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Gauge Fields and Pairing in Double-Layer Composite Fermion Metals
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A symmetrically doped double-layer electron system with total filling fractiosr 1/m decouples
into two even-denominator composite fermion “metals” when the layer spacing is large. Statistical
gauge fluctuations in this system mediate an attractive pairing interaction between composite fermions
in different layers. A strong-coupling analysis shows that for any layer spacihi pairing interaction
leads to the formation of a paired quantum Hall state. [S0031-9007(96)01357-9]

PACS numbers: 73.40.Hm, 73.20.Dx, 74.20.—z

Composite fermions were introduced by Jain in order tddeal DLCFM, by which we mean a DLCFM in which
understand the observed hierarchy of states in the fractionttie carrier densities in the two layers are precisely equal,
quantum Hall effect (FQHE) [1]. A composite fermion there is no interlayer tunneling, and there is no disorder,
is an electron confined to move in two dimensions ands alwaysunstable to the formation of a paired quantum
tied to an even number of statistical flux quanta. JairHall state for any layer spacing
showed that the fractional quantum Hall effect for electrons The Lagrangian density for an ideal DLCFM as defined
at odd-denominator filling fractions can be viewed asabove is given by = ¢ = 1)
an effectiveinteger quantum Hall effect for composite _
fermions. Halperin, Lee, and Read (HLR) took Jain's Lr,7) = Lile,7) + Lo(r,7), (1)
suggestion further, arguing that at Landau level fillingwhere
fraction » = 5, or any even-denominator filling fraction N )
y = ﬁ the statistical flux attached to composite fermionsf1(X: 7) = Z(w(s)(r, T)[0r + iag (r, 7)) (xr, 7)
can, at the Hartree level, exactly cancel the physical flux ’

of the applied magnetic field [2]. The composite fermions + Lgy(t)(r, ) [=iV — a¥(r,7) + eAr)]
then form a new type of metal, and a growing number of 2myp "

experiments appear to support this description [3]. HLR X i) (r, 7-)>’ (2)
also showed that fluctuations of the statistical gauge field

in this metal give rise to singular inelastic scattering of

sufficient strength to lead to a breakdown of Landau f,(r,7) = — > -—K.'al (v, 7)e;j0:a) (r, 7)
Fermi liquid theory. Though experimental proof of the > 2T

non-Fermi-liquid nature of the composite fermion metal 1 2 ;
remains elusive, it has generated a great deal of excitement Ty > f dr'dp)(t, 7)Vs e = r)

5,8

in the theoretical community [4]. ,
Double-layer electron systems have been realized in X 8p()(r',m). (3)

both double quantum wells [5] and wide single quan-Here s is a layer index, V,u(r) = e?/e X

tum wells [6]. The (m,m,n) states at filing fraction . /7Z + (1 — 8,)d> is the intralayer {=s') and

v = % proposed by Halperin [7], are double-layer interlayer ¢ # s’) Coulomb interactiony;, is the fermion

generalizations of the Laughlin states. At even denomifield in layers,

nators, there are additional possibilities motivated by the ot

composite fermion construction. As one of us has pointed BpoX.7) = tho) (0. Ty (. 7) = n 4)

out [8], in the limit where the layer spacing is large, is the density fluctuation about the mean density in each

it should be possible to view a double-layer system atayer, andV X A = B whereB = mszn is the applied

v = % as two decoupledv = ﬁ composite fermion magnetic field. We work in the transverse gauge;

metals. This description will be referred to as the doublea®(r,7) = 0, and takeK,; = K» = 2m, Ki» = Ky =

layer composite fermion metal (DLCFM) description in 0, which is the natural choice in the limit of large layer

what follows. The main result of this Letter is that an spacing. We further specialize o = 1, but all results
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may easily be generalized. Integrating out t#§@ fields the framework of Eliashberg theory. Related work, in
enforces the constraint different contexts, can be found in [10]. Using the Nambu

1 formalism the matrix Green’s function is
77V % (@) — eA) = 28p(), (5)
o

. . _— Glkiw,) = liw,Z, — - @Pn 71, 9
which attaches two flux tubes of the appropriate statistical (kiwn) = [io €T3 = $am] ©)

flux to each electron. In the following, we shall denote by h — n + DaT i fermion Matsub f
a® the fluctuation in the transverse gauge field associatef '€'€ @» — (27 71 1S a termion Matsubara fre-
with layer s. quency,Z, is the mass renormalizatiog,, is the anoma-

