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Force-Extension Relation and Plateau Modulus for Wormlike Chains
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We derive the linear force-extension relation of a wormlike chain of arbitrary stiffness including
entropy elasticity, bending, and thermodynamic buckling. From this we infer the plateau modulus
G0 of an isotropic entangled solution of wormlike chains. The entanglement lengthLe is expressed
in terms of the characteristic network parameters for three different scaling regimes in the entangled
phase. The entanglement transition and the concentration dependence ofG0 are analyzed. Finally we
compare our findings with experimental data. [S0031-9007(96)00481-4]

PACS numbers: 61.25.Hq, 83.50.Fc, 87.15.Da
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Recently there has been increasing interest in biolog
material research [1]. The physical properties of colloi
liquid crystals, and macromolecular networks are of pri
importance for the structure and function of biological e
tities such as cells and muscles. On the other hand, bio
provides physicists with some of the most pertinent mo
systems to test their theories of soft matter [2]. Amo
these systems we will concentrate on macromolec
networks here. These networks may be assemblies of
tively flexible (DNA), semiflexible (actin), or rigid (micro
tubuli) molecules or complex compound systems as in
case of the cytoskeleton of erythrocyte plasma membra
or in the glass body of the eye [3]. Especially the sta
and dynamic rheological properties of actin networks
crucial for an understanding of the mechanical stabili
tion and the motility of cells.

Solutions of flexible polymers at high concentration a
known to exhibit spectacular features in both their m
chanical response and molecular relaxation [4,5], wh
are commonly attributed to the topological constraints
to the uncrossability of the polymers (entanglement
fects). For time scales shorter than a characteristic timt

the response of a solution of high molecular weight po
mers to a periodic perturbation is elastic over an exten
frequency interval (“rubber plateau”) and resembles tha
a permanently cross-linked network or gel. It is commo
agreed that polymeric liquids form a temporary netwo
where entanglementsplay a similar role as permane
cross-links in gels. There have been several attempts t
rive this successful phenomenological concept from o
characteristic parameters of a polymer solution and t
gain some understanding of the underlying microsco
mechanism [6,7]. Over the last few years experiments w
actin [8,9] revealed that the above qualitative picture a
holds for semiflexible polymers. However, the theore
cal understanding of entangled solutions of semiflex
polymers is much less developed than in the flexible c
and experimental data are often interpreted within the th
retical framework established for flexible coils or rig
rods, respectively [9,10].

In this Letter we develop some basic concepts for a g
eral theory of rheology of isotropic entangled solutions
0031-9007y96y77(2)y306(4)$10.00
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wormlike chains. The wormlike chain [11] is the mini-
mal model of an ideal (i.e., non-self-avoiding) polym
of arbitrary stiffness. In contrast to the fractal Gauss
chain model [5], which can serve only as an effective lar
scale model for rather flexible polymers, the wormlik
chain model also faithfully reproduces the intrinsic stif
ness of real polymers. The polymer is represented a
differentiable space curveRs with its statistical properties
determined by the effective free energy

HshRsjd ­
k

2

Z L

0
ds

µ
≠2Rs

≠s2

∂2

. (1)

A central feature of this model is the inextensibility o
the chain leading to the rigid constraintj≠Rsy≠sj ­ 1,
which additionally has to be imposed on the conto
Because of the mathematical complications resulting fr
this constraint only a few of the statistical properties of t
wormlike chain can be extracted analytically, the mo
prominent being the mean square end-to-end dista
kR2

Ll ­ L2fDsLyLpd, with the Debye functionfDsxd :=
2sx 2 1 1 e2xdyx2. (The persistence lengthLp is re-
lated to the bending modulusk by k ­ LpkBT .) For
large LyLp this reduces to the power lawkR2

Ll ­ 2LpL
characteristic of a random walk of step length2Lp. Note
that the model does not reproduce the swelling of r
flexible coils, since the self-avoidance of the chain
neglected in the above effective free energy, Eq. (
Therefore, the model is restricted to solutions with me
size jm not much larger than the persistence lengthLp

of the polymers, in which case self-avoidance effects c
safely be neglected.

