VOLUME 77, NUMBER 14 PHYSICAL REVIEW LETTERS 30 BPTEMBER1996

A Field Theory for Finite-Dimensional Site-Disordered Spin Systems
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We present a new field theoretic approach for finite-dimensional site-disordered spin systems by
introducing the notion of grand canonical disorder, where the number of spins in the system is random
but quenched. We perform the simplest nontrivial analysis of this field theory by using the variational
replica formalism. We explicitly discuss a three-dimensional RKKY-like system where we find a spin
glass phase with continuous replica symmetry breaking. [S0031-9007(96)01338-5]

PACS numbers: 75.10.Nr, 75.30.Fv, 75.50.Lk

Most advances in the field of disordered spin systems Although in this Letter we concentrate our attention on
have been based on models in which the bonds takspin glass physics with oscillating sign interactions, the
random values. However, in most experimental systemmodel can also describe dilute ferromagnetic or antiferro-
the positions of the spins are random but the interactionmagnetic systems. Indeed, even for the RKKY example
occur through deterministic potentials. Analytic studies ofwe find ferromagnetic order at very low temperatures.
site-disordered spin systems, such as RKKY spin glasseghe application of the methods described here to these
and dilute ferromagnets, have been hampered by the ladingle sign interactions is an interesting subject, but we
of a suitable field theoretic model (however, a latticedefer it to a longer article [4], simply mentioning some of
based formulation has been proposed [1]). By considerinthe issues that arise at the end of this Letter.

a situation in which the number of spins in the system Consider a model where the number of spihss fixed:

is random but quenched, we are able to write a replic&v spinssS; are placed randomly at positioms uniformly
field theory for site-disordered systems. This field theorythroughout a volumé’. We refer to this type of disorder
seems to be simpler than many of those coming fromas canonical disorder, as the number of particles is the
bond-disordered and diluted lattice models and should bsame for each realization of the disorder. The spins
accessible to many standard analytical techniques. Thateract via a pairwise potential depending only on
mean field theory of this model, for reasons that willthe distance between the spins. The Hamiltonian is then
become clear, cannot provide any information about spimgiven by

glass order. In the second part of this Letter we consider 1

the simplest generalization of mean field theory, the H = 5 Zj(ri — r;)SiS;. ()
Gaussian variational (GV) method, which does provide i.j

this information. Use of the GV method is widespread,Assuming that/ is positive definite, making a Hubbard-
and it is a useful warning that for certain interaction typesStratonovich transformation expresses the partition func-
in our model it gives unphysical predictions. tion as

The role of replica symmetry breaking (RSB) in disor-
dered spin systems is of great interest. Although RSB in zy = Z ] D p[dety g] />
the mean field theory for spin glasses is now well under- S;
stood [2] and related to the proliferation of pure states of -1 ~1 / / /
the system, in finite dimensions the picture is less clear. X eXF(ﬁ ff ¢ (r = r)$(r)drdr
Alternative qualitative approaches based on droplets [3] N
view the spin glass phase as a disguised ferromagnetic + Z¢(Fi)5i>- 2)
phase with only two underlying fundamental states. We :
will explicitly consider a three-dimensional site-disorderedEmploying replicas, we average out the site disorder by
spin glass using a RKKY-like interaction in our model andintegrating over the positions; using the flat measure
find continuous RSB in the GV approximation. | ﬁ [y [ar:

zi- | D . [deu )" exi( -5 [[ 3000076 = Psuerarar + v+ [ T2coshs,ar). @)
|

A field theoretic analysis of the above theory is compli-general one might expect the system to have been taken
cated by the presence of the logarithmic term in the acfrom a much larger system with a mean concentration of
tion. We overcome this difficulty by making a physically spins per unit volumep. A suitably large subsystem of
desirable modification to the definition of the disorder. Involume V will thus contain a number of spin¥ which
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are random and Poisson distributgdN) = exp(—pV)  of pure systems, we shall call this type of disorder “grand
(pV)N/N!. This distribution must be used to weight canonical disorder.”

the averaged free energy, so we are led to defitie= The resulting theory is simpler than (3) and is de-
>y p(N)Zy. By analogy with the statistical mechaniﬁs fined by

Er = exp(—pV)] Dd)a[detJ,B]”/zex;(—ﬁ ff Zd)a(r).l*l(r — " pa(r)drdr’ +pf ﬁ2cosh¢a(r)dr>.
a a (4)

Expanding the cosh, one sees that the leading term corréree energy is given, up to constant terms, by
sponds to the random temperature or random mass, famil-
iar from bond-disordered approaches, and that, depending nBFy = _1 TrinG,, + 1 TrGpJ !
on the choice of interaction, one might expect similar re- 2 2
normalization group results [4,5]. 1 —2-
In order to relate this theory to measurable quantities + ﬁ §¢QJ 0) — pQ, (7)

we return to the original formulation of the model in

Eq. (1) and identify physical operators. The spin densit))_"’h?re the above traces are both functional and on replica
operatorM,(r) = 3 8(r — r;)S% is closely related to the indices and wher€) is defined by
field ¢, appearing in the theory. The equations of motion _ 1
following from the replicated version of (2) show that the Z ex;(Z ¢oSa + B Z Gab(0)5a5b>~ (8)
physical magnetization density is given by Sa “ ab