It is natural to describe the fluctuations of this syste ous sglf—energy, ana\_n = bu/Zu s th_e_ 9ap fur_mtion.
in terms of in-phase and out-of-phase modes. If the inJ e Eliashberg equations féfwave pairing in this sys-

phase and out-of-phase gauge fields are defined"as= tem are then given by
a = 4@, then within the random-phase approximation

. Zn@n
the relevant gauge field propagators at low frequency and w,(1 — Z,) = — WTZ 1z |2w+ 2172
long wavelengths are, in the limit > I, e m ?’_’;l Pin
DY (g iw,) = (2q/4me + |w,lk; /4mq) " (6) X Ao + An=no), .
for the in-phase gauge fluctuations and b, = — WTZ me 7 (10)
(e*dq?/4me o (| Znonl* + o2)
D(_)( . ) . +|wn|kf/477q)_1 fOI’ q = d_l, X ()lfn+2n,l - )l,(nif)n’l),
4 1@n) = (e*q/dme
+lwylks/4mg)~t forg = d! where the coupling constantsare obtained by averaging
(7) the effective interactions (8) over the Fermi surface:
for the out-of-phase fluctuations [8]. The current-current ky 2k . q
interactions mediated by these gauge fields in the inter- Ay—,; = Y ]0 CO?<21 sin i)
F

layer Cooper channel are then

. kX q\, .
v1—2<k,k';iwn>=r( W“)D—(q,iwn), ®)

where § = (k — k’)/|k — k| and m* is the effective (11)

mass of the composite fermions. Fluctuationsaif L . : L
P N The pairing interaction mediated by~ is singular at

are more singular at low frequencies than those in mall ¢ and is thus attractive in all angular momentum
a™) because the Coulomb interaction suppresses the it & 4 9

phase density fluctuations but not the out-of-phase densiﬁﬁannels' Here Wi con5|d(ir the casesa¥ave pairing
i ive i - and henceforth setw2, = A’

fluctuations. As a consequence the effective interactio® , bn=n = Am—n0- ) u

is dominated by the out-of-phase fluctuations. We will Performing the integral (11) for"’ yields

include both the in-phase and out-of-phase fluctuations in

X D (g, lom — w1 — (q/2kr)?dq .

2/3 2 1/3
our calculations, while ignoring the less singular density- ALD ~ 2Ef <l_°> (ﬂ)
density and density-current interactions [8]. (e?/elp)\ d lwmn — w,l
The dominant out-of-phase mode mediatestiractive + less singular terms (12)

pairing interaction between composite fermions in opposite

layers. This attractive pairing interaction appears becausghere E, = k%/zm* and [y = 1/+eB is the magnetic
a™) couples to composite fermions in different layers asength (for » = 1,2, k; = 15"). As discussed by HLR

if they were oppositely charged. The fluctuatin§’  [2] “the electron band mass must be renormalized so that

field strongly inhibits the coherent propagation of a single;,,* ~ ¢/¢2/,. For simplicity in what follows we will take
composite fermion, while a pair made up of compositeg, ~ ¢2/el, and

fermions from different layers is neutral with respect to

a™). Such a composite fermion pair can then propagate NEn wo 1/3 (13)
coherently through the fluctuating ~ field, much like a mon =N o)

colorless meson propagating coherently through a strongly

fluctuating gluon field. where y = (Io/d)*? is a dimensionless “coupling con-

In [8] it was proposed that this attractive interactionstant,” andw, = ¢2/ely. Performing the same integra-
might lead to a “superconducting” instability of an ideal tion for A(*) we obtain

DLCFM. Such a superconducting state of composite
fermions would be incompressible and thus exhibit the

) o[ — @0 i
FQHE [9]. Here we investigate this possibility within A |n<|wn _ wm|> + less singular terms (14)
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The two Eliashberg equations can be combined tde written as
obtain a single equation fak,:

RN Y 1
A, = WTZ __ Aliw) = 2 ‘/;Odw (0?2 + A2)1/2
BT Aliw) — o'Alio)
A w — A w X <a) @ » e >)L(_)(iw —iw').
X|:( m%Yn n m)Ain—_)n )
w (18)