As a first step towards an understanding of the mac
scopic viscoelastic properties of an entangled network
wormlike chains one has to understand the elastic prop
ties of a single wormlike chain. The linear force-extensi
relation of a wormlike chain is obtained by the follow
ing argument. Consider a wormlike chain with one e
clamped at fixed orientation at the origin. Apply a we
force fn (directed along the unit vectorn) to the other
end [12]. The configurational distribution function is the
modified by a Boltzmann factor exps fnRLykBTd. The
extensiondRL := nskRLlf 2 kRLld in the direction of the
© 1996 The American Physical Society
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applied force to first orderf is given by the linear exten
sion coefficientf̃21

u0
:= ≠dRLy≠fjf­0,

f̃21
u0

­
Z

ds
Z

ds0kcosus cosus0l 2

√Z
dskcosusl

!2

.

(2)

By us we denote the tilt angles of the tangents of the po
mer contour with respect ton. The thermal average i
to be taken under the constraint that the angleu0 at the
clamped end is kept fixed. Standard methods [11] yi
for f̃21

u0
the dashed curves in Fig. 1. In general, Eq.

predicts a polymer of contour lengthL to appear more
floppy if Lp . L than in the high temperature limitsLp !
0d and the low temperature limitsLp ! `d, when it con-
tracts to a little ball or becomes a rigid rod, respective
In the flexible limit, where the chain becomes an isotro
random coil, all curves fall together and reproduce e
tropy elasticity. But for stiff chains, as a consequence
the chain anisotropy, the force-extension relation depe
strongly on the value ofu0. Obviously,u0 ­ 0 is an ex-
ceptional case. Whereas for all other anglesu0 the ultimate
asymptotic form of̃fu0 in the stiff limit is kyL3, atu0 ­ 0
the force coefficient becomes̃f0 . k2ykBTL4; i.e., it is
second order in the bending modulus and diverges at
temperaturesT . The latter result was previously obtaine
in Ref. [13]. Note thatu0 is the angle between the applie
force and the average orientation ofRL; i.e., foru0 ­ 0 the
force is parallel toRL on average. Especially forT ­ 0
the force is pulling or pressing on a rigid rod along
axis. In this limit the above expansion of the Boltzma
factor breaks down, and we encounter the so-called E
buckling instability; i.e., the force-extension relation b
comes highly nonlinear, and the force coefficient in l
ear response does not exist. This situation is well kno
for foams and other cellular materials [14]. If we requ
fRL ø kBT , the buckling instability is evaded by the
mal undulations, and we find a linear contribution to t
force-extension relation (“thermodynamic buckling”). B
with decreasing temperature the volume fractionkBTLyk

(stored thermal energy over bending energy) occupied

FIG. 1. The deformationdRL of a wormlike chain of given
lengthL to leading order in the applied forcef as a function of
the persistence lengthLp . See explanation in the text.
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the thermal undulations vanishes, and ultimately there
main no more undulations to be bent or pulled out, hen
the divergence of̃f0 with T 21. We take as the force co
efficient f̃ of a “general strand” of lengthL in a random
network the average of̃f21

u0
over all orientationsu0 [15],

f̃21 ­ L2fextsLyLpdykBT , (3)

with fextsxd := s2x 2 3 1 4e2x 2 e22xdy3x2 (the exten-
sion function). This result is also shown in Fig. 1. In th
stiff limit sL ø Lpd it reduces tof̃ . kyL3.

Now, to relate the force-extension relation of the ge
eral strand to the observed elastic modulus of a polym
network in the rubber plateau regime we proceed in clo
analogy to solid state physics. In the harmonic appro
mation the elasticity tensorE of a monatomic Bravais lat-
tice is written asEijkl ­ 2

P
hRj RiDjlsRdRky2V , with V

being the volume of the primitive cell,R the lattice vec-
tors, andD the matrix of second derivatives of the inte
action potential with respect to lattice displacements. F
an isotropic entangled polymer solution, we take the a
log of the primitive cell to be an entanglement volumeVe

and the analog of the primitive vectors to be the avera
distanceje between adjacent entanglements (in the e
bedding space). This scaling argument suggests that
storage modulus in the plateau regime should (up to a c
stant factor depending on the strain geometry) be given
G0 . cef̃ej2

e . Heref̃e is the force coefficient of polymer
sections of lengthLe between adjacent entanglements a
ce . V 21

e their concentration. (As far as self-avoidan
effects can be neglected,Le andje are related by the De-
bye function.) The situation may be visualized by extern
forces acting on contour elements distributed with an
erage spacingLe along the polymer. Inserting̃f from
Eq. (3) with Le substituted forL into the formula forG0

we finally arrive at the following explicit expression fo
the plateau modulus of an entangled solution of worml
chains,

G0 . cekBT
fDsLeyLpd
fextsLeyLpd

.
Ω

cekBT sLe ¿ Lpd ,
cekyLe sLe ø Lpd .