N As usual we do not expect breaking of replica symmetry
M = é jdr<Ma(r)> — $<Z Slq> _ o (5) on single-index objects and hence st = ¢. The

ON variational equations are
and the correlatotM,(r)M,(r')) is in terms ofG ., (r — b, = ¢B,I0)Q, 9)
') = (¢a(r)ds(r'))., obtained as and
o Gab(k) s L 1
MMy (=KDe = 2505 ~ iy © Gy (k) = 5 dwd (k) = pQap (10)

M,(r) is not, however, the operator sensitive to spin glassvhere, and(},, are traces of the type (8) containing,
ordering, and it is natural to consider another operatorespectivelyS, andsS,S,.
qar(r) = 3, 8(r — r,)S'S?, related to the nonlinear sus- ~ Within this approximation, by introducing a source for
ceptibility. This new operator is composite and does nothe operatorg,;,(r) and using the fluctuation dissipation
manifestly appear in the field theory (4); it is for this rea-theorem, we obtain an equation for the correlation func-
son that we must go beyond mean field theory to obtaition Qusca = (Gupr(r)qca(0)):
nontrivial results. Operators involving more spins can be
introduced in the same Way L Qabcd(k) = anbcd + £ Z iabgh(k)Qghcd(k)

In the remainder of this Letter we analyze this field 2 gh
theory with the Gaussian variational method which can be _ dip - .
regarded as a generalization of mean field theory. This S apgn(k) = Zﬂabeff (ZT)d Geg(p)Gpn(k — p),
method, otherwise known as Hartree-Fock, is a truncation ef (11)
of the Schwinger-Dyson equations and becomes exact in
the limit of many spin components (such/ascomponent  Where Q.. is another object of the type (8) containing
theory is treated in a separate publication [6]). In thefour S’s.
context of disordered systems, this method has had success? replica symmetric (RS) ansatz fof leads to a
in calculating exponents for random manifolds [7], butregime specified by two order parameters: the magneti-
one should bear in mind that important effects may occu#ation M (5) and the Edwards-Anderson order parame-
at higher orders inl/m. In fact, for certain choices of t€r gea. These parameters are determined by a pair of
the potential in the field theory considered here, one cagduations very similar to the mean field equations for the
rigorously demonstrate a failure of the method [4]. WeSherrington-Kirkpatrick (SK) model [8]

return to a discussion of the reliability of the approximation p e B
at the end of this Letter. M = E f dée ¥ tanh(BIO)M + &./21).,
We allow the possibility of ferromagnetic order and (12)
make the ansatz théd,(r)) = @, and{e,(r)s(r'))e = __r f Jée-E P anR BT O +
Gaup(r — r') (by translational invariance). The variational i N2 ge (BJO) £vs1),
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whereg; [the off diagonal part oG, (0)] is given by The simplest solution of these equations yields the high
_ temperature, low density paramagnetic region with =
o1 = pBq d‘k J2(k) 0 and M = 0. In this region, the two-index correlator
L=

Qm)e[1— (0 — q)pBIk)]P" (13) (6) is known, and Eg. (11) can be solved for the most
| interesting correlatokg., (k)ga, (—k)),

pB*

TP ~ ~ : 14

1= p [ &5 T0I(p — O/[L — 0 = @pBIWI[L — (1 — q)pBI(p — k)] -
This correlator is simply related tdS(k)S(—k))? = |
> {qap(k)gar(—k)), and the divergence in the above & —1 _ 1 ©) - 1
formula signals the onset of a spin glass phase. The =n 2 8P 4
divergence occurs on a line in the temperature den- 1 1 u u
sity plane specified by, = ¢ and coincides with the X f <82 + gg4 - §g3 - gf g2>du-
de Almeida—Thouless (AT) line as determined by stabil- 0 0 (15)

ity considerations [4,9]. Furthermore, the phase boundar¥ o ) ) )
also coincides with the line on which the RS equations! € remaining terms in the action are easily computed
(12) develop solutions with nonzerg. This situation within the algebra of Parisi matrices [7]. The variational

also occurs in the SK model and suggests a continuougduations one obtains are

breaking of replica symmetry. G-l
We shall look for continuous replica symmetry broken [gpK)] ! = +popk) = p(— — 1),
solutions and parametrize the off-diagonal part of the Bp (16)
matrix G,,(k) by a continuous Parisi functiog(k, u), G k] " = —po(u) =2 8Q
whereu € [0,1], and a diagonal part denoted gy (k). chu P P 08
For such a matrix{) (8) is very similar to the free energy Definin
in the SK model; it cannot be obtained in a closed form, 9
and a standard strategy is to work close to the transition Dp(k) = op + (o), a7)
line by expanding) up to a term of0(g*) which, in the _ n n
SK model, is the first term leading to a breaking of Dl k) = ap + (o) + [o]w),
replica symmetry. The expansion is [10] | (in the notation of [7]), the equations can be inverted to
find
Vdu [o)w)  o(0)
gpk) = <1 + — + )
@ = 5w\ T )y @ Dk T Do®
N 1 [o](w) f “du [o]v) a(0) >
= + — + )
&o(u.k) pDD(k)<uD(u,k) o v2D(.k)  Dpk) (18)

