Dynamics(Clarendon, Oxford, 1992).

t [6] R.H. Colby and M. Rubinstein, Macromoleculs, 2753

(1990).

[7] See, e.g., K. G. Schweizer and G. Szamel, Transp. Theory

Theor. Phys24, 947 (1995).

[8] O. Miller et al., Macromolecule4, 3111 (1991).

so that the wormlike chain model applies without modifi- [9] p. A. Janmeyet al., J. Biol. Chem.269, 32503 (1994).
cation over several orders of magnitude in concentratior[10] K.S. zZaner, Biophys. B8, 1019 (1995).

The average length of the molecules can be adjusted 1] See, e.g., N. Saitet al.,J. Phys. Soc. Jpr22, 219 (1967).
adding so-called actin binding proteins such as gelsolin ok12] For strong forces see C. Bustameeteal., Science265

severin. Existing data on actin [8,9,22] give only an in-
complete picture of the rather complex situation sketched
above but seem to support our results. For short (rod-
like) filaments a length dependence of the plateau modd3!
lus near the entanglement transition has been observed [9],
which is qualitatively well described by Eqgs. (4) and (6),
but is somewhat smeared out (probably as an effect of
sample polydispersity). In the entangled phase Eg. (4) to-

gether with Eq. (6) predicts a plateau modu$ = «c?

for the rodlike case far from the entanglement transition.
Near the transition the concentration dependence is erit5]
hanced according to Eq. (6). In the snakelike case as de-

fined above we havé., = (L,&2)"/3 with ¢, « c7'/?
and henceG® « ¢33 k!'3(kgT)*?. In experiments with
actin the exponent of the observed power law @&8(c)

ranges from 1.7 to 2.3 in the entangled regime [8,13,22].
As a critical test of our ideas we suggest a comparison
of the plateau modulus for actin networks with and with-
out tropomyosin, which is known to cause a considerabl¢i 6]
stiffening of actin filaments. The rodlike regime and the
snakelike regime should be readily discernible due to their

markedly different dependence 6f on «.

In summary, we have derived the force-extension re-
lation for a wormlike chain and discussed some of its
consequences for the viscoelastic properties of entangled
solutions of semiflexible polymers. Especially, we ana-
lyzed the entanglement transition and predicted various

exponents for the dependence of the plateau modaifus

on concentration and bending rigidity in the snakelike

regime and in the rodlike regime.
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