(4)

The entanglement lengthLe is obviously the crucial
quantity in Eq. (4). In the literature several scaling ide
[6] have been reported on howLe andje may be derived
from the known static properties of a flexible polym
network. Note, however, that Eq. (4) holds independen
of such considerations. For a homogeneously cross-lin
gel of semiflexible or rodlike polymersje can essentially
be identified with the mesh sizejm of the network. In
this case Eq. (4) predictsG0 ~ kc2 in the stiff limit. We
conjecture that for a wormlike chain of arbitrary stiffne
one has to distinguish three different regimes. We w
treat the limiting cases of scale invariant chain structure
i.e., a virtually Gaussian or straight conformation, resp
tively—in a very similar manner. The breaking of sca
invariance due to Eq. (1) gives rise to an intermedi
307
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regime for chains withL ø Lp , which will be discussed
subsequently.

For a weakly bending contour we have from Eq. (1)
scaling relationR'2

L ­ 2L3y3Lp for the transverse am
plitudesR'

L of the largest bending undulations. If the
amplitudes are smaller than the mesh sizejm of the sur-
rounding polymer network, i.e.,j2

m . 2L3y3Lp , then the
bending undulations are not substantially perturbed and
supposed to be rather irrelevant to the question of en
glement. In this case we should thus be allowed to re
sent the polymers as straight (but not rigid) “rods” in o
deviation ofLe. In the opposite extremesL, jm ¿ Lpd
of a strongly coiled polymer conformation the polym
may be represented by a fractal curve (or a freely join
chain of “blobs,” if screened self-avoidance is to be
cluded). We feel that the flexible case has been descr
successfully earlier [16] and will adapt this approach
straight rods now. It is based on the crucial observa
that polymer ends are not contributing efficiently to lon
lived entanglements. Namely, if entanglements would
pend on dangling ends, they could not be long lived
compared to unperturbed, free fluctuations of the polym
and hence could not give rise to a rubber plateau. To
specific, we assume that an entanglement requires a
ficient number of non-end-neighboring polymer segme
that on average restrict the lateral degrees of freedom
test chain. Consider a sphere of radiusje around such a
mean entanglement point. Then for a given monomer c
centrationc and volume fractioncy the excluded volume
in this “primitive cell of entanglement” of volumeVe ­
4psjey2d3y3 is given bycyVe. In order to achieve an
entanglement one requires that a certain amount of p
mer material,C psay2d2Le, is contained in the test vol
ume. Herea denotes the lateral diameter of the polym
The quantityC is a geometry factor which measures t
amount of polymer material in the test volume, ifK poly-
mers cross the sphere around the test chain [17]. We
termineLe by equating the excluded volume (reduced
the contribution coming from free ends) with the volum
of polymer material needed for an entanglement

cy

µ
1 2

Le

L

∂
­

3a2LeC

2j3
e

. (5)

The implicit equation Eq. (5) can be solved analytically
the random coil limit [16] and for a straight conformatio
For the latter we find

Le ­
L
3

Ω
1 2 2 sin

∑
1
3

arcsin

µ
1 2

27L`2
e

2L2

∂∏æ
, (6)

where L`
e := a

p
3C y2cy .

p
C jm is the entanglemen

length in the limit of infinitely long molecules. Equa
tion (6) describes an entanglement transition of the p
mer solution characterized by a cusp singularity of
entanglement lengthLe as a function of the polyme
length L or the volume fractioncy. The phase bound
ary between the entangled and the disentangled regim
given by either of the two equationscpsLd ­ 27C c̄sLdy4,
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Lpscd ­ 3
p

3 L`
e scdy2, where c̄ denotes the geometrica

overlap concentration̄cy ­ 3a2y2L2. The value of the
entanglement length and the contour length at the c
singularity are related byLp

e ­ 2Lpy3. The above results
have some important consequences on the rheolog
properties of semiflexible polymer solutions. Upon taki
the experimental value for the geometric constantC ­
9.1 [16] of flexible polymers to be a universal quantit
(also valid in the rod limit) one estimates that the cri
cal polymer length for the solution to show entangleme
has to be about 8 times the mesh size. Accordingly,
critical concentrationcp is predicted to be almost 2 order
of magnitude larger than the overlap concentrationc̄,
cpyc̄ ­ 27C y4. In the intermediate concentration re
gime, cp . c . c̄, there is already a significant overla
of the semiflexible polymers but no long-lived entangl
ments leading to a rubber plateau regime. In this dis
tangled phase the magnitude of the storage modulu
supposed to show a linear concentration dependence.

