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The capacitance of mesoscopic samples depends on their ge@mépihysical properties, described
in terms of characteristic times scales. The resulting ac admittance shows sample to sample fluctuations.
Their distribution is studied here—through a random-matrix model—for a chaotic cavity capacitively
coupled to a backgate: it is observed from the distribution of scattering time delays for the cavity, which
is found analytically for the orthogonal, unitary, and symplectic universality classes, one mode in the
lead connecting the cavity to the reservoir and no direct scattering. The results agree with numerical
simulations. [S0031-9007(96)01262-8]

PACS numbers: 73.23.Ps, 05.45.+b

The elementary notion of capacitance of a system of In this Letter we shall confine our discussion to the
conductors, as a quantity determined solely by the geomeeometry shown in Fig. 1. In this system there is, of
try, has to be revised if the electric field is not com-course, no dc transport, but there may be an ac current,
pletely screened at the surface of the conductors. In factletermined by the admittance [1,3]
the penetration distance of the field is of the order of | g(w) ,
the Thomas-Fermi screening length, which may be appre- & (@) = 1+ (i/wC,)g(w) = —ioCy + -+, (1)
ciable for a mesoscopic conductor: the standard descri -
tion of a capacitor in terms of thgeometric capacitance
C. (that relates the charg@ on the plate to the voltage
U across the capacitor) gives way, in the mesoscopic d
main, to a more complex entit¢,,, the electrochemical
capacitance(that relates) to the electrochemical poten- 1 3S(E)
tial of the reservoirs), which depends on the properties of  g(w) = —wie2{—, Tr[ST(E)—” + .-
the conductors [1]. This fact, in turn, has important con- 2mi IE

Riritten in the Thomas-Fermi approximation and to lowest
order in the frequencw. Here,g(w), g/ (w) denote the

admittance for the noninteracting and interacting system,
0r'espectively, the former being given, for zero temperature,

sequences for the ac current induced in the system when = —iwe’N7/A + ---. (2)
the electrochemical potentials are subject to a nonzerg4ere, S(E) is theN X N scattering matrix for the system
frequency time variation [1]. formed by the cavity and the lead; being the number

The eleCtl’OChemical nature Of the Capacitance haéf propaga“ng modes’ or Open Channels’ |n the |%d’
been relevant to a number of experiments [2] and hag the mean level spacing for the cavity (the inverse of

been discussed theoretically by several authors [1,3,4}he level density). Following [8], we have introduced the
Remarkably, it has been found that the resulting agimensionless time delay

admittance can be described in terms of characteristic time A 960

scales related to energy derivatives of scattering matrix T= "7 (3)
27N OF

elements.

. _ . 1
It is well known that, as a result of quantum interfer- where expif) = dets. We then writeg'(w) of Eq. (1)

ence, the dc conductance of mesoscopic structures shows
strong fluctuations as a function of the Fermi energy or
the magnetic field, as well as from sample to sample. A
statistical analysis of this phenomenon has been done, for
diffusive transport in disordered structures, using micro-
scopic perturbative and macroscopic random-matrix the- x ‘ E
ories [5], and for ballistic microstructures—cavities in
which impurity scattering can be neglected so that only h_ﬁ
scattering from the boundaries is important—whose clas-
sical dynamics is chaotic, using semiclassical, field theo- , ] ] , ] ,
retic and random-matrix approaches [6,7]. FIG. 1. Mesoscopic capacitor: A cavity (thick line) is
connected via a perfect lead to reservoir 1 and capacitively

An extension of the above random-matrix studies tC’coupled to a macroscopic back gate (thin line) connected to

include the ac admittance of mesoscopic structures is th@servoir 2. The cavity is ballistic, and its classical dynamics
subject of the present investigation. is chaotic.

g(w) = —iwCea + ---, 4)