— <M>Afnﬂn} . (15)

w, Within the approximatiom\(iw) = const the equation for

Note that there is a cancellation when, = w,,, which A(0) obtained by taking the — 0 limit of the right-hand

removes the divergence in the attractive interactibn » side of (18) is
whenm = n. This cancellation can be understood as a, ywé/3 o, 1 1 wo )/
consequence of Anderson’s theorem [11]. The quasistatié 3 ]mdw (0 + A2)1/2 /3 * 7<X> ’
(w < T) gauge fluctuations which are responsible for (19)
the destruction of Fermi liquid behavior in the “normal 3 ]
state,” drop out of the gap equation because they can gt follows that A(0) « y“wo. A fully self-consistent
viewed effectively as a random time-reversal invarianSolution of (18) yields
potential. Here by time reversal we mean combined
time reversal and exchange of the two layers, under A(0) = 8.4y wg 7 (20)
which a7 is, indeed, invariant. «'*), on the other
hand, is not time-reversal invariant, and hence is nofhus, in the absence aft) fluctuations, the supercon-
governed by Anderson’s theorem. As a result, there islucting energy gap at zero temperature falls offl Ag°.
a finite-temperature divergenceat= n. The origin of We emphasize that the gdp~ y>6(y) is not analytic at
this divergence can be traced back to the fact that thee = 0 and is not a perturbative effect.
composite fermion pairs are not “neutral” with respect to At zero temperature, the*) fluctuations do not lead
the «*) field. As a result, the pairing equation is not to any divergences, so the Eliashberg equations may be
gauge invariant and may contain unphysical divergencesolved without special precaution. Again, we consider the
These divergences are not present in gauge-invaria@pproximationA(iw) = const. The equation foA(0) is
quantities such as the free energy, which was calculatedhen, in the limity < 1,
by Ubbens and Lee [12] in a related problem arising in the /3 o

S . . YWy / 1 1
gauge theory description of the spin gap in the cuprates. 1 = [ dw

We first ignore the:*) fluctuations and calculate what 3 e (@ + A2 17
T. would be in their absence. Linearizing (15) and setting . fA do' In 20
A2, to zero we obtain an equation which, because of —n o (02 + A2
the scaling behavior oﬁfJ—)n, allows the dependence on wo\"/? wo ) .
the temperaturep,, and y all to be factored out. The = 7<X> B B('” X) + less singular terms
resulting equation is
(21)
@ 1/3 s
A, = 7(%) Z'm — a7 = ) Here A and B are numbers of order 1 and is a
A " A high-energy cutoffA ~ wo. The presence of the'")
X < m_ _ n )sgn(Zm +1). (16) fluctuations leads to a substantial suppression of the gap.
2m +1  2n+1 In the limit y < 1 we find that
Unlike conventional BCS theory there is no need for 3 |
a frequency cutoff in the gap equation. Because the A ~ wy Y 3 5 c- (22)
effective interaction falls off asw~'/3, it is possible (Iny)*  d*(nd)

to take the Matsubara sum to infinity. The resulting

expression fof, in this limit is Although the gap is suppressed, th&") fluctuations

do not eliminate the zero-temperature pairing instability.

1 s ) oo

T, = 43wyy° o« — (17) This is the central r_esult of this paper—an |deaI_DLCFM,
d? as defined above, mlwaysunstable to the formation of a

where only the proportionality constant needs to bePaired state no matter how large the layer spacing is.
determined numerically. We now comment on the solution of the finite-

We find a similar result for the zero-temperature gaglémperature Eliashberg equations including the’)
if we continue to neglects'*). The zero-temperature fluctuations. As stated above, the problem is that the

Eliashberg equation on the imaginary frequency axis cafogarithmic singularity in AW, is not canceled by
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To conclude, we have shown that in the absence of
disorder and interlayer tunneling a perfectly balanced
DLCFM s, at the level of the Eliashberg equations,
alwaysunstable to the formation of a paired state at zero
temperature, regardless of how large the layer spacing is.
Such a paired state will be incompressible and thus exhibit
the FQHE [9]. Motivated by this result we propose the
qualitative phase diagram shown in Fig. 1 for the= 1
(1,1,1) State double-layer system. The experimental observation of
the paired quantum Hall state discussed in this paper
would provide strong evidence for the existence of gauge
0 e/ e/els fluctuations in composite fermion metals.
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