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Nonzero Fermi Level Density of States for a Disorderedd-Wave Superconductor
in Two Dimensions
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In 3D, arbitrarily weak disorder in superconductors with line nodes gives rise to a nonzero Fermi level
density of statesNs0d, leading to characteristic low-temperature thermodynamics similar to that observed
in cuprate and heavy-fermion systems. In a strictly 2D model, possibly appropriate for the cuprates, it
has been argued thatNs0d vanishes. We perform an exact calculation for a 2Dd-wave superconductor
with Lorentzian disorder and find a nonzeroNs0d. For other continuous distributions we obtain a
nonzero lower bound forNs0d. We discuss the reasons for this discrepancy. [S0031-9007(96)01309-9]

PACS numbers: 74.25.Bt, 74.62.Dh
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A large amount of evidence [1] has accumulated
cently suggesting that the order parameter in the cup
superconductors vanishes linearly at lines on the Fe
surface. Frequently, these experiments have been i
preted in terms of adx22y2 pairing state, but states o
“extended-s” symmetry with nodes have also been co
sidered. One of the most interesting consequence
such nodes in three spatial dimensions is the creatio
a nonzero density of zero-energy quasiparticle statesNs0d
for infinitesimal disorder [2,3]. Such a residual dens
of states (DOS) is, of course, reflected in many exp
mental observables, and may be shown [4] to lead
particular, to aT2 term in the London penetration dep
lsT d 2 ls0d, and more generally to low-temperature th
modynamic and transport properties characteristic o
normal Fermi system with strongly reduced DOS. S
tematicZn doping and electron damage experiments h
been found to lead to precisely these types of tempera
dependences in YBCO single crystals [5], and in cert
cases quantitative fits [6] have been obtained to the “d
d-wave” model, in which the effects of potential scatte
ers on a 2Dd-wave superconductor are calculated us
a t-matrix approximation [7,8] assuming large electron
phase shifts.

Recently, Nersesyan, Tsvelik, and Wenger [9] ha
questioned the accuracy of thet-matrix approximation
when applied to a strictly 2D disorderedd-wave system,
pointing out that, in 2D, logarithmic divergences in mu
tisite scattering processes, some of which are neglecte
the t-matrix approach, prevent a well-controlled expa
sion in impurity concentration. These authors avoid
perturbation theory by using bosonization together w
the replica trick, and predicted a power law DOSNsEd ,
jEja , a . 1y7, for sufficiently small energyE and dis-
order, rather than the analytic behaviorNsEd , const 1

aE2 expected in 3D. They also argued that a nonz
DOS at E ­ 0, a quantity indicating spontaneous sym
metry breaking, may not occur because of the Merm
Wagner theorem [10].
0031-9007y96y77(14)y3013(4)$10.00
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Although the physical systems in question are in
ality highly anisotropic 3D systems, the possibility of
2D-3D crossover at low temperatures could conceiva
invalidate some of the results of the usual dirtyd-wave
approach. This would render the description of the lo
temperature transport properties of the cuprate super
ductors considerably more complicated even if the or
parameter corresponds to the very simple 2Ddx22y2 form
usually assumed.

It is therefore of considerable importance to check
results of Ref. [9] by other methods. In this paper
show that, for certain types of disorder,exactresults can
be obtained for the DOS of strictly 2D disordered s
perconductors. We show that, forany disorder diagona
in position and particle-hole space, the DOS of a clas
isotropics-wave superconductor has a rigorous thresh
at the (unrenormalized) gap edgeD, as expected from
Anderson’s theorem [11]. Within the same gene
method, we show that the residual DOSNs0d of a super-
conductor with line nodes (e.g.,d or extended-s wave)
is nonzero for arbitrarily small disorder, in disagreem
with Ref. [9]. We believe that the DOS in a disorder
system is not an order parameter which belongs to
class of order parameters covered by the Mermin-Wag
theorem. This is supported by the fact that a nonz
DOS occurs also in other tight-binding models (e.
model for two-dimensional Anderson localization [12
which are described by a field theory with continuo
symmetry.

As exact results are only obtainable for Lorentz
disorder, we discuss ways [13] of obtaining informati
on the effects of other distributions, including mode
where the randomness has a compact domain. Fin
we compare our results to those arising from alterna
methods, and comment on possible origins of the cur
disagreement.

Density of states.—Here, we introduce a gener
method of calculating exactly the DOS of a supercond
tor for certain types of disorder, motivated by the analy
© 1996 The American Physical Society 3013



VOLUME 77, NUMBER 14 P H Y S I C A L R E V I E W L E T T E R S 30 SEPTEMBER1996

is

sp
s
in

o
a
at
he
n
u

g
ic

m
d

g

e

e
ur

tin
dis

l
s

he

o
e
in
ly
le

ws
fo

re

dom
it-

be

rt

on
of
y
nt

se

id

ace

he
n
sed
e

e

of Dirac fermions in 2D [14]. The BCS Hamiltonian
given by

H ­ s2=2 2 mds3 1 Ds1 , (1)

which describes quasiparticles in the presence of the
singlet order parameterD. Thesi are the Pauli matrice
in particle-hole space. The disorder is modeled by tak
m ­ mx as a random variable distributed according to
probability distributionPsmxd.

The kinetic energy operator2=2 is taken to act
as =2Csxd ­ Csx 1 2e1d 1 Csx 2 2e1d 1 Csx 1

2e2d 1 Csx 2 2e2d on a functionCsxd of the sitesx of
a 2D square lattice spanned by the unit vectorse1 and
e2. Note that this function involves displacements
two lattice sites rather than one, as would be the c
in the simplest tight-binding representation of the l
tice kinetic energy. For a system of fermions in t
thermodynamic limit, the bare kinetic energy will the
have a band representation quite similar to the us
tight-binding form, with no particular distinguishin
features near the Fermi level. The reason for this cho
will become clear below. It obeys, of course, the sa
global continuous symmetries discussed for the mo
in Ref. [9]. The bilocal lattice operator̂D ; Dx,x0 is
taken to act as ac-number in the isotropics-wave case,
D̂Csxd ­ DCsxd, whereas to study extended pairin
we define D̂

s
dCsxd ­ D

s
dfCsx 1 e1d 1 Csx 2 e1d 6

Csx 1 e2d 6 Csx 2 e2dg.
We consider the single-particle Matsubara Gre

function defined asGsiEd ­ siEs0 2 Hd21. We are
primarily interested in calculating the DOSNsEd ;
2

1
p Im

P
$k kG1 1siE ! E 1 iedl, where k· · ·l denotes

the disorder average. The problem now is how to p
form this disorder average over the probability meas
Psmxddmx of the random variablemx . Exact results
for the disorder-averaged propagator in noninterac
systems can frequently be obtained for Lorentzian
order, Psmxddmx ­ sgypd fsmx 2 m0d2 1 g2g21 dmx ,
by exploiting the simple pole structure ofPsmxd in
the complexmx plane. m0 is the chemical potentia
of the averaged system. For convenience, we
m0 ­ 0. The averaged Green function iskGsiEdl ;R Q

x dmxPsmxdGsiE; mxd, which may then be trivially
evaluatedif G can be shown to be analytic in either t
upper or lowerm-half plane.

In a superconductor, the Green function depends
the random variablemx via mx 6 iE, as a consequenc
of the particle-hole structure. Therefore, the averag
of G with respect to Lorentzian disorder is not trivial
possible. However, we will show below that it is possib
to reformulate the problem so thatG consists of terms
which are analytic in one of the half-planes. This allo
us to perform the averaging of the Green function
Lorentzian disorder.

Isotropic s-wave superconductor.—We first assume a
homogeneouss-wave order parameter, neglecting the
3014
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sponse of the superconducting condensate to the ran
potential. The Matsubara Green function may be wr
tenGsiEd ­ 2siEs0 1 HdsE2 1 H2d21, where we note
thatH2 ­ s2=2 2 md2s0 1 D2s0 since, in the isotropic
s-wave case,s2=2 2 mds3 anticommutes withDs1 even
for randomm due to the locality of the order parameter.

The expressionH2 1 E2 is proportional to the unit
matrix; as a consequence, the Green function can
written in the simple form,

GsiEd ­ 2
iEs0 1 H

2i
p

D2 1 E2

3 fs2=2 2 m 2 i
p

D2 1 E2 d21

2 s2=2 2 m 1 i
p

D2 1 E2 d21gs0 . (2)
It is straightforward to show that the imaginary pa
of this expression (after analytic continuation,iE !

E 1 ie) for any given configuration of impuritiesis
vanishing for jEj , D. Therefore, the DOS shows a
gap of sizeD independentof the distribution function
Psmd. Thus, our model reproduces the famous Anders
theorem [11] which states that the thermodynamics
an isotropics-wave superconductor are not affected b
diagonal, nonmagnetic disorder. The situation is differe
if the order parameter itself is random, in which ca
all quasiparticle states are broadened andNsEd . 0 for
all E $ 0 [13,15]. Here we neglect these effects, as d
Nersesyanet al. [9].

d-wave and extended-s symmetry superconductors.—
The second class of examples includes thed-wave and
extended-s “bond” order parameterŝDs

d defined above.
The corresponding pure systems in momentum sp
fulfill the condition

P
k Dk ­ 0, so that nonmagnetic

disorder must cause significant pair breaking [2]. T
behavior of the imaginary part of the Green’s functio
can be studied using a method analogous to that u
for the s-wave case. However, the main differenc
is that the nonlocal order parameter term̂Ds

ds1 does
not anticommute withs2=2 2 mds3 anymore if m is
random.

This requires a different type of transformation. W
introduce a diagonal matrix (or staggered field)Dx,x0 ­
s21dx11x2 dx,x0 (noteD2 is the unit matrix). Now we may
write
H2 ­ HDs2

3DH ­ fs2=2 2 mdDs0 2 iD̂s
dDs2g

3 fDs2=2 2 mds0 1 iDD̂s
ds2g .

(3)
BecauseD commutes with2=2 (as defined above) and
m, but anticommutes with the order parameterD̂

s
d , we

have simply H2 ­ H̃2, with H̃ ; s2=2 2 mdDs0 2

iD̂
s
dDs2. Therefore, the quantityH2 1 E2s0 ­ sH̃ 1

iEs0dsH̃ 2 iEs0d can be used to write

GsiEd ­
isiEs0 1 Hd

2E

3 fsH̃ 2 iEs0d21 2 sH̃ 1 iEs0d21g . (4)
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Observe that bothH andH̃ appear in this expression, b
H appears only in the numerator.

Defining zx ; mxDx , we now note that forE . 0
and Imszxd $ 0, the matrix iEs0 2 H̃ is nonsingular
(i.e., detsiEs0 2 H̃d fi 0). Therefore, the transforme
Green’s functionsiEs0 2 H̃d21 can be expanded as
Taylor series with nonzero radius of convergence aro
any zx in the upper halfz-plane, and is consequent
analytic there. Using this fact andPszd ­ Psmd, we
can now perform the disorder integration, as defi
above. The disorder-averaged Matsubara Green fun
is translationally invariant. Performing a spatial Four
transform, we replace2=2 by j ­ e $k 2 m0 and find

kGsiEdl ­ 2
siE 1 igds0 1 js3 1 D

s
ds1

sE 1 gd2 1 j2 1 sDs
dd2

; GsiE 1 igd . (5)
This is the Matsubara Green function of the pure sys
with the frequencyiE shifted by the disorder paramete
iE ! iE 1 ig. It should be noted that, for the loc
(isotropic) s-wave order parameter discussed before,
average over a Lorentzian distribution in Eq. (2) implie
shift i

p
D2 1 E2 ! i

p
D2 1 E2 1 ig.

To obtain the DOS for thed-wave case we approxima
the sum over the momenta$k in standard fashion a
N0

R`

2` dj
R2p

0
df

2p , whereN0 is the density of states o
the normal metal at the Fermi level, with the tetrago
Fermi surface approximated by a circle. The result is

NsEd ­ N0

Z 2p

0

df

2p
Im

√
E 1 ig

fD2
dsfd 2 sE 1 igd2g1y2

!
,

(6)
where thed-wave order parameter is approximated
Ddsfd ­ Dd coss2fd. At E ­ 0, Ns0d ­ N0

2g

pDd
3

lns4Ddygd for g ø Dd. Thus, the DOS is nonzero
the Fermi level for arbitrarily small disorder. For sm
E, NsEd varies asE2.

For more general continuous distributionsPsmd dm, the
averaged DOS can be estimated using again the ana
structure ofG̃. Applying the ideas of Ref. [13], one ca
derive a lower bound by a decomposition of the latt
into finite subsquares. The average DOS on an isol
subsquare can be estimated easily. Moreover, the co
bution of the connection between the subsquares to th
erage DOS can also be estimated. A combination of b
contributions leads tokNs0dl $ c1 min2m1#m#m1 Psmd,
wherec1 andm1 are distribution dependent positive co
stants. In particular,m1 must be chosen such that t
spectrum ofHsm0 ­ 0d ­ 2=2s3 1 D̂

s
ds1 is inside the

interval f2m1, m1g. For all unbounded distributions, suc
as the Gaussian distribution used in Ref. [9], as wel
compact distributions with sufficiently large support, t
estimate leads to a nonzero DOS at the Fermi level.

The major result in thed-wave (extended-s-wave) case
with Lorentzian disorder is the presence of a finite pur
imaginary self-energyS0 ­ 2igs0 due to nonmagneti
d
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disorder which leads to anonzeroDOS at the Fermi level
The latter is in qualitative agreement with standard th
ries based on the self-consistentt-matrix approximation
[7,8] as well as with exact diagonalization studies in
[16,17]. In contrast to such theories, our self-energy
no dependence on̂Ds

d , i.e., it is the same as in the norm
state. In Fig. 1 we show a comparison of the self-ener
of our theory and the limits of thet-matrix approximation.

A drawback of the model with Lorentzian disord
is that impurity concentration does not appear explic
in the theory. Whereas in thet-matrix approach we
have with the impurity concentration and the scatter
strength (or phase shift) two parameters associated
disorder, in the present model we have onlyg, the width
of the Lorentzian. A way of making a connection
by comparing the variance of the Lorentzian distribut
sgd and the variance of the distribution underlying t
t-matrix approximation, which is a bimodal distributio
of a chemical potentialm ­ m0 with probability 1 2 d

(d being the dimensionless impurity concentration) a
m ­ m0 1 V with probability d (V being the scattering
potential). The varianceVarm of this distribution is
determined by

Var2
m ­ km2l 2 kml2 ­ V 2sd 2 d2d . (7)

For small concentrations of impurities,d ø 1, we find
Varm ­ Vd1y2. The d1y2 behavior is also found fo
Im S0sE ­ 0d in the t-matrix approach for strong sca
tering. Since in our model the variance of the distribut
is also the imaginary part of the self-energy, this sugg
that our model is closer to the strong scattering limit
the t-matrix approximation than the Born limit.

Finally, we comment on the discrepancies between
result and the calculation of Nersesyanet al. [9], who
found a power law for the averaged DOS with Gauss
disorder.

FIG. 1. Imaginary part of the self-energy vs frequency. F
Lorentzian disorder (solid line) the self-energy is constantig.
The self-energy of the self-consistentt-matrix approximation
in the unitary scattering limit (dashed-dotted line) beha
~sdDd1y2 at zero frequency. For Born scattering (dashed li
the value at zero frequency is nonzero, but exponentially sm
We have adjusted the impurity concentration to obtain eq
normal state self-energies for thet-matrix results.
3015
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One might question the analysis of Nersesyanet al.
because of the use of the replica trick, which is a d
gerous procedure in a number of models [18]. Howe
Mudry, Chamon, and Wen [19] have obtained ident
results for thecontinuumproblem of Dirac fermions in
the presence of a random gauge field using supersym
try methods. We therefore believe that the crucial diff
ence between our results and those of Ref. [9] occur
the passage to the continuum and concomitant mappin
the site disorder in the original problem onto the rand
gauge field. Only in the continuum case is there a di
analogy between disorder in the chemical potential an
gauge field; on the lattice, gauge fields and chemical
tential terms enter quite differently. Chemical poten
terms are local while gauge fields are defined on bo
Furthermore, chemical potential disorder enters line
in the Hamiltonian while gauge fields enter through
Peierls prescription as a phase in the exponential m
plying the kinetic energy.

Disorder of the gauge field type is furthermore no
generic even in the continuum, as discussed by Mu
et al. [19], who showed that the critical points of the sy
tem with random gauge field areunstablewith respect to
small perturbations by other types of disorder [20]. W
expect that a proper mapping of the lattice Dirac ferm
or d-wave superconductor problems to continuum mod
will inevitably generate disorder other than random ga
fields. Therefore, we believe that our result of a fin
DOS at the Fermi level is the generic case for ad-wave
superconductor in two dimensions.

We have computed the single-particle Green func
and DOS for a model of a superconductor with nonm
netic impurities. For an isotropics-wave superconduc
tor, we recover standard results; in particular, Anderso
theorem is reproduced. Furthermore, our calculati
for the disorder-averagedd- and extended-s-wave propa-
gators show that the DOS is nonzero for all energ
provided the distribution of the chemical potential is co
tinuous and of sufficient width. The disorder average
been performed exactly in the case of a Lorentzian
tribution. In this approach, we have neglected spatial
der parameter disorder, but believe that, since this e
by itself leads to pairbreaking at all energies [13,15,1
we have provided strong evidence for a finite Fermi le
density of states in a disordered 2Dd-wave superconduc
tor. Our calculation suggests that the standardt-matrix
approach to disorderedd-wave superconductors is qualit
tively sufficient and casts doubt on the result by Nerses
3016
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et al.,who found a power law for the averaged DOS wi
Gaussian disorder.
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