Ly

0031-900796/77(14)/3005(4)$10.00 © 1996 The American Physical Society 3005



VOLUME 77, NUMBER 14 PHYSICAL REVIEW LETTERS 30 BPTEMBER1996

where the dimensionless capacitamcés given by S(E) — 1+ l:K(E) ) )
- 1 — iK(E)
a=C,/C. = (5) i i i
T+ For pure resonance scattering idunction can be given
and the sum-over-resonance form [13,14]
Ce F/\
= ——. 6 K(E) = , 10
n N(e2/A) (6) (E) %‘E}L—E (20)
Notice that,lfor a ma.CI’OSCOpiC CaVity] <1, so that where the “Widths”l"/\ for a given Symmetry Clasﬁ can
@ = landg'(w) ~ —iwC. _ be written in terms of real amplitudes’ as
The one-energystatistical distribution of the§ matrix s
for ballistic cavities larger than the Fermi wavelength has r, — Z[V(i)]z (11)
been modeled successfully through an “egaapriori A = A

probability” ansatz (known as a “circular ensemble”)
[6,7], when the classical dynamics is chaotic and direcb
processes though the microstructure can be neglected, B
that, as a result, the averageédvanishes,S = 0. It
is clear, through, that the time delay of Eq. (3) is a K, — K +tan¢

. . . : . 6= (12)
two-energyfunction and thus requires more information

1 - Ktang’
for its statistical study. The distribution of, w(7), has . o _
been studied for a one-dimensional disordered syste being constant; sinc& = tan(6/2), (12) takest/2

idQ,id ;
within the invariant imbedding formalism in [9]. In 0 6/2 + ¢, and hences to ¢'*Se’?. Both K and its

another approach, an underlying Hamiltonian describe&y.""nsformS ha}ve the fork = tan [ h(E) dE, c being

by a Gaussian ensemble was assumed and the probl erent for different trgnsforms. Starting from one pole
analyzed using supersymmetry techniques: the two-poi tl) Of. Ké;)ne C?hn :)i)r:aln the nezj(t oge tt))ytdeter:lrznlnlng the
correlation function for the matrix elements was derived 2 SCISS l\?lso a te arei'::Eun @(h ) I?erl hl gn

in [10]; phase-shift times for unitary symmetrd, and S Tf21 IS 7. I (;_reover, a ahpo A.WeF. av?()e AT_h /I ( ?)' q
arbitrary were studied in [11]. Reference [12] finds an €SE relations are shown In Fig. S. € levels an

approximation tow (7). We concentrate, in what follows, widths of the transforms o€ can be obtained by a similar

on w(r) for arbitrary symmetry (orthogonal, unitary, and construction, starting at another abscissa.
symplectic, identified ag = 1, 2, and 4, respectively), From (9) and (10) we find the energy averageSaE)
N = 1 andS = 0: we show that this case can be treated®®
using an old conjecture by Wigner [13,14]. We believe — ) 1 —1t
that the simplicity of the argument is appealing and gives S(E) = S(E + il) = 1 +¢°
an interesting perspective to the problem and a unified — - )
point of view for arbitrary 3. We also remark that, Where/ — = [16] ands = #T'/A. For S(E) = 0 [cir-

for ballistic cavities, the case of just one open channelCular ensemble, invariant under (12)], we have 1. In
N =1, is very relevant from an experimental point of this case (referred to in Refs. [13,14] as that of a “nor-

view, since cases of smaN have been realized in the Malized”R function) Wigner proposes the conjectutiee
laboratory [15]. We find below

The quantity§’(E)/2 = h(E) was studies extensively
é Wigner [13,14]; it is called the “invariant derivative,”
cause it remains invariant under the transformation

(13)

(B/2)B/2 e~ Bl2m 6
O (IR " | |
where0 = 7 < ». For 8 = 2, this result agrees with n=0.05/
that of Ref. [11]. The main result of the present paper, ab
i.e., the g dependent distribution of the dimensionless, () ;
capacitancea [« is related to the ac admittance via ' .| ., _;g e,

Eq. (4)], then follows as P n-o1 7
= B (=@, d "
Py T(B/2) nBD12E+H/2 .
1
(®)

for 0=a = 1. A plot of p;,(a) for various values 0 R - !
of 5 is presented in Fig. 2. For a macroscopic cavity, o
n — 0 and pgn(a) = 6(1 — a). We now derive the £ 5 The probability density of—the ratio of the elec-
distribution of time delays, Eq. (7). trochemical to the geometric capacitance—for the orthogonal

We write S for N = 1 as case [Eqg. (8)], for a number of values pf
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WE) “replicas” of K, all having the same distribution &f,; we
do thisn times, in such a way that the area between two
successive levels is subdivided iniostrips of arear/n
each. Now we have a fine mesh, the sum over which can
be approximated by an integral, using a density/ 7,
since the base of one of the above strips, at the place
where 4 is the local value of the curve, is/nh. We
then arrive at the above relation (14).