Proceeding by differentiating the second equation of (iB):Iose to the origin. More precisely, there must be a break
with respect tas, one obtainsr’ = 0 or point uo with small value, above which(0, ) is constant
1 % 1\! and equal taxuy if the solution is to be continuous. The
<1 + g% - ug — ] g) = p( e —2> (19) breaking pattern scenario is reminiscent of the random
" (2m)¢ D manifold problem with long range disorder [7] and is
Taking a second derivative in some region where Eq. (19yalitatively the same as found in the SK model near

holds, we find . P T. [11].
¢ = aluu = 1(1 4 2p2 Jd%/Qm)'D ) ( It is useful to illustrate these results for a specific
2 [[dik/Q2m)4D2] interaction, and for the purposes of this Letter we consider

For four or more dimensions, in the limit in which the @ RKKY-like oscillatory potential in three dimensions:
short dlsta_mce cutoff is 'rempvgd, this equation |s.5|mple J(k) = M739(M — 1&D). (21)
and we find a scenario similar to that found in the _ _

SK model. In general, the functior(x) depends on The dimensional constant merely sets the scale of the
o(u), and one obtains a first order nonlinear differentialProblem and can be set to 1. Using Eq. (14) we obtain
equation forg(0, z). In all the cases we have considered,for (¢a»(k)qa»(—k)) in the paramagnetic phase

the power series solution near the origin starts with o

a linear term. For consistency with our perturbative Ouvap = | |z (G2 Hk=22 (22)
analysis, the region wherg0, u) is nonconstant must be 0, fork > 2.

fork < 2,
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The spin glass phase boundary is given py= (1 +  m-component Heisenberg spins in the limit— . In
12702T — /1 + 2472T)/(127%), and the exponent as- this case [6] we obtain a similar picture to that described
sociated with the transition is; = 1. Numerical in- above, namely, a high temperature phase separated from
spection of the RS equations finds stable ferromagnetia spin glass phase at low temperature. The form of the
solutions at low temperature because at very high derspin glass phase is RS withnonzero, and the equations
sities the positive short range part of the potential carfor Q,,. may be solved to find tha®,,,, Stays critical
dominate. We illustrate the expected form of the phasdelow the transition with exponefitgiven by = d — 1
diagram in Fig. 1. for RKKY-like interactions [13]. Applying the method to
The expansion just below the AT line gives rise tom = 1 Ising spins will lead to errors, but we hope that
a differential equation as described above, the leadingertain features will be correct. A case that can be ana-
solution at smallu being linear. The break point, lyzed rigorously is that of a purely ferromagnetic inter-
can be calculated in terms of the deviation from the ATaction and Ising spins, where we can demonstrate that
line: uo = 88 3= 5. Despite having the full the spin glass and ferromagnetic transitions must be si-
structure of the two-index correlatorg,(k, ), leading multaneous [4]. The Gaussian variational method fails in
to nontrivial momentum dependence jy(k) related this respect, predicting a spin glass transition at a slightly
to the connected magnetic correlation function (6), thehigher temperature than the ferromagnetic transition. In-
analysis only holds close to the spin glass transition andeed, this effect has been noticed before, and Sherrington
is unable to address the ferromagnetic transition whictjl4] has identified relevant diagrams that are ignored in
takes place at a much lower temperature. The four-indethe GV approach.
correlation functions,,.s contain much of the physics  Another shortcoming, not related to the Gaussian varia-
of the spin glass phase: For example, theexponent tional approximation, may also be present in our treatment
[3] may be extracted from the long distance behaviorof spin glass ordering. That is, that we have only taken
of such objects. Equation (11) is, however, an equatiowur analysis as far as order parameters with two replica
carrying four replica indices, and the solution in the casendices, which is known, for example, in the Viana-Bray
of continuous replica symmetry breaking is technicallymodel, not to be correct [15]. This effect may be apparent
rather formidable, requiring extensions of the methoddn the case of an antiferromagnetic interaction. There is
described in [12]. no difficulty of principle in extending our methods to con-
As we have emphasized, we have used the Gaussi&@ider operators with more replica indices, but, in practice,
variational method because it is the simplest generalizathe calculations soon become unwieldy.
tion of mean field theory, that gives us access to spin glass We would like to acknowledge useful discussions with
physics. We now discuss the reliability of the approxi-J. P. Bouchaud, M. Ferrero, G. lori, J. Ruiz-Lorenzo,
mation. Certainly we should expect it to be exact forM. Mézard, R. Monasson, T. Nieuwenhuizen, and
G. Parisi.
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