Finally we comment briefly on the intermediate case
a network of wormlike chains with a mesh sizejm smaller
than the persistence lengthLp and the amplitudes of the
largest bending undulationsR'

L . To distinguish it from the
case discussed above, which could be called the “rodli
regime, we will address it as the “snakelike” regime. It
characterized by the property that all bending undulatio
with wavelength longer than a critical wavelength, the “d
flection length” [18]l . s3Lpj2

my2d1y3, are perturbed by
the network. For the snakelike regime we thus ident
the entanglement lengthL`

e for an infinitely long polymer
with l. We expect the qualitative features of the enta
glement transition derived above for the rodlike regime
hold also in the snakelike regime. The isotropic entang
ment volumeVe . j3

e in Eq. (5) has now to be replaced b
Ve . jeR'2

Le
. The implicit dependence ofVe on Lp again

reflects the broken scale invariance in the snakelike regi
We leave the problem of the crossover between the sna
like and the scale invariant cases for further investigati

Now we turn to the comparison of our results wi
available experimental data. We suppose that the e
tence of a disentangled phase above the overlap con
tration c̄, as predicted by Eq. (5), is likely to explain som
discrepancies of the Doi-Edwards theory [5,19] for the
tational diffusion of rigid rods in a semidilute solutio
with experimental data [20]. The Doi-Edwards theo
is based on the assumption that for concentrations la
than the overlap concentration̄c there is a separation o
time scales. One anticipates that each step of the r
tional diffusion process is determined by the constra
that each rod is confined to remain within an angu
rangejT yL during the time it takes a rod to diffuse a dis
tance equal to its length. The tube of radiusjT ~ 1ycL
is assumed to impose a long-lived topological restricti
on the motion of the rods. However, as we have argu
above, long-lived entanglements emerge only at a m
higher concentrationcp ­ 27C c̄y4. This would explain
why the onset of entanglement as defined by a mar
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increase in the rotational diffusion coefficient occurs a
concentrationcexp fully 2 orders of magnitude above th
overlap concentration [20].

As an important practical application of the above ide
we already mentioned actin, a semiflexible macromolec
which is of major biological interest but is also an almo
ideal model system for physicists [21]. It is well suite
to test our ideas, because it is characterized by a larg
tio Lpya s.103d and thus by a broad semidilute regim
so that the wormlike chain model applies without mod
cation over several orders of magnitude in concentrat
The average length of the molecules can be adjuste
adding so-called actin binding proteins such as gelsoli
severin. Existing data on actin [8,9,22] give only an
complete picture of the rather complex situation sketc
above but seem to support our results. For short (r
like) filaments a length dependence of the plateau mo
lus near the entanglement transition has been observe
which is qualitatively well described by Eqs. (4) and (
but is somewhat smeared out (probably as an effec
sample polydispersity). In the entangled phase Eq. (4
gether with Eq. (6) predicts a plateau modulusG0 ~ kc2

for the rodlike case far from the entanglement transiti
Near the transition the concentration dependence is
hanced according to Eq. (6). In the snakelike case as
fined above we haveLe . sLpj2

md1y3 with jm ~ c21y2

and henceG0 ~ c5y3k1y3skBT d2y3. In experiments with
actin the exponent of the observed power law forG0scd
ranges from 1.7 to 2.3 in the entangled regime [8,13,2
As a critical test of our ideas we suggest a compari
of the plateau modulus for actin networks with and wi
out tropomyosin, which is known to cause a considera
stiffening of actin filaments. The rodlike regime and t
snakelike regime should be readily discernible due to t
markedly different dependence ofG0 on k.

In summary, we have derived the force-extension
lation for a wormlike chain and discussed some of
consequences for the viscoelastic properties of entan
solutions of semiflexible polymers. Especially, we an
lyzed the entanglement transition and predicted vari
exponents for the dependence of the plateau modulusG0

on concentration and bending rigidity in the snakel
regime and in the rodlike regime.
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