If we use, in (14), the variable = 7 /hA (and denote
the distributions with a hat), we have

P(u) = uQ(u). (16)

On the left-hand side (LHS) can be thought of in terms
E E E. E ofrofEq. (3) axx = 1/7; at resonance; takes the value
uy = 7I'y/A, which is the relevant variable on the right-
FIG. 3. The invariant derivativé(E). The E, are the poles hand side (RHS) of Eq. (16). Thus, knowing the distri-

of K(E) and theI', the corresponding widths. Replicas of i i A i dineD
K with the same width distribution (according to Wigner's bult__lgp ,?l,fgv It?]trr(]eSte(JL;])i,vErqs.aEiltB) Callg(s)\évs delng iu;r[ij?]i.n
conjecture) are generated via the transformation (12) and used y =12

to subdivide the area between successive levelsrirdtips. dependent Gaussian variableg), the distributionQ ()
is the y? distribution function with3 degrees of free-
dom,

statistical distributions of level spacings and residues are (B/2)B/>
invariant under the transformatio(i.2). Opu) = ~—-—— u\ P22~ (B2, 17)
The above statement is a “conjecture,” not a “theorem,” rg/2)

ar]d it is not cle_ara pr?ori,_ for what distribution_s, if any, Eq. (16) then gives?(x), from which we find the distri-
it is _fu!fllled._ Wigner, in his papers, proposes it fqr “Most pytion of time delaysv;(7) of Eq. (7). We notice the re-
statistical distributions.” The conjecture, in relation with jarkable fact that, whilevz(7) certainly depends on the
the residue distribution, was verified numerically for the gistribution of widths,other characteristics of the spec-
case in which the energy levels entering Eq. (10) are corgym pecome lumped together in the invariance property
structed from a Gaussian orthogonal, unitary, 0r5ymp|e°“%ontemplated in Wigner's conjecture
ensemble, and thﬁf() of Eq. (11) asindependent Gaussian A numerical verification (using the simulation ex-
variables: the residue distribution was found to remairplained above in relation with Wigner's conjecture) of
invariant, within the statistical error bars of the numeri-wz(7) of Eq. (7) is shown in Fig. 4 for the three sym-
cal simulation. On the other hand, the conjecture ismetry classes8 = 1,2,4: in all cases the agreement is
seen, in our numerical studies, to be violated for a specseen to be very good.
trum of statistically independent energy levels followinga To summarize, we have found the statistical distribu-
Poisson distribution. tion of capacitanceps ,(«), Eq. (8),a being defined in
Call Q(h) the probability density of the inverse Egs. (4) and (5), for the system shown in Fig. 1, whose
widths #(E,) = h, and P(h) the probability density essential element is a mesoscopic capacitor. The plate
of h across the energy axis, irrespective of whethecoupled to the back gate is a chaotic cavity; the experi-
we are at resonance or nae(h) is related tow(r) as  mentally relevant situation of one open chanfél= 1)
w(r) = (w/A)P(r7/A). Assuming the above conjec- is considered and the possibility of direct reflection by the

Strip of area n/n

ture, Ref. [14] shows that cavity is neglected. The essential ingredient that is needed
- is the statistical distributionvg(7), Eq. (7), of time de-
P(h) = A (h). (14) laysr associated with the scattering from the cavity. It is

shown thatwg(7) can be obtained in a very simple way
This relation can be understood by means of a very simpl&éom a conjecture by Wigner, whose validity, in turn, is
argument. Consider, for one givéh the followinglevel-  verified numerically for the three symmetry classes: or-

average thogonal, unitary, and symplectic. The resulting(7)
o compares very well with the results of numerical simula-
(f(h)r = — Z f(hy), (15) tions, for the three classes. The statistical analysis of the
M= admittance of mesoscopic conductors provides additional

for an arbitrary functionf. From Fig. 3 we see that we information on such systems not contained in the inves-
cannot replace the sum in this equation by an integraltiigation of dc transport properties, and thus points to an
However, using the transformation (12) we can construcinteresting avenue of future